Pig Latin: A Not-So-Foreign Language for Data Processing

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew Tomkins (Yahoo! Research)

Presented by Aaron Moss (University of Waterloo)
“We have this problem …”

> Developers at top web properties trying to make their product better
> They have massive, un-indexable datasets to work with
> And they want to do ad-hoc analysis on them
“… and we have this tool …”

> Map-reduce over a parallel cluster solves the problem quite efficiently
> Takes advantage of the massive parallelism inherent in the data analysis problem
“… how do we make it simple?”

> Map-reduce is hard to use
 – doesn’t support common operations like join in a reusable fashion

> SQL is unfamiliar
 – Users are developers who are more comfortable with procedural than declarative code
A different kind of question

> This class has largely been concerned with implementing relational database constructs efficiently in a distributed setting

> This paper is concerned with building easy to use constructs on top of an efficient distributed implementation
Introducing Pig Latin

> A language designed to provide abstraction over procedural map-reduce without being so declarative as to be opaque

> The authors have built a query translator called *Pig* for Pig Latin
 – Written in Java for the Hadoop map-reduce environment
 – Open source and available at http://pig.apache.org
Quick Overview of Map-Reduce

\[(k_1, v_1)\]
\[(k_2, v_2)\]
\[\ldots\]
\[(k_n, v_n)\]
\[\text{map}\]
\[\text{map}\]
\[\text{map}\]
\[(k^*_1, v^*_1)\]
\[(k^*_2, v^*_2)\]
\[\ldots\]
\[(k^*_m, v^*_m)\]
\[\text{group}\]
\[k^*_1 (v^*_1 \ldots)\]
\[\text{reduce}\]
\[\text{reduce}\]
\[\text{reduce}\]
\[(v^{**}_1 \ldots)\]
\[k^*_m (v^*_m \ldots)\]
\[(v^{**}_p \ldots)\]
Disadvantages of SQL

> Not as inherently parallelizable
> Declarative style uncomfortable for procedural programmers
> Many primitives with complex interaction
 – Hard for the programmer to know where the performance bottlenecks are
Advantages of Map-Reduce

> Inherently Parallel
> Procedural model
> Only two primitives (map and reduce)
 – Makes it clear what the system is doing
Disadvantages of Map-Reduce

> Can be difficult to make queries fit into the two-stage “map then reduce” model

> Can’t optimize across the abstraction

> No primitives for common operations
 – Projection
 – Selection
An Example

> SQL
SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 1000000

> Pig Latin
good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups
 BY COUNT(good_urls) > 1000000;
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank);
Dataflow Language

> Each line defines a single manipulation
> Similar to a query execution plan
 – Lower level than SQL
 – This can aid optimization
> User-defined I/O allows Pig to work with data stores that aren’t databases
 – Queries are read-only (no transactions)
 – Queries are ad-hoc (less value in pre-built indices)
Data Model

> **Atom**: single atomic value, e.g. string, number

> **Tuple**: sequence of fields of any data type

> **Bag**: collection of tuples

> – Possible duplicates

> – Tuples need not have consistent schema

> **Map**: collection of data items which can be looked up by an atomic key

> – Keys must have same type, data items may not
Pig Expressions

\[
t = (‘quux’, \{(‘foo’,1)(‘bar’,2)\}, [‘baz’ → 20])
\]

<table>
<thead>
<tr>
<th>Expression Type</th>
<th>Example</th>
<th>Value for (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>‘foo’</td>
<td>‘foo’</td>
</tr>
<tr>
<td>Field (by position)</td>
<td>$0</td>
<td>‘quux’</td>
</tr>
<tr>
<td>Field (by name)</td>
<td>f3</td>
<td>[‘age’ → 20]</td>
</tr>
<tr>
<td>Projection</td>
<td>f2.$0</td>
<td>{(‘foo’)(‘bar’)}</td>
</tr>
<tr>
<td>Map Lookup</td>
<td>f3#‘baz’</td>
<td>20</td>
</tr>
<tr>
<td>Function Evaluation</td>
<td>SUM(f2.$1)</td>
<td>3</td>
</tr>
<tr>
<td>Conditional</td>
<td>f3#‘baz’>42 ? 1:0</td>
<td>0</td>
</tr>
<tr>
<td>Flattening</td>
<td>f1,FLATTEN(f2)</td>
<td>(‘quux’,‘foo’,1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(‘quux’,‘bar’,2)</td>
</tr>
</tbody>
</table>
Pig Latin Primitives - Input

queries = LOAD 'query_log.txt' USING myLoad() AS (userID, queryString, timestamp);

Load from a file

Using a de-serializer

- Default is plain-text tab-separated values

Given an optional schema

- If not given, refer to data by position
Pig Latin Primitives - Output

> STORE queries INTO 'q_output.txt'
> USING myStore();

> Stores bag to file

> Using a serializer

 – Default is plain-text tab-separated values
Pig Latin Primitives - Per-tuple

> f_queries = FOREACH queries GENERATE userId, f(queryString);

> For each tuple in the bag, generate the tuple described by the GENERATE expression

> May use FLATTEN in the GENERATE expression to generate more than one tuple
Pig Latin Primitives - Per-tuple

> real_queries = FILTER queries BY userId neq 'bot';

> Output each tuple in the bag only if it satisfies the BY expression

> AND, OR, and NOT logical operators

> ==, != operate on numbers, eq, neq on strings
Pig Latin Primitives - Grouping

> grouped_revenue = GROUP revenue BY queryString;

> Outputs a list of tuples, one for each unique value of the BY expression, where the first element is the value of that expression and the second is a bag of tuples matching that expression.
Pig Latin Primitives - Grouping

> grouped_data = COGROUP results BY queryString revenue BY queryString;

> Outputs a list of tuples, one for each unique value of the BY expressions; the first element is that expression and the rest are bags of tuples from each BY which match that expression

> Can generate a join by flattening the bags
Pig Latin Primitives - Sets

> **UNION** returns the union of two bags
> **CROSS** returns the cross product of two bags
> **ORDER** sorts a bag by the given field(s)
> **DISTINCT** eliminates duplicate tuples in a bag
Pig, the Pig Latin Compiler

> Lazily builds execution plan as it sees each command
 – Allows optimizations like combining or re-ordering filters
> Processing is only triggered on STORE
> Logical plan construction is platform-independent, but designed for Hadoop map-reduce
Each (CO)GROUP command is converted into a map-reduce job

- Map assigns keys to tuples by BY clauses
 - Also initial per-tuple processing

- Reduce handles per-tuple processing up to the next (CO)GROUP
Efficiency

> Moving/replicating data between successive map-reduce jobs results in overhead

> When a nested bag is created, then aggregated using a parallelizable operation, can just perform the reduction as tuples are seen instead of materializing the bag

 – If this can’t be done, spill to disk, use database-style sorting
Debugging

> The **Pig Pen** environment dynamically creates a sandbox dataset to illustrate query flow

> Allows incremental query development without long execution times of full queries

> Takes random samples of data, attempts to provide full query coverage, synthesizes data where needed.
Critique - Strengths

> Approach of making language features translate clearly to low-level constructs
 – Allows the programmer to better optimize their work
> Simple, regular data model
> Ability to fit a full language overview in a short paper
Critique - Weaknesses

> Only anecdotal evidence for Pig Latin being easier to use than SQL

> Inadequate coverage of Pig Pen debugger
 – Algorithms are opaque, not apparently published

> No data to back up optimization claims
 – Can’t prove programmers can optimize better than automated SQL optimizer
 – No comparison of Pig to optimized SQL