(Google Spanner - A Globally Distributed,
Synchronously-Replicated Database System

James C. Corbett, et. al.

Feb 14, 2013. Presented By Alexander Chow For CS 742

Mouvation

* “Eventually-consistent” sometimes isn’t good enough.
* General Purpose Transactions (ACID)

* Application desires complex, evolving schemas
* Schematized Tables

* SQL-like query language

The Problem

+ Store data across thousands of machines, hundreds of data centres

* Replication across data centres, even continents

Spanner Features

* Lock-free distributed read transactions from any suftficiently-up-to-
date replica

* External consistency
* Commit order == Timestamp Order == Global Wall Clock Time

* The “TrueTime” API

l.ock-free Reads

* Example
| Lifay
| I
“unfriend” Write
untrusty dissenting
person post

* Single Machine Read

Friend1 post

Friend?2 post User’s Posts
—_—

Friends’ Lists

—

> Generated Page

l.ock-free Reads

* Example

\ 4

| | !
“unfriend” Write
untrusty dissenting
person post
* Single Machine Read
Block writes
Friend] post —
Friend2 post User’s Posts ¥

Friends’ Lists

Generated Page

l.ock-free Reads

* Example
| Lifay
| I
“unfriend” Write
untrusty dissenting
person post

* Single Machine Read

Friend1 post

Friend?2 post User’s Posts
—_—

Friends’ Lists

—

> Generated Page

l.ock-free Reads

* Example
| Lifay
| I
“unfriend” Write
untrusty dissenting
person post

* Single Machine Read

Friend1 post
Friend?2 post User’s Posts — (Generated Page
—_—
Friends’ Lists

l.ock-free Reads

Beiend¥post. = —_ 5

Friend?2 post User’s Posts
Em—

Friends’ Lists

Friend100 post———
Friend101 post User’s Posts

—_—

Friends’ Lists

\

Generated Page

l.ock-free Reads

Block writes

Friend]1 post
Friend?2 post

Friend100 post
Friend101 post

User’s Posts
Friends’ Lists

User’s Posts
Friends’ Lists

\

Generated Page

l.ock-free Reads

Beiend¥post. = —_ 5

Friend?2 post User’s Posts
Em—

Friends’ Lists

Friend100 post———
Friend101 post User’s Posts

—_—

Friends’ Lists

Generated Page

l.ock-free Reads

Beiend¥post. = —_ 5

Friend?2 post User’s Posts
Em—

Friends’ Lists

Friend100 post———
Friend101 post User’s Posts

—_—

Friends’ Lists

Generated Page

l.ock-free Reads

Beiend¥post. = —_ 5
Friend?2 post User’s Posts
—_—
Friends’ Lists

Generated Page

Friend100 post— > /
Friend101 post User’s Posts
—_—
Friends’ Lists

l.ock-free Reads

Beiend¥post. = —_ 5

Friend?2 post User’s Posts
Em—

Friends’ Lists

Friend100 post———
Friend101 post User’s Posts

—_—

Friends’ Lists

Generated Page

l.ock-free Reads

Beiend¥post. = —_ 5
Friend?2 post User’s Posts
—_—
Friends’ Lists

Generated Page

Friend100 post——— /
Friend101 post User’s Posts
—_—
Friends’ Lists

TrueTime API

+* TT.Now()
y. 28 -
[;
| B
earliest latest

TT.Now()

Read-Write Transaction

+ 2 Phase Locking

Acquired Release
all locks all locks
= Commit wait
TT.now()

s = t.]atest()

T

Overlapping with Commit Wait

+ Network cost to achieve consensus far dominates time for commit
wait; no need to wait

Finished
Start consensus
UGS oo s e Release
all locks l | all locks
o E
o Commit wait
TT.now()

s = t.]atest()

Integrating 2PC and True'l'ime

. Commit Wait done
Start Logging Done Logging

7 NE

/ %

[Prepared, send s

Each computes s

Implementing TrueTime

Timemaster : Timemaster : Timemaster

A

Client

Datacenter 1 : Datacenter 2 : Datacenter 3

Implementing TrueTime

* Time at synchronization (polling of timemasters, every 30 seconds)
* Time is from nearest available timemaster

* Poll nearby datacenter’s timemasters for redundancy, detect rogue
timemasters. Use variation on Marzullo’s Algorithm to detect liars,
compute time of non-liars.

* g resets to € broadcast by Timemaster plus communication time
(Ims) plus

* Between synchronizations:

* Increase € by local drift (200us/s)

Time availability by design

+ Commit time uses variable ¢

* If local timemaster not available, can use remote timemaster from
other data center (100+ ms delay)

* Spanner slows down automatically

Fasy Schema Change

* Non-blocking variant of regular transaction

<

At prepare stage, choose a timestamp t in the future
* Reads and writes which implicitly depend on schema:
+ If their time is before t, proceed

+ If their time is after t, block

<

Without TrueTime, defining a schema change to happen at “time t”
would be meaningless.

Spanner Implementation Details

* Tablet: Similar to Bigtable’s tablet. A bag of mappings of:
* (key:string, timestamp:int64) -> string
* More like multi-version database

+ Stored on Colossus (distributed file system)

Spanner Implementation Details

* Tablets are replicated (between datacenters, possibly inter-continental), concurrency
coordination by Paxos

* A transaction needs consistency across its replicas; coordinated by Paxos

Paxos Group Paxos Group: A
' tablet and its
replicas as well as

Paxos Leader

--

the concurrency
machinery across
the replicas

replica replica replica

Spanner Implementation Details

If transaction involves multiple

Paxos Groups, use transaction
2PC Coordination

management machinery atop of
Paxos groups to coordinate 2PC

Participant Participant Participant

Leader Leader Leader
+ If a transaction involves a
Transaction Transaction Transaction single Paxos Group, can bypass
Manager Manager Manager Transaction Manager and
"""""""" S L R S Participant Leader machinery.
Paxos 5 5 Paxos 5 5 Paxos 5 + Thus, system involves 2 stages
Group Group Group of concurrency control, 2PC

and Paxos, where one stage can
be skipped.

Lock-free Reads at a Timestamp

* Each replica maintains tsafe
* toafe = MIN(P>%Sgae , tT™ae)
* tPX0s . r. is timestamp of highest-applied Paxos write
* t™gee is much harder:
* = oo if no pending 2PC transaction
* = min; (sPrPare ; .) over i prepared transactions in group g.

* Thus, tsafe is maximum timestamp at which reads are safe

Data lLocality

* Application-level controllable data locality

* Prefix of key used to define the bucket

* Key: 0PZX2N47HL5N4MAE3Q...
* Key: 0PZX2N47HL5N7U90Y2...
* Key: 0PZX2N47HL5NQBDP73...

* Entries in the same bucket are always in the same Paxos group.

* Can balance load between Paxos groups by moving buckets.

Benchmarks

50 Paxos groups, 2500 buckets, 4KB
reads or writes, datacenters 1ms
apart

* Latency remains mostly constant as
number of replicas increases because
Paxos executes in parallel at a
group’s replicas

ofe

Less sensitivity to a slow replica as
number of replicas increases (easy to
achieve quorum).

latency (ms)

participants mean 99th percentile
1 17.0 £1.4 75.0 £34.9
2 24.5 £2.5 87.6 +35.9
5 31.5 £6.2 104.5 £52.2
10 30.0 3.7 95.6 £25.4
25 35.54+5.6 100.4 +42.7
50 42.7 +£4.1 93.7 £22.9
100 71.4 £7.6 131.2 £17.6
200 150.5 £11.0 320.3 £35.1

Benchmarks

All leaders explicitly placed in zone
Z1.

Killing all servers in a zone at 5
seconds. For Z1 test, completion rate
drops to almost 0.

* Recovers quickly after reelection of
new leader

T 14M -

2 1 ---0-- non-leader

E“ 1.2M leader-soft

S 1M ---o-- leader-hard ﬁeﬁ

ot ; &

S 800K - 08’

ot ’ 0%

= 600K - 005

= - o -°

S 400K - 00 o

= . O;O'o-°‘°

§ 200K - o

O o I T ™ |
0 5 10 15 20

Time in seconds

Figure 5: Effect of killing servers on throughput.

Critique

* No background on current global time synchronization techniques

* Lack of proofs of absolute error bounds in their TrueTime
implementation

* External consistency? Guess at implied meaning (referenced PhD
dissertation not available online)

* Pipelined Paxos? Not described. Is each replica governed by a replica-
wide lock so one replica cannot undergo Paxos concurrently on
disjoint rows?

