
Feb 14, 2013. Presented By Alexander Chow For CS 742

Google Spanner - A Globally Distributed,
Synchronously-Replicated Database System
James C. Corbett, et. al.

Motivation

✤ “Eventually-consistent” sometimes isn’t good enough.

✤ General Purpose Transactions (ACID)

✤ Application desires complex, evolving schemas

✤ Schematized Tables

✤ SQL-like query language

The Problem

✤ Store data across thousands of machines, hundreds of data centres

✤ Replication across data centres, even continents

Spanner Features

✤ Lock-free distributed read transactions from any sufficiently-up-to-
date replica

✤ External consistency

✤ Commit order == Timestamp Order == Global Wall Clock Time

✤ The “TrueTime”API

Lock-free Reads

✤ Example

✤ Single Machine Read

t
“unfriend”

untrusty
person

Write
dissenting

post

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...
Generated Page

Lock-free Reads

✤ Example

✤ Single Machine Read

t
“unfriend”

untrusty
person

Write
dissenting

post

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...
Generated Page

Block writes

Lock-free Reads

✤ Example

✤ Single Machine Read

t
“unfriend”

untrusty
person

Write
dissenting

post

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...
Generated Page

Lock-free Reads

✤ Example

✤ Single Machine Read

t
“unfriend”

untrusty
person

Write
dissenting

post

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...
Generated Page

Lock-free Reads

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...

User’s Posts
Friends’ Lists

Friend100 post
Friend101 post

...

Generated Page

Lock-free Reads

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...

User’s Posts
Friends’ Lists

Friend100 post
Friend101 post

...

Generated Page

Block writes

Lock-free Reads

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...

User’s Posts
Friends’ Lists

Friend100 post
Friend101 post

...

Generated Page

Lock-free Reads

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...

User’s Posts
Friends’ Lists

Friend100 post
Friend101 post

...

Generated Page

Lock-free Reads

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...

User’s Posts
Friends’ Lists

Friend100 post
Friend101 post

...

Generated Page

Lock-free Reads

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...

User’s Posts
Friends’ Lists

Friend100 post
Friend101 post

...

Generated Page

Lock-free Reads

User’s Posts
Friends’ Lists

Friend1 post
Friend2 post

...

User’s Posts
Friends’ Lists

Friend100 post
Friend101 post

...

Generated Page

TrueTime API

✤ TT.Now()

t

TT.Now()

earliest latest

2!

Read-Write Transaction

✤ 2 Phase Locking

t

Acquired
all locks

t =
TT.now()

s = t.latest()

Commit wait

Release
all locks

Overlapping with Commit Wait

✤ Network cost to achieve consensus far dominates time for commit
wait; no need to wait

t

Acquired
all locks

t =
TT.now()

s = t.latest()

Commit wait

Release
all locks

Start
consensus

Finished
consensus

Integrating 2PC and TrueTime

t

Acquired
all locks

t

Acquired
all locks

t

Acquired
all locks

Each computes s

Start Logging Done Logging

Prepared, send s

Commit Wait done
Release
all locks

Release
all locks

Release
all locks

Implementing TrueTime

Timemaster Timemaster Timemaster

GPS GPS Atomic
clock

Atomic
clock

Client

Datacenter 1 Datacenter 2 Datacenter 3

Poll

Implementing TrueTime

✤ Time at synchronization (polling of timemasters, every 30 seconds)

✤ Time is from nearest available timemaster

✤ Poll nearby datacenter’s timemasters for redundancy, detect rogue
timemasters. Use variation on Marzullo’s Algorithm to detect liars,
compute time of non-liars.

✤ ! resets to ! broadcast by Timemaster plus communication time
(1ms) plus

✤ Between synchronizations:

✤ Increase ! by local drift (200us/s)

Time availability by design

✤ Commit time uses variable !

✤ If local timemaster not available, can use remote timemaster from
other data center (100+ ms delay)

✤ Spanner slows down automatically

Easy Schema Change

✤ Non-blocking variant of regular transaction

✤ At prepare stage, choose a timestamp t in the future

✤ Reads and writes which implicitly depend on schema:

✤ If their time is before t, proceed

✤ If their time is after t, block

✤ Without TrueTime, defining a schema change to happen at “time t”
would be meaningless.

Spanner Implementation Details

✤ Tablet: Similar to Bigtable’s tablet. A bag of mappings of:

✤ (key:string, timestamp:int64) -> string

✤ More like multi-version database

✤ Stored on Colossus (distributed file system)

Spanner Implementation Details

✤ Tablets are replicated (between datacenters, possibly inter-continental), concurrency
coordination by Paxos

✤ A transaction needs consistency across its replicas; coordinated by Paxos

tablet1
(replica 1)

tablet1
(replica 1)

tablet1
(replica 1)

Paxos Paxos Paxos

replica replica replica

Paxos Leader

Paxos Group Paxos Group: A
tablet and its

replicas as well as
the concurrency

machinery across
the replicas

Spanner Implementation Details

Paxos
Group

✤ If a transaction involves a
single Paxos Group, can bypass
Transaction Manager and
Participant Leader machinery.

✤ Thus, system involves 2 stages
of concurrency control, 2PC
and Paxos, where one stage can
be skipped.

Paxos
Group

Paxos
Group

Transaction
Manager

Transaction
Manager

Transaction
Manager

Participant
Leader

Participant
Leader

Participant
Leader

If transaction involves multiple
Paxos Groups, use transaction
management machinery atop of
Paxos groups to coordinate 2PC

2PC Coordination

Lock-free Reads at a Timestamp

✤ Each replica maintains tsafe

✤ tsafe = min(tpaxossafe , tTMsafe)

✤ tpaxossafe is timestamp of highest-applied Paxos write

✤ tTMsafe is much harder:

✤ = ∞ if no pending 2PC transaction

✤ = mini (sprepare i,g) over i prepared transactions in group g.

✤ Thus, tsafe is maximum timestamp at which reads are safe

Data Locality

✤ Application-level controllable data locality

✤ Prefix of key used to define the bucket

✤ Key: 0PZX2N47HL5N4MAE3Q...
✤ Key: 0PZX2N47HL5N7U9OY2...
✤ Key: 0PZX2N47HL5NQBDP73...

✤ Entries in the same bucket are always in the same Paxos group.

✤ Can balance load between Paxos groups by moving buckets.

Benchmarks

✤ 50 Paxos groups, 2500 buckets, 4KB
reads or writes, datacenters 1ms
apart

✤ Latency remains mostly constant as
number of replicas increases because
Paxos executes in parallel at a
group’s replicas

✤ Less sensitivity to a slow replica as
number of replicas increases (easy to
achieve quorum).

Benchmarks

✤ All leaders explicitly placed in zone
Z1.

✤ Killing all servers in a zone at 5
seconds. For Z1 test, completion rate
drops to almost 0.

✤ Recovers quickly after reelection of
new leader

Critique

✤ No background on current global time synchronization techniques

✤ Lack of proofs of absolute error bounds in their TrueTime
implementation

✤ External consistency? Guess at implied meaning (referenced PhD
dissertation not available online)

✤ Pipelined Paxos? Not described. Is each replica governed by a replica-
wide lock so one replica cannot undergo Paxos concurrently on
disjoint rows?

