
Data Management Using MapReduce

M. Tamer Özsu

University of Waterloo

CS742-Distributed & Parallel DBMS M. Tamer Özsu 1 / 24

Basics

I For data analysis of very large data sets
I Highly dynamic, irregular, schemaless, etc.
I SQL too heavy

I “Embarrassingly parallel problems”
I New, simple parallel programming model

I Data structured as (key, value) pairs
I E.g. (doc-id, content), (word, count), etc.

I Functional programming style with two functions to be given:
I Map(k1,v1) → list(k2,v2)
I Reduce(k2, list (v2)) → list(v3)

I Implemented on a distributed file system (e.g., Google File System)
on very large clusters

CS742-Distributed & Parallel DBMS M. Tamer Özsu 2 / 24

Map Function

I User-defined function
I Processes input key/value pairs
I Produces a set of intermediate key/value pairs

I Map function I/O
I Input: read a chunk from distributed file system (DFS)
I Output: Write to intermediate file on local disk

I MapReduce library
I Executes map function
I Groups together all intermediate values with the same key (i.e.,

generates a set of lists)
I Passes these lists to reduce functions

I Effect of map function
I Processes and partitions input data
I Builds a distributed map (trnasparent to user)
I Similar to “group by” operaton in SQL

CS742-Distributed & Parallel DBMS M. Tamer Özsu 3 / 24

Reduce Function

I User-defined function
I Accepts one intermediate key and a set of values for that key (i.e., a

list)
I Merges these values together to form a (possibly) smaller set
I Typically, zero or one output value is generated per invocation

I Reduce function I/O
I Input: read from intermediate files using remote reads on local files of

corresponding mapper nodes
I Output: Each reducees writes its output as a file back to DFS

I Effect of map function
I Similar to aggregation operaton in SQL

CS742-Distributed & Parallel DBMS M. Tamer Özsu 4 / 24

MapReduce Processing

...In
p

u
t

d
at

a
se

t

Map

Map

Map

Map

(k1, v)

(k2, v)
(k2, v)

(k2, v)

(k1, v)

(k1, v)

(k2, v)

Group by k

Group by k

(k1, (v, v, v))

(k1, (v, v, v, v)) Reduce

Reduce

O
u

tp
u

t
d

at
a

se
t

CS742-Distributed & Parallel DBMS M. Tamer Özsu 5 / 24

Example 1

Assume you are reading the monthly average temperatures for each of the
12 months of a year for a bunch of cities, i.e., each input is the name of
the city (key) and the average monthly temperature. Compute the average
annual temperature for each city.

I Map:
Input: 〈City, Month, MonthAvgTemp〉

1. Create key/value pairs

Output: 〈City, MonthAvgTemp〉
I Reduce:

Input: 〈City, MonthAvgTemp〉
1. Sort to get 〈City, list(MonthAvgTemp)〉 (i.e., it combines in a list

the monthly average temperatures for a given city)
2. Compute average over list(MonthAvgTemp)

Output: 〈City, AnnualAvgTemp〉

CS742-Distributed & Parallel DBMS M. Tamer Özsu 6 / 24

Example 2

I Consider EMP (ENAME, TITLE, CITY)

I Query:

SELECT CITY , COUNT(∗)
FROM EMP
WHERE ENAME LIKE ”\%Smith ”
GROUP BY CITY

I Map:

I n p u t : (TID , emp) , Output : (CITY , 1)
i f emp .ENAME l i k e ”\%Smith ” return (CITY , 1)

I Reduce:

I n p u t : (CITY , l i s t (1)) , Output : (CITY ,SUM(l i s t (1)))
return (CITY ,SUM(1∗))

CS742-Distributed & Parallel DBMS M. Tamer Özsu 7 / 24

MapReduce Architecture

Scheduler

Master

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Input Module

Map Module

Combine Module

Partition Module

Map Process

Worker

Group Module

Reduce Module

Output Module

Reduce Process

Worker

Group Module

Reduce Module

Output Module

Reduce Process

Worker

CS742-Distributed & Parallel DBMS M. Tamer Özsu 8 / 24

Execution Flow with Architecture
MapReduce: Simplified Data Processing on Large Clusters

7. When all map tasks and reduce tasks have been completed, the mas-
ter wakes up the user program. At this point, the MapReduce call
in the user program returns back to the user code.

After successful completion, the output of the mapreduce execution
is available in the R output files (one per reduce task, with file names
specified by the user). Typically, users do not need to combine these R
output files into one file; they often pass these files as input to another
MapReduce call or use them from another distributed application that
is able to deal with input that is partitioned into multiple files.

3.2 Master Data Structures
The master keeps several data structures. For each map task and
reduce task, it stores the state (idle, in-progress, or completed) and the
identity of the worker machine (for nonidle tasks).

The master is the conduit through which the location of interme-
diate file regions is propagated from map tasks to reduce tasks. There -
fore, for each completed map task, the master stores the locations and
sizes of the R intermediate file regions produced by the map task.
Updates to this location and size information are received as map tasks
are completed. The information is pushed incrementally to workers
that have in-progress reduce tasks.

3.3 Fault Tolerance
Since the MapReduce library is designed to help process very large
amounts of data using hundreds or thousands of machines, the library
must tolerate machine failures gracefully.

Handling Worker Failures
The master pings every worker periodically. If no response is received
from a worker in a certain amount of time, the master marks the worker
as failed. Any map tasks completed by the worker are reset back to their
initial idle state and therefore become eligible for scheduling on other
workers. Similarly, any map task or reduce task in progress on a failed
worker is also reset to idle and becomes eligible for rescheduling.

Completed map tasks are reexecuted on a failure because their out-
put is stored on the local disk(s) of the failed machine and is therefore
inaccessible. Completed reduce tasks do not need to be reexecuted
since their output is stored in a global file system.

When a map task is executed first by worker A and then later exe-
cuted by worker B (because A failed), all workers executing reduce
tasks are notified of the reexecution. Any reduce task that has not
already read the data from worker A will read the data from worker B.

MapReduce is resilient to large-scale worker failures. For example,
during one MapReduce operation, network maintenance on a running
cluster was causing groups of 80 machines at a time to become unreach-
able for several minutes. The MapReduce master simply re executed the
work done by the unreachable worker machines and continued to make
forward progress, eventually completing the MapReduce operation.

Semantics in the Presence of Failures
When the user-supplied map and reduce operators are deterministic
functions of their input values, our distributed implementation pro-
duces the same output as would have been produced by a nonfaulting
sequential execution of the entire program.

split 0

split 1

split 2

split 3

split 4

(1) fork

(3) read
(4) local write

(1) fork
(1) fork

(6) write

worker

worker

worker

Master

User
Program

output
file 0

output
file 1

worker

worker

(2)
assign
map

(2)
assign
reduce

(5) remote

(5) read

Input
files

Map
phasr

Intermediate files
(on local disks)

Reduce
phase

Output
files

Fig. 1. Execution overview.

COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1 109

From: J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Comm. ACM, 2008.

CS742-Distributed & Parallel DBMS M. Tamer Özsu 9 / 24

Characteristics
I Flexibility

I User can write any map and reduce function code
I No need to know how to parallelize

I Scalability
I Elastic scalability
I Automatic load balancing

I Efficiency
I Simple: parallel scan
I No database loading

I Fault tolerance
I Worker failure

I Master pings workers periodically; assumes failure if no response
I Tasks (both map and reduce) on failed workers scheduled on a different

worker node
I Master failure

I Checkpoints of master state
I Recovery after failure → progress can halt

I Replication on distributed data store

CS742-Distributed & Parallel DBMS M. Tamer Özsu 10 / 24

Hadoop
I Most popular MapReduce implementation – developed by Yahoo!
I Two components

I Processing engine
I HDFS: Hadoop Distributed Storage System – others possible
I Can be deployed on the same machine or on different machines

I Processes
I Job tracker: hosted on the master node and implements the schedule
I Task tracker: hosted on the worker nodes and accepts tasks from job tracker

and executes them
I HDFS

I Name node: stores how data are partitioned, monitors the status of data
nodes, and data dictionary

I Data node: Stores and manages data chunks assigned to it

Task Tracker Job Tracker Task Tracker

Data Node Name Node Data Node

Worker 1 Name Node Worker n

MapReduce

HDFS

CS742-Distributed & Parallel DBMS M. Tamer Özsu 11 / 24

Hadoop UDF Functions
Phase Name Function

Map

InputFormat::getSplit Partition the input data into different
splits. Each split is processed by a map-
per and may consist of several chunks.

RecordReader::next Define how a split is divided into items.
Each item is a key/value pair and used as
the input for the map function.

Mapper::map Users can customize the map function to
process the input data. The input data
are transformed into some intermediate
key/value pairs.

WritableComparable::compareTo The comparison function for the key/-
value pairs.

Job::setCombinerClass Specify how the key/value pair are aggre-
gated locally.

Shuffle Job::setPartitionerClass Specify how the intermediate key/value
pairs are shuffled to different reducers.

Reduce
Job::setGroupingComparatorClass Specify how the key/value pairs are

grouped in the reduce phase.
Reducer::reduce Users write their own reduce functions

to perform the corresponding jobs.

CS742-Distributed & Parallel DBMS M. Tamer Özsu 12 / 24

MapReduce Implementations

Name Language File System Index Master Server Multiple
Job
Support

Hadoop Java HDFS No Name Node and Job
Tracker

Yes

Disco Python
and
Erlang

Distributed
Index

Disco
Server

No No

Skynet Ruby MySQL or
Unix File
System

No Any node in the cluster No

FileMap Shell
and Perl
Scripts

Unix File
System

No Any node in the cluster No

Twister Java Unix File
System

No One master node in broker
network

Yes

Cascading Java HDFS No Name Node and Job
Tracker

Yes

CS742-Distributed & Parallel DBMS M. Tamer Özsu 13 / 24

MapReduce Languages

Hive Pig

Language Declarative SQL-like Dataflow

Data model Nested Nested

UDF Supported Supported

Data partition Supported Not supported

Interface Command line, web,
JDBC/ODBC server

Command line

Query optimization Rule based Rule based

Metastore Supported Not supported

CS742-Distributed & Parallel DBMS M. Tamer Özsu 14 / 24

MapReduce Implementations of Database Operators

I Select and Project can be easily implemented in the map function

I Aggregation is not difficult (see next slide)

I Join requires more work

MapReduce join implementations

θ-join

Equi-join

Repartition
join

Semi-join Map-only join

Broadcast join
Partition

join

Similarity join Multi-way join

Multiple
MapReduce

jobs

Replicated
join

CS742-Distributed & Parallel DBMS M. Tamer Özsu 15 / 24

Aggregation

Key Value

1 R1

2 R2

m
ap

Aid Value

1 R1

2 R2

Mapper 1

R

Extracting aggrega-
tion attribute (Aid)

Key Value

3 R3

4 R4

m
ap

Aid Value

1 R3

2 R4

Mapper 2

R

Map Phase

P
ar

ti
ti

on
in

g
by

A
id

(R
ou

n
d

R
ob

in
)

Aid Value

1
R1

R3 re
d

u
ce Result

1, f(R1, R3)

Reducer 1

Grouping by
Aid

Applying the aggregation
function for the tuples with
the same Aid

Aid Value

2
R2

R4 re
d

u
ce Result

2, f(R2, R4)

Reducer 2

Reduce Phase

CS742-Distributed & Parallel DBMS M. Tamer Özsu 16 / 24

θ-Join

Baseline implementation of R(A,B) on S(B,C)

1. Partition R and assign each partition to mappers

2. Each mapper takes 〈a, b〉 tuples and converts them to a list of
key/value pairs of the form (b, 〈a,R〉)

3. Each reducer pulls the pairs with the same key

4. Each reducer joins tuples of R with tuples of S

CS742-Distributed & Parallel DBMS M. Tamer Özsu 17 / 24

θ-Join
I If θ equals = (i.e., equijoin)

I Repartition join
I Semijoin-based join
I Map-only join

I If θ equals 6=

Key Value

1 R1

2 R2

3 R3

4 R4

m
ap

Bid Tuple

1 ‘R’,1,R1

4 ‘R’,2,R2

3 ‘R’,3,R3

2 ‘R’,2,R4

Mapper 1

R

Randomly assigning
bucket ID (Bid)

Key Value

1 S1

2 S2

3 S3

4 S4

m
ap

Bid Tuple

4 ‘S’,1,S1

2 ‘S’,2,S2

3 ‘S’,3,S3

1 ‘S’,2,S4

Mapper 1

S

Map Phase

P
ar

ti
ti

on
in

g
by

B
id

(R
ou

n
d

R
ob

in
) Bid Tuple

1
‘R’,1,R1

‘S’,4,S4

3
‘R’,3,R3

‘S’,3,S3

re
d

u
ce

Origin Tuple

‘R’ 1,R1

‘R’ 4,R4

Origin Tuple

‘S’ 3,S3

‘S’ 4,S4

Result

R1 S3

R1 S4

R4 S3

Reducer 1

Grouping by
Bid

Aggregate
tuples based
on origins

Local θ-join (θ is
‘ 6=′)

Reducer 2

Reduce Phase

CS742-Distributed & Parallel DBMS M. Tamer Özsu 18 / 24

Repartition Join

Key Value

1 R1

2 R2

3 R3

4 R4

m
ap

Key Value

1 ‘R’,R1

2 ‘R’,R2

3 ‘R’,R3

4 ‘R’,R4

Mapper 1

R

Tagging origins

Key Value

1 S1

2 S2

3 S3

4 S4

m
ap

Key Value

1 ‘S’,S1

2 ‘S’,S2

3 ‘S’,S3

4 ‘S’,S4

Mapper 1

S

Map Phase

P
ar

ti
ti

on
in

g
by

ke
y

(R
ou

n
d

R
ob

in
)

Key Tuple

1
‘R’,R1

‘S’,S1

3
‘R’,R3

‘S’,S3

re
d

u
ce

Result

R1 S1

R3 S3

Reducer 1

Grouping by keys Local join

Key Tuple

2
‘R’,R2

‘S’,S2

4
‘R’,R4

‘S’,S4

re
d

u
ce

Result

R2 S2

R4 S4

Reducer 2

Reduce Phase

CS742-Distributed & Parallel DBMS M. Tamer Özsu 19 / 24

Semijoin-based Join

Key Value

1 R1

3 R2

1 R3

4 R4

M
ap

R
ed

u
ce Key

1

3

4

R

Job 1
Full MapReduce job

Extracting join keys

Key 1 3 4

Key Value

1 S1

2 S2

m
ap

Key Value

1 S1

Mapper 1

S

Broadcasting keys of R to all the
splits of S and join S with keys of R

Key 1 3 4

Key Value

3 S3

4 S4

m
ap

Key Value

3 S3

4 S4

Mapper 2

S

Job 2
Map-only job

Key Value

1 S1

3 S3

4 S4

Key Value

1 R1

2 R2

m
ap

Result

R1 S1

R2 S3

Mapper 1

S

R

Broadcasting the results of the
previous job (S) to all the splits

of R, and locally joining R with S

Mapper 2

Job 3
Map-only job

CS742-Distributed & Parallel DBMS M. Tamer Özsu 20 / 24

Map-only Join

I Broadcast join: If inner relation � outer relation → no shuffling
I Map phase similar to third job of semijoin-based join
I Each mapper loads the full inner table to build an in-memory hash;

scan the outer relation

I Trojan join: Relations are already co-partitioned on the join key → all
tuples of both relations are co-located on the same node

I Co-partitioning implemented by one job
I Scheduler loads co-partitioned data chunks in the same mapper to

perform a local join

HR DataR HS DataS HR DataR HS DataS

Co-group Co-group
Footer· · ·

Co-partitioned Split

CS742-Distributed & Parallel DBMS M. Tamer Özsu 21 / 24

Multiway Join

I Multiple MapReduce jobs
I R on S on T → (R on S) on T
I Each join implemented in one MapReduce job
I Join ordering problem

I Replicated join
I Single MapReduce job

CS742-Distributed & Parallel DBMS M. Tamer Özsu 22 / 24

Replicated Join

Rid Value

1 C1

2 C2

m
ap

Key Value

1, null ‘C’,C1

2, null ‘C’,C2

R

Mapper 1

Generating keys and tagging origins

Rid Sid Value

1 1 L1

1 2 L2

2 2 L3

m
ap

Key Value

1,1 ‘L’,L1

1,2 ‘L’,L2

2,2 ‘L’,L3

T

Mapper 2

Sid Value

1 O1

2 O2

m
ap

Key Value

null,1 ‘O’,O1

null,2 ‘O’,O2

S

Mapper 3

Map Phase

P
ar

ti
ti

on
in

g
by

ke
y

(R
ou

n
d

R
ob

in
)

S
h

u
ffl

in
g

tu
p

le
s

to
m

u
lt

ip
le

re
d

u
ce

rs
if

n
ec

es
sa

ry

Key Value

1,null ‘C’, C1

1,1 ‘L’, L1

null,1 ‘O’, O1

re
d

u
ce Result

C1,L1,O1

Reducer 1

Joining the three tables locally

Key Value

1,null ‘C’, C1

1,2 ‘L’, L2

null,2 ‘O’, O2

re
d

u
ce Result

C1,L2,O2

Reducer 2

Key Value

2,null ‘C’, C2

null,1 ‘O’, O1 re
d

u
ce

Result

Reducer 3

Key Value

2,null ‘C’, C2

2,2 ‘L’, L3

null,2 ‘O’, O2

re
d

u
ce Result

C2,L2,O2

Reducer 4

Reduce Phase

CS742-Distributed & Parallel DBMS M. Tamer Özsu 23 / 24

DBMS on MapReduce

HadoopDB Llama Cheetah

Language SQL-like Simple interface SQL

Storage Row store Column store Hybrid store

Data com-
pression

No Yes Yes

Data parti-
tion

Horizontally parti-
tioned

Vertically partitioned Horizontally par-
titioned at chunk
level

Indexing Local index in each
database instance

No index Local index for each
data chunk

Query op-
timization

Rule based optimiza-
tion plus local op-
timization by Post-
greSQL

Column-based op-
timization, late
materialization and
processing multiway
join in one job

Multi-query optimiza-
tion, materialized
views

CS742-Distributed & Parallel DBMS M. Tamer Özsu 24 / 24

