Outline

B Introduction & architectural issues
B Data distribution
B Distributed query processing
B Distributed query optimization
B Distributed transactions & concurrency control
B Distributed reliability
B Data replication
B Parallel database systems
dDatabase integration & querying
dQuery rewriting
dOptimization issues
JPeer-to-Peer data management
dStream data management

dMapReduce-based distributed data management

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.32



Multidatabase Query
Processing

B Mediator/wrapper architecture

B MDB query processing architecture
B Query rewriting using views

B Query optimization and execution
B Query translation and execution

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.33



Mediator/Wrapper

Architecture
Mediator
/ \ Same Different
Interface Interfaces
Query
Processing >
Wrapper:
.
N~
‘Wrapperz 1 DBMS.
i:_ N~
Results _—
N~
Wrapper: 1 DBMS;
Result

SN—

Integration '
>
> g

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.34



Advantages of M/W
Architecture

B Wrappers encapsulate the details of component
DBMS

® Export schema and cost information
® Manage communication with Mediator

B Mediator provides a global view to applications

and users
® Single point of access
¢ May be itself distributed
® Can specialize in some application domain
® Perform query optimization using global knowledge
® Perform result integration in a single format

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.35



Issues in MDB Query
Processing

B Component DBMSs are autonomous and may
range from full-fledge relational DBMS to flat

file systems
® Different computing capabilities
¢ Prevents uniform treatment of queries across DBMSs
® Different processing cost and optimization capabilities
¢ Makes cost modeling difficult
® Different data models and query languages

¢ Makes query translation and result integration
difficult

® Different runtime performance and unpredictable behavior
¢ Makes query execution difficult

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.36



Mediator Data Model

B Relational model
® Simple and regular data structures
® Mandatory schema

® Object model

® Complex (graphs) and regular data structures
® Mandatory schema

B Semi-structured (XML) model

® Complex (trees) and irregular data structures
® Optional schema (DTD or XSchema)

In this chapter, we use the relational model which is sufficient to
explain MDB query processing

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.37



MDB Query Processing
Architecture

MEDIATOR <
SITE
WRAPPER
SITES

QUERY ON GLOBAL

RELATIONS

v

| REWRITING

QUERY ON LOCAL

v

RELATIONS

v

OPTIMIZATION &
EXECUTION

DISTRIBUTED
QUERY EXECUTION PLAN

v
v

TRANSLATION &
EXECUTION

Results

WRAPPER
SCHEMA

Global/local

GLOBAL correspondences
SCHEMA

Allocation and

ALLOC. & CAP. capabilities
SCHEMA

Local/ DBMS mappings

CS742 — Distributed & Parallel DBMS

M. Tamer Ozsu

Page 9.38



Query Rewriting Using
Views

B Views used to describe the correspondences

between global and local relations

® Global As View: the global schema is integrated from the
local databases and each global relation is a view over the
local relations

® Local As View: the global schema 1s defined
independently of the local databases and each local relation
1s a view over the global relations

B Query rewriting best done with Datalog, a
logic-based language
® More expressive power than relational calculus
® Inline version of relational domain calculus

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.39



Datalog Terminology

B Conjunctive (SPJ) query: a rule of the form
® QT):- R(T)), ... R(T,)
® (D) : head of the query denoting the result relation
® R(T,), ... R (T,). subgoals in the body of the query
® IR, ... R predicate names corresponding to relation names
® T, ..T.:refer to tuples with variables and constants
® Variables correspond to attributes (as in domain calculus)
® “.” means unnamed variable

B Disjunctive query = n conjunctive queries with
same head predicate

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.40



Datalog Example

With EMP(ENAME, TITLE,CITY) and

ASG(ENAME,PNAME,DUR)
SELECT ENAME,TITLE, PNAME
FROM EMP, ASG
WHERE EMP.ENAME = ASG.ENAME
AND TITLE = "Programmer" OR DUR=24
Q(ename,title,pname) :- Emp(ename,title,-)
Asg(ename,pname,-),
title = “Programmer’.
Q(ename,title,pname) :- Emp(ename,title,-)

Asg(ename,pname,24).

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.41



Rewriting in GAV

B Global schema similar to that of homogeneous
DDBMS

® Local relations can be fragments

® But no completeness: a tuple in the global relation may not
exist in local relations

¢ Yields incomplete answers

® And no disjointness: the same tuple may exist in different
local databases

¢ Yields duplicate answers

B Rewriting (unfolding)
® Similar to query modification

¢ Apply view definition rules to the query and produce a
union of conjunctive queries, one per rule application

¢ Eliminate redundant queries

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.42



GAV Example Schema

Global relations Local relations
EMP(ENAME,CITY) EMP1(ENAME, TITLE,CITY)
ASG(ENAME,PNAME, TITLE, DUR) EMP2(ENAME,TITLE,CITY)

ASGI1(ENAME,PNAME,DUR)

Emp(ename,city) :- Empl(ename,title,city). (ry)
Emp(ename,city) :- Emp2(ename,title,city). (ry)
Asg(ename,pname,title,dur) :- Empl(ename,title,city), (rs)
Asgl(ename,pname,dur).
Asg(ename,pname,title,dur) .- Emp2(ename,title,city), (ry)

Asgl(ename,pname,dur).

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.43



GAV Example Query

Let @: name and project for employees 1n Paris
Qe,p) :- Emp(e,“Paris”), Asg(e,p,-,-).
Unfolding produces Q’
Qle,p) :- Empl(e,-,“Paris”), Asgl(e,p,-,). (q,)
Q'le,p) :- Emp2(e,-,“Paris”), Asgl(e,p,-,). (g5)
where
q, 1s obtained by applying r; only or both r,; and r,

In the latter case, there are redundant queries

same for q, with r, only or both r, and r,

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.44



Rewriting in LAV

B More difficult than in GAV

® No direct correspondence between the terms in GS (emp,
ename) and those in the views (empl, emp2, ename)

® There may be many more views than global relations

® Views may contain complex predicates to reflect the
content of the local relations

¢ e.g. a view Emp3 for only programmers
B Often not possible to find an equivalent

rewriting

® Best is to find a maximally-contained query which produces
a maximum subset of the answer

¢ e.g. Emp3 can only return a subset of the employees

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.45



Rewriting Algorithms

B The problem to find an equivalent query 1s NP-
complete in the number of views and number of
subgoals of the query

B Thus, algorithms try to reduce the numbers of
rewritings to be considered
B Three main algorithms
® Bucket

® Inverse rule
® MiniCon

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.46



LAV Example Schema

Local relations Global relations
EMP1(ENAME,TITLE,CITY) EMP(ENAME,CITY)
EMP2(ENAME,TITLE,CITY) ASG(ENAME,PNAME,TITLE, DUR)
ASG1(ENAME,PNAME,DUR)
Empl(ename,title,city) :- Emp(ename,city), (ry)
Asg(ename,-,title,-).
Emp2(ename,title,city) :- Emp(ename,city), (ry)

Asg(ename,-,title,-).

Asgl(ename,pname,dur) :-
Asg(ename,pname,-,dur) (r3)

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.47



Bucket Algorithm

B Considers each predicate of the query @
independently to select only the relevant views

Step 1

® Build a bucket b for each subgoal g of @ that is not a
comparison predicate

® Insert in b the heads of the views which are relevant to
answer q

Step 2

® For each view V of the Cartesian product of the buckets,
produce a conjunctive query

¢ If it 1s contained in @, keep 1t
B The rewritten query is a union of conjunctive
queries

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.48



LAV Example Query

Let @ be Q(e,p) :- Emp(e, “Paris”), Asg(e,p,-,-).
Stepl: we obtain 2 buckets (one for each subgoal of Q)
b, = Empl(ename,title’,city), Emp2(ename,title’,city)

b, = Asgl(ename,pname,dur’)
(the prime variables (title’ and dur’) are not useful)

Step2: produces
Qle,p) :- Empl(e,-, “Paris”), Asgl(e,p,-,). (q,)
Q'le,p) :- Emp2(e,-, “Paris”), Asgl(e,p,-,). (q5)

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.49



Query Optimization and
Execution

B Takes a query expressed on local relations and
produces a distributed QEP to be executed by
the wrappers and mediator

B Three main problems
® Heterogeneous cost modeling
¢ To produce a global cost model from component DBMS
® Heterogeneous query optimization
¢ To deal with different query computing capabilities
® Adaptive query processing

¢ To deal with strong variations in the execution
environment

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.50



Heterogeneous Cost
Modeling

B Goal: determine the cost of executing the
subqueries at component DBMS

B Three approaches

® Black-box: treats each component DBMS as a black-box
and determines costs by running test queries

® Customized: customizes an 1nitial cost model

® Dynamic: monitors the run-time behavior of the component
DBMS and dynamically collect cost information

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.51



Black-box Approach

B Define a logical cost expression
® Cost = init cost + cost to find qualifying tuples

+ cost to process selected tuples
¢ The terms will differ much with different DBMS

B Run probing queries on component DBMS to

compute cost coefficients
® Count the numbers of tuples, measure cost, etc.

® Special case: sample queries for each class of important
queries
¢ Use of classification to identify the classes

B Problems

® The instantiated cost model (by probing or sampling) may
change over time

® The logical cost function may not capture important details
of component DBMS

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.52



Customized Approach

B Relies on the wrapper (i.e. developer) to
provide cost information to the mediator

B T'wo solutions
® Wrapper provides the logic to compute cost estimates

¢ Access_cost = reset + (card-1)*advance
+ reset = time to initiate the query and receive a first tuple
+ advance = time to get the next tuple (advance)
+ card = result cardinality

® Hierarchical cost model
¢ Each node associates a query pattern with a cost
function
¢ The wrapper developer can give cost information at
various levels of details, depending on knowledge of
the component DBMS

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.53



Hierarchical Cost Model

J

-
select (Collection, Predicate)
CountObject = ...
Default-scope rules TotalSize =
TotalTime = ...
Source 1: Source 2:
VWiapper-acope select (Collection, Predicate)
TotalTime = __. TotalSize = ...

select (Collection, Predicate)

/

~

Collection select(PROJ, Predicate)
scope TotalSize = ...

select(EMP, Predicate)
TotalTime = ...

Predicate-scope select(EMP, TITLE = value)

rules TotalTime = ...

CS742 — Distributed & Parallel DBMS

select{(EMP, ENAME = Value)

TotalTime = ...

M. Tamer Ozsu

Page 9.54



Dynamic Approach

B Deals with execution environment factors

which may change
® Frequently: load, throughput, network contention, etc.
® Slowly: physical data organization, DB schemas, etc.

B Two main solutions
® Extend the sampling method to consider some new queries
as samples and correct the cost model on a regular basis

® Use adaptive query processing which computes cost during
query execution to make optimization decisions

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.55



Heterogeneous Query
Optimization

B Deals with heterogeneous capabilities of
component DBMS

® One DBMS may support complex SQL queries while
another only simple select on one fixed attribute

B Two approaches, depending on the M/W

interface level
® Query-based

¢ All wrappers support the same query-based interface
(e.g. ODBC or SQL/MED) so they appear homogeneous
to the mediator

¢ Capabilities not provided by the DBMS must be
supported by the wrappers

® Operator-based

¢ Wrappers export capabilities as compositions of
operators

CS742 — Distributed & PR2DROENEC capabilitiegarg.av@ilable to mediator Page 9.56



Query-based Approach

B We can use 2-step query optimization with a

heterogeneous cost model

® But centralized query optimizers produce left-linear join
trees whereas in MDB, we want to push as much
processing in the wrappers, 1.e. exploit bushy trees

B Solution: convert a left-linear join tree into a

bushy tree such that
® The initial total cost of the QEP is maintained
® The response time 1s improved

B Algorithm

® Iterative improvement of the initial left-linear tree by
moving down subtrees while response time is improved

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.57



Left Linear vs Bushy Join
Tree

P><

AN g

X ~
/\

R3

PN /\ /\

/'
R4
\

(a) Left Linear Join Tree (b) Bushy Join Tree

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.58



Operator-based Approach

B M/W communication 1n terms of subplans

B Use of planning functions (Garlic)

® Extension of cost-based centralized optimizer with new
operators

¢ Create temporary relations
¢ Retrieve locally stored data
¢ Push down operators in wrappers
¢ accessPlan and joinPlan rules
® Operator nodes annotated with
¢ Location of operands, materialization, etc.

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.59



Planning Functions Example

B Consider 3 component databases with 2

wrappers:
® w, .db;: EMP(ENO,ENAME,CITY)
® w, .db,: ASG(ENO,PNAME,DUR)
® w,.db,: EMPASG(ENAME,CITY,PNAME,DUR)

B Planning functions of w;
® AccessPlan (R: rel, A: attlist, P: pred) = scan(R, A, P, db(R))
® JoinPlan (R, R,: rel, A: attlist, P: joinpred) = join(R,, R,, A, P)
¢ condition: db(R,) # db(R,)
¢ implemented by w,

B Planning functions of w,
® AccessPlan (R: rel, A: attlist, P: pred) = fetch(city=c)
¢ condition: (city=c) included in P
® AccessPlan (R: rel, A: attlist, P: pred) = scan(R, A, P, db(R))
¢ implemented by w,

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.60



Heterogenous QEP

SELECT ENAME , PNAME , DUR

FROM EMPASG
WHERE CITY = "Paris" AND DUR>24
m
Union
W1/Join W, ScanA(DUR>24)
] = . \
Scan (CITY="Paris”) Scan (DUR>24) Fetch (CITY="Paris”)
db, T db, T dbg
EMP ASG EMPASG

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.61



Adaptive Query Processing -
Motivations

B Assumptions underlying heterogeneous query
optimization
® The optimizer has sufficient knowledge about runtime
¢ Cost information
® Runtime conditions remain stable during query execution
B Appropriate for MDB systems with few data
sources 1n a controlled environment

B Inappropriate for changing environments with
large numbers of data sources and
unpredictable runtime conditions

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.62



Example: QEP with Blocked
Operator

B Assume ASG, EMP, <
PROdJ and PAY each at / \
a different site > PAY
B If ASG site 1s down, the /
entire pipeline is > PROJ

blocked ><

O Howeve.r, W.ith some ASG EMP
reorganization, the join
of EMP and PAY could
be done while waiting

for ASG

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.63



Adaptive Query Processing —
Definition

B A query processing is adaptive if it receives
information from the execution environment

and determines its behavior accordingly

® Feed-back loop between optimizer and runtime
environment

® Communication of runtime information between mediator,
wrappers and component DBMS

¢ Hard to obtain with legacy databases

® Additional components
® Monitoring, assessment, reaction
® Embedded in control operators of QEP

B Tradeoff between reactiveness and overhead of
adaptation

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.64



Adaptive Components

B Monitoring parameters (collected by sensors in
QEP)
® Memory size
® Data arrival rates
® Actual statistics

® Operator execution cost
® Network throughput

B Adaptive reactions
® Change schedule
® Replace an operator by an equivalent one
® Modify the behavior of an operator
® Data repartitioning

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.65



Eddy Approach

B Query compilation: produces a tuple (D, P, C,
Eddy)
® D: set of data sources (e.g. relations)
® P: set of predicates
® C: ordering constraints to be followed at runtime
® Kddy: n-ary operator between D and P

B Query execution: operator ordering on a tuple
basis using Eddy

® On-the-fly tuple routing to operators based on cost and
selectivity

® Change of join ordering during execution
¢ Requires symmetric join algorithms such Ripple joins

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.66



QEP with Eddy

m D={R, S, T}

® P={0,(R), RJIN, S, SIN, T)

B (C={S <T} where <imposes S tuples to probe T tuples using an index on
join attribute
® Access to T'1s wrapped by JN

Result tuples

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.67



Query Translation and
Execution

B Performed by wrappers using the component
DBMS

® Conversion between common interface of mediator and
DBMS-dependent interface

¢ Query translation from wrapper to DBMS
¢ Result format translation from DBMS to wrapper

® Wrapper has the local schema exported to the mediator (in
common interface) and the mapping to the DBMS schema

® Common interface can be query-based (e.g. ODBC or SQL/
MED) or operator-based

B In addition, wrappers can implement operators
not supported by the component DBMS, e.g.
join

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.68



Wrapper Placement

® Depends on the level of
autonomy of component
DB

B Cooperative DB

® May place wrapper at
component DBMS site WRAPPER
® Efficient wrapper-DBMS com.

DBMS-DEPENDENT
INTERFACE

COMMON INTERFACE

® Uncooperative DB
® May place wrapper at

mediator COMPONENT
® Efficient mediator-wrapper DBMS
com.

B Impact on cost functions

CS742 — Distributed & Parallel DBMS M. Tamer Ozsu Page 9.69



