Outline

- Introduction & architectural issues
- Data distribution
- Distributed query processing
- Distributed query optimization
- Distributed transactions & concurrency control
- Distributed reliability
- Data replication
- Parallel database systems
- □ Database integration & querying
 - □Schema matching
 - □Schema mapping
- ☐Peer-to-Peer data management
- □Stream data management
- ☐ MapReduce-based distributed data management

Problem Definition

- Given existing databases with their Local Conceptual Schemas (LCSs), how to integrate the LCSs into a Global Conceptual Schema (GCS)
 - GCS is also called *mediated schema*
- Bottom-up design process

Integration Alternatives

- Physical integration
 - Source databases integrated and the integrated database is materialized
 - Data warehouses
- Logical integration
 - Global conceptual schema is virtual and not materialized
 - Enterprise Information Integration (EII)

Data Warehouse Approach

Bottom-up Design

- GCS (also called mediated schema) is defined first
 - Map LCSs to this schema
 - As in data warehouses
- GCS is defined as an integration of parts of LCSs
 - Generate GCS and map LCSs to this GCS

GCS/LCS Relationship

- Local-as-view
 - The GCS definition is assumed to exist, and each LCS is treated as a view definition over it
- Global-as-view
 - The GCS is defined as a set of views over the LCSs

Database Integration Process

Recall Access Architecture

Database Integration Issues

- Schema translation
 - Component database schemas translated to a common intermediate canonical representation
- Schema generation
 - Intermediate schemas are used to create a global conceptual schema

Schema Translation

- What is the canonical data model?
 - Relational
 - Entity-relationship
 - DIKE
 - Object-oriented
 - ARTEMIS
 - Graph-oriented
 - ◆ DIPE, TranScm, COMA, Cupid
 - ◆ Preferable with emergence of XML
 - ◆ No common graph formalism
- Mapping algorithms
 - These are well-known

Schema Generation

- Schema matching
 - Finding the correspondences between multiple schemas
- Schema integration
 - Creation of the GCS (or mediated schema) using the correspondences
- Schema mapping
 - How to map data from local databases to the GCS
- Important: sometimes the GCS is defined first and schema matching and schema mapping is done against this target GCS

Running Example

Relational

E-R Model

CLIENT

Address

EMP(ENO, ENAME, TITLE)

PROJ(PNO, PNAME, BUDGET, LOC, CNAME)

ASG(ENO, PNO, RESP, DUR)

PAY(TITLE, SAL)

Schema Matching

- Schema heterogeneity
 - Structural heterogeneity
 - ◆ Type conflicts
 - ◆ Dependency conflicts
 - Key conflicts
 - Behavioral conflicts
 - Semantic heterogeneity
 - ◆ More important and harder to deal with
 - ◆ Synonyms, homonyms, hypernyms
 - ◆ Different ontology
 - ◆ Imprecise wording

Schema Matching (cont'd)

- Other complications
 - Insufficient schema and instance information
 - Unavailability of schema documentation
 - Subjectivity of matching
- Issues that affect schema matching
 - Schema versus instance matching
 - Element versus structure level matching
 - Matching cardinality

Schema Matching Approaches

Linguistic Schema Matching

- Use element names and other textual information (textual descriptions, annotations)
- May use external sources (e.g., Thesauri)
- \blacksquare \langle SC1.element-1 \approx SC2.element-2, $p,s\rangle$
 - Element-1 in schema SC1 is similar to element-2 in schema SC2 if predicate *p* holds with a similarity value of *s*

■ Schema level

- Deal with names of schema elements
- Handle cases such as synonyms, homonyms, hypernyms, data type similarities

■ Instance level

- Focus on information retrieval techniques (e.g., word frequencies, key terms)
- "Deduce" similarities from these

Linguistic Matchers

- Use a set of linguistic (terminological) rules
- Basic rules can be hand-crafted or may be discovered from outside sources (e.g., WordNet)
- \blacksquare Predicate p and similarity value s
 - hand-crafted \Rightarrow specified,
 - discovered ⇒ may be computed or specified by an expert after discovery

Examples

- $\langle \text{uppercase names} \approx \text{lower case names}, true, 1.0 \rangle$
- $\langle \text{uppercase names} \approx \text{capitalized names}, true, 1.0 \rangle$
- \langle capitalized names \approx lower case names, true, 1.0 \rangle
- $\langle DB1.ASG \approx DB2.WORKS_IN, true, 0.8 \rangle$

Automatic Discovery of Name Similarities

Affixes

Common prefixes and suffixes between two element name strings

■ N-grams

• Comparing how many substrings of length *n* are common between the two name strings

■ Edit distance

 Number of character modifications (additions, deletions, insertions) that needs to be performed to convert one string into the other

■ Soundex code

• Phonetic similarity between names based on their soundex codes

■ Also look at data types

Data type similarity may suggest relationship

N-gram Example

■ 3-grams of string "Responsibility" are the following:

•Res

• sib

•ibi

• esp

bip

spo

•ili

pon

•lit

ons

•ity

nsi

■ 3-grams of string "Resp" are

- Res
- esp
- 3-gram similarity: 2/12 = 0.17

Edit Distance Example

- Again consider "Responsibility" and "Resp"
- To convert "Responsibility" to "Resp"
 - Delete characters "o", "n", "s", "i", "b", "i", "l", "i", "t", "y"
- To convert "Resp" to "Responsibility"
 - Add characters "o", "n", "s", "i", "b", "i", "l", "i", "t", "y"
- The number of edit operations required is 10
- Similarity is 1 (10/14) = 0.29

Constraint-based Matchers

- Data always have constraints use them
 - Data type information
 - Value ranges
 - ...

Examples

- RESP and RESPONSIBILITY: n-gram similarity = 0.17, edit distance similarity = 0.19 (low)
- If they come from the same domain, this may increase their similarity value
- ENO in relational, WORKER.NUMBER and PROJECT.NUMBER in E-R
- ENO and WORKER.NUMBER may have type INTEGER while PROJECT.NUMBER may have STRING

Constraint-based Structural Matching

- If two schema elements are structurally similar, then there is a higher likelihood that they represent the same concept
- Structural similarity:
 - Same properties (attributes)
 - "Neighborhood" similarity
 - ◆ Using graph representation
 - ◆ The set of nodes that can be reached within a particular path length from a node are the neighbors of that node
 - ◆ If two concepts (nodes) have similar set of neighbors, they are likely to represent the same concept

Learning-based Schema Matching

- Use machine learning techniques to determine schema matches
- Classification problem: classify concepts from various schemas into classes according to their similarity. Those that fall into the same class represent similar concepts
- Similarity is defined according to features of data instances
- Classification is "learned" from a training set

Learning-based Schema Matching

Combined Schema Matching Approaches

- Use multiple matchers
 - Each matcher focuses on one area (name, etc)
- Meta-matcher integrates these into one prediction
- Integration may be simple (take average of similarity values) or more complex (see Fagin's work)

Schema Integration

- Use the correspondences to create a GCS
- Mainly a manual process, although rules can help

Binary Integration Methods

(a) Stepwise

(b) Pure binary

N-ary Integration Methods

(a) One-pass

(b) Iterative

Schema Mapping

- Mapping data from each local database (source) to GCS (target) while preserving semantic consistency as defined in both source and target.
- Data warehouses ⇒ actual translation
- Data integration systems ⇒ discover mappings that can be used in the query processing phase
- Mapping creation
- Mapping maintenance

Mapping Creation

Given

- A source LCS $[S = \{S_i\}]$
- A target GCS $[\mathcal{T} = \{T_i\}]$
- A set of value correspondences discovered during schema matching phase $[\mathcal{V} = \{V_i\}]$

Produce a set of queries that, when executed, will create GCS data instances from the source data.

We are looking, for each T_k , a query Q_k that is defined on a (possibly proper) subset of the relations in S such that, when executed, will generate data for T_i from the source relations

Mapping Creation Algorithm

General idea:

- Consider each T_k in turn. Divide V_k into subsets $\{V_k^1, \ldots, V_k^n\}$ such that each V_k^j specifies one possible way that values of T_k can be computed.
- Each V_k^j can be mapped to a query q_k^j that, when executed, would generate some of T_k 's data.
- Union of these queries gives

$$Q_k (= \cup_j q_k^j)$$