
Page 1

CS742 – Distributed & Parallel DBMS Page 7.1 M. Tamer Özsu

Outline
n  Introduction & architectural issues
n Data distribution
n Distributed query processing
n Distributed query optimization
n Distributed transactions & concurrency control
n Distributed reliability
q Data replication

q Consistency criteria
q Replication protocols

q Parallel database systems
q Database integration & querying
q Peer-to-Peer data management
q Stream data management
q MapReduce-based distributed data management

CS742 – Distributed & Parallel DBMS Page 7.2 M. Tamer Özsu

Replication

n Why replicate?
l System availability

u Avoid single points of failure
l Performance

u Localization
l Scalability

u Scalability in numbers and geographic area
l Application requirements

n Why not replicate?
l Replication transparency
l Consistency issues

u Updates are costly
u Availability may suffer if not careful

Page 2

CS742 – Distributed & Parallel DBMS Page 7.3 M. Tamer Özsu

Execution Model

n There are physical copies of logical objects in the system.
n Operations are specified on logical objects, but translated

to operate on physical objects.
n One-copy equivalence

l The effect of transactions performed by clients on replicated objects
should be the same as if they had been performed on a single set of
objects.

x

x1 x2 xn …

Physical data item (replicas, copies)

Logical data item

Write(x)

Write(x1) Write(x2) Write(xn)

CS742 – Distributed & Parallel DBMS Page 7.4 M. Tamer Özsu

Replication Issues

n Consistency models - how do we reason about
the consistency of the “global execution state”?
l Mutual consistency
l Transactional consistency

n Where are updates allowed?
l Centralized
l Distributed

n Update propagation techniques – how do we
propagate updates to one copy to the other
copies?
l Eager
l Lazy

Page 3

CS742 – Distributed & Parallel DBMS Page 7.5 M. Tamer Özsu

Consistency

n Mutual Consistency
l How do we keep the values of physical copies of a logical

data item synchronized?
l Strong consistency

u All copies are updated within the context of the update
transaction

u When the update transaction completes, all copies
have the same value

u Typically achieved through 2PC
l Weak consistency

u Eventual consistency: the copies are not identical when
update transaction completes, but they eventually
converge to the same value

u Many versions possible:
s  Time-bounds
s  Value-bounds
s  Drifts

CS742 – Distributed & Parallel DBMS Page 7.6 M. Tamer Özsu

Transactional Consistency

n How can we guarantee that the global
execution history over replicated data is
serializable?

n One-copy serializability (1SR)
l The effect of transactions performed by clients on

replicated objects should be the same as if they had been
performed one at-a-time on a single set of objects.

n Weaker forms are possible
l Snapshot isolation

l RC-serializability

Page 4

CS742 – Distributed & Parallel DBMS Page 7.7 M. Tamer Özsu

Example 1

Site A Site B Site C
 x x, y x, y, z

T1: x ← 20 T2: Read(x) T3: Read(x)
 Write(x) x ← x+y Read(y)
 Commit Write(y) z ← (x∗y)/100

 Commit Write(z)
 Commit

Consider the three histories:

HA={W1(xA), C1}
HB={W1(xB), C1, R2(xB), W2(yB), C2}
HC={W2(yC), C2, R3(xC), R3(yC),W3(zC), C3, W1(xC),C1}

Global history non-serializable: HB: T1→T2, HC: T2→T3→T1

Mutually consistent: Assume xA=xB=xC=10, yB=yC=15,yC=7 to begin; in the
end xA=xB=xC=20, yB=yC=35,yC=3.5

CS742 – Distributed & Parallel DBMS Page 7.8 M. Tamer Özsu

Example 2

Site A Site B
 x x

T1: Read(x) T2: Read(x)
 x ← x+5 x ← x∗10
 Write(x) Write(x)
 Commit Commit

Consider the two histories:

HA={R1(xA),W1(xA), C1, W2(xA), C2}
HB={R1(xB), W2(xB), C2, W1(xB), C1}

Global history non-serializable: HA: T1→ T2, HB: T2→ T1

Mutually inconsistent: Assume xA=xB=1 to begin; in the end xA=10, xB=6

Page 5

CS742 – Distributed & Parallel DBMS Page 7.9 M. Tamer Özsu

Update Management
Strategies

n Depending on when the updates are propagated
l Eager
l Lazy

n Depending on where the updates can take place
l Centralized
l Distributed

Eager

Lazy

Centralized Distributed

CS742 – Distributed & Parallel DBMS Page 7.10 M. Tamer Özsu

Eager Replication

n Changes are propagated within the scope of the transaction
making the changes. The ACID properties apply to all copy
updates.
l Synchronous
l Deferred

n ROWA protocol: Read-one/Write-all

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

� �

�

Page 6

CS742 – Distributed & Parallel DBMS Page 7.11 M. Tamer Özsu

Lazy Replication
●  Lazy replication first executes the updating transaction on one

copy. After the transaction commits, the changes are
propagated to all other copies (refresh transactions)

●  While the propagation takes place, the copies are mutually
inconsistent.

●  The time the copies are mutually inconsistent is an adjustable
parameter which is application dependent.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

� �

�

CS742 – Distributed & Parallel DBMS Page 7.12 M. Tamer Özsu

Centralized

●  There is only one copy which can be updated (the master), all
others (slave copies) are updated reflecting the changes to the
master.

Site 1 Site 2 Site 3 Site 4

Site 1 Site 2 Site 3 Site 4

Page 7

CS742 – Distributed & Parallel DBMS Page 7.13 M. Tamer Özsu

Distributed

●  Changes can be initiated at any of the copies. That is, any of
the sites which owns a copy can update the value of the data
item.

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

Site 1 Site 2 Site 3 Site 4

Transaction
updates commit

CS742 – Distributed & Parallel DBMS Page 7.14 M. Tamer Özsu

Forms of Replication

Eager
+  No inconsistencies (identical copies)
+  Reading the local copy yields the most

up to date value
+  Changes are atomic
−  A transaction has to update all sites

−  Longer execution time
−  Lower availability

Lazy

+  A transaction is always local (good
response time)

−  Data inconsistencies
−  A local read does not always return

the most up-to-date value
−  Changes to all copies are not

guaranteed
−  Replication is not transparent

Centralized
+  No inter-site synchronization is

necessary (it takes place at the
master)

+  There is always one site which
has all the updates

−  The load at the master can be
high

−  Reading the local copy may not
yield the most up-to-date value

Distributed

+  Any site can run a transaction
+  Load is evenly distributed
−  Copies need to be synchronized

Page 8

CS742 – Distributed & Parallel DBMS Page 7.15 M. Tamer Özsu

Replication Protocols

Eager

Lazy

Centralized Distributed

Eager centralized Eager distributed

Lazy distributed Lazy centralized

The previous ideas can be combined into 4 different replication protocols:

CS742 – Distributed & Parallel DBMS Page 7.16 M. Tamer Özsu

Eager Centralized Protocols
n Design parameters:

l Distribution of master
u Single master: one master for all data items
u Primary copy: different masters for different (sets of)

data items
l Level of transparency

u Limited: applications and users need to know who the
master is

s  Update transactions are submitted directly to the master
s  Reads can occur on slaves

u Full: applications and users can submit anywhere and
the operations will be forwarded to the master

s  Operation-based forwarding

n Four alternative implementation architectures,
only three are meaningful:
l Single master, limited transparency
l Single master, full transparency
l Primary copy, full transparency

Page 9

CS742 – Distributed & Parallel DBMS Page 7.17 M. Tamer Özsu

Eager Single Master/Limited
Transparency
n Applications submit update transactions directly to the master
n Master:

l Upon read: read locally and return to user
l Upon write: write locally, multicast write to other replicas (in FFO

timestamps order)
l Upon commit request: run 2PC coordinator to ensure that all have really

installed the changes
l Upon abort: abort and inform other sites about abort

n Slaves install writes that arrive from the master

CS742 – Distributed & Parallel DBMS Page 7.18 M. Tamer Özsu

Eager Single Master/Limited
Transparency (cont’d)
n Applications submit read transactions directly to an

appropriate slave
n Slave

l Upon read: read locally
l Upon write from master copy: execute conflicting writes in the proper

order (FIFO or timestamp)
l Upon write from client: refuse (abort transaction; there is error)
l Upon commit request from read-only: commit locally
l Participant of 2PC for update transaction running on primary

Page 10

CS742 – Distributed & Parallel DBMS Page 7.19 M. Tamer Özsu

Eager Single Master/
Full Transparency

Coordinating TM
1.  Send op(x) to the master site

2.  Send Read(x) to any site that
has x

3.  Send Write(x) to all the slaves
where a copy of x exists

4.  When Commit arrives, act as
coordinator for 2PC

Master Site
1.  If op(x) = Read(x): read lock

x; send “lock granted” msg
to the coordinating TM

2.  If op(x) = Write(x)
1.  Set write lock on x
2.  Update local copy of x
3.  Inform coordinating TM

3.  Act as participant in 2PC

Applications submit all transactions to the Transaction Manager at
their own sites (Coordinating TM)

CS742 – Distributed & Parallel DBMS Page 7.20 M. Tamer Özsu

Eager Primary Copy/Full
Transparency

n Applications submit transactions directly to their local
TMs

n Local TM:
l Forward each operation to the primary copy of the data item
l Upon granting of locks, submit Read to any slave, Write to all slaves
l Coordinate 2PC

Page 11

CS742 – Distributed & Parallel DBMS Page 7.21 M. Tamer Özsu

Eager Primary Copy/Full
Transparency (cont’d)

n Primary copy site
l Read(x): lock xand reply to TM

l Write(x): lock x, perform update, inform TM
l Participate in 2PC

n  Slaves: as before

CS742 – Distributed & Parallel DBMS Page 7.22 M. Tamer Özsu

Eager Distributed Protocol
n Updates originate at any copy

l Each sites uses 2 phase locking.
l Read operations are performed locally.
l Write operations are performed at all sites (using a distributed locking

protocol).
l Coordinate 2PC

n Slaves:
l As before

Page 12

CS742 – Distributed & Parallel DBMS Page 7.23 M. Tamer Özsu

Eager Distributed Protocol
(cont’d)

n Critical issue:
l Concurrent Writes initiated at different master sites are

executed in the same order at each slave site
l Local histories are serializable (this is easy)

n Advantages
l Simple and easy to implement

n Disadvantage
l Very high communication overhead

u n replicas; m update operations in each transaction:
n*m messages (assume no multicasting)

u For throughput of k tps: k* n*m messages

n Alternative
l Use group communication + deferred update to slaves to

reduce messages

CS742 – Distributed & Parallel DBMS Page 7.24 M. Tamer Özsu

Lazy Single Master/Limited
Transparency
n Update transactions submitted to master
n Master:

l Upon read: read locally and return to user
l Upon write: write locally and return to user
l Upon commit/abort: terminate locally
l Sometime after commit: multicast updates to slaves (in order)

n Slaves:
l Upon read: read locally
l Refresh transactions: install updates

Page 13

CS742 – Distributed & Parallel DBMS Page 7.25 M. Tamer Özsu

Lazy Primary Copy/Limited
Transparency

n There are multiple masters; each master
execution is similar to lazy single master in the
way it handles transactions

n Slave execution complicated: refresh
transactions from multiple masters and need
to be ordered properly

CS742 – Distributed & Parallel DBMS Page 7.26 M. Tamer Özsu

Lazy Primary Copy/Limited
Transparency – Slaves

n Assign system-wide unique timestamps to
refresh transactions and execute them in
timestamp order
l May cause too many aborts

n Replication graph
l Similar to serialization graph, but nodes are transactions

(T) + sites (S); edge 〈Ti,Sj〉exists iff Ti performs a Write(x)
and x is stored in Sj

l For each operation (opk), enter the appropriate nodes (Tk)
and edges; if graph has no cycles, no problem

l  If cycle exists and the transactions in the cycle have been
committed at their masters, but their refresh transactions
have not yet committed at slaves, abort Tk; if they have not
yet committed at their masters, Tkwaits.

n Use group communication

Page 14

CS742 – Distributed & Parallel DBMS Page 7.27 M. Tamer Özsu

Lazy Single Master/Full
Transparency

n This is very tricky
l Forwarding operations to a master and then getting

refresh transactions cause difficulties

n Two problems:
l Violation of 1SR behavior
l A transaction may not see its own reads

n Problem arises in primary copy/full
transparency as well

CS742 – Distributed & Parallel DBMS Page 7.28 M. Tamer Özsu

Example 3
Site M (Master) holds x, y; SiteB holds slave copies of x, y
T1: Read(x), Write(y), Commit
T2: Read(x), Write(y), Commit

HM = {W2(xM),W2(yM), C2,W1(yM), C1}
HB = {R1(xB), C1,W

R
2 (xB),W

R
2 (yB), C

R
2 ,WR

1 (xB), C
R
1 }

Page 15

CS742 – Distributed & Parallel DBMS Page 7.29 M. Tamer Özsu

Example 4

n  Master site M holds x, site C holds slave copy of x
n  T3: Write(x), Read(x), Commit
n  Sequence of execution

1.  W3(x) submitted at C, forwarded to M for execution
2.  W3(x) is executed at M, confirmation sent back to C
3.  R3(x) submitted at C and executed on the local copy
4.  T3 submits Commit at C, forwarded to M for execution
5.  M executes Commit, sends notification to C, which also

commits T3
6.  M sends refresh transaction for T3 to C (for W3(x) operation)
7.  C executes the refresh transaction and commits it

n  When C reads x at step 3, it does not see the
effects of Write at step 2

CS742 – Distributed & Parallel DBMS Page 7.30 M. Tamer Özsu

Lazy Single Master/
Full Transparency - Solution

n Assume T = Write(x)
n At commit time of transaction T, the master generates

a timestamp for it [ts(T)]
n Master sets last_modified(xM) ← ts(T)
n When a refresh transaction arrives at a slave site i, it

also sets last_modified(xi) ← last_modified(xM)
n Timestamp generation rule at the master:

l  ts(T) should be greater than all previously issued timestamps and
should be less than the last_modified timestamps of the data items it
has accessed. If such a timestamp cannot be generated, then T is
aborted.

Page 16

CS742 – Distributed & Parallel DBMS Page 7.31 M. Tamer Özsu

Lazy Distributed Replication
n Any site:

l Upon read: read locally and return to user
l Upon write: write locally and return to user
l Upon commit/abort: terminate locally
l Sometime after commit: send refresh transaction
l Upon message from other site

u Detect conflicts
u  Install changes
u Reconciliation may be necessary

CS742 – Distributed & Parallel DBMS Page 7.32 M. Tamer Özsu

Reconciliation

n Such problems can be solved using pre-
arranged patterns:
l Latest update win (newer updates preferred over old ones)
l Site priority (preference to updates from headquarters)
l Largest value (the larger transaction is preferred)

n Or using ad-hoc decision making procedures:
l  Identify the changes and try to combine them
l Analyze the transactions and eliminate the non-important

ones
l  Implement your own priority schemas

Page 17

CS742 – Distributed & Parallel DBMS Page 7.33 M. Tamer Özsu

Replication Strategies
Ea

ge
r

La
zy

Centralized Distributed

+ Updates do not need to be
coordinated

+ No inconsistencies
-  Longest response time
- Only useful with few updates
-  Local copies are can only be

read

+ No inconsistencies
+ Elegant (symmetrical solution)
-  Long response times
- Updates need to be

coordinated

+ No coordination necessary
+ Short response times
-  Local copies are not up to

date
-  Inconsistencies

+ No centralized coordination
+ Shortest response times
-  Inconsistencies
- Updates can be lost

(reconciliation)

CS742 – Distributed & Parallel DBMS Page 7.34 M. Tamer Özsu

Group Communication

n A node can multicast a message to all nodes of
a group with a delivery guarantee

n Multicast primitives
l There are a number of them
l Total ordered multicast: all messages sent by different

nodes are delivered in the same total order at all the nodes

n Used with deferred writes, can reduce
communication overhead
l Remember eager distributed requires k*m messages (with

multicast) for throughput of ktps when there are n replicas
and m update operations in each transaction

l With group communication and deferred writes: 2k
messages

Page 18

CS742 – Distributed & Parallel DBMS Page 7.35 M. Tamer Özsu

Failures

n So far we have considered replication protocols
in the absence of failures

n How to keep replica consistency when failures
occur
l Site failures

u Read One Write All Available (ROWAA)
l Communication failures

u Quorums
l Network partitioning

u Quorums

CS742 – Distributed & Parallel DBMS Page 7.36 M. Tamer Özsu

ROWAA with Primary Site

n READ = read any copy, if time-out, read
another copy.

n WRITE = send W(x) to all copies. If one site
rejects the operation, then abort. Otherwise, all
sites not responding are “missing writes”.

n VALIDATION = To commit a transaction
l Check that all sites in “missing writes” are still down. If

not, then abort the transaction.
u There might be a site recovering concurrent with

transaction updates and these may be lost
l Check that all sites that were available are still available.

If some do not respond, then abort.

Page 19

CS742 – Distributed & Parallel DBMS Page 7.37 M. Tamer Özsu

Distributed ROWAA

n Each site has a copy of V
l  V represents the set of sites a site believes is available
l  V(A) is the “view” a site has of the system configuration.

n The view of a transaction T [V(T)] is the view of its
coordinating site, when the transaction starts.
l  Read any copy within V; update all copies in V
l  If at the end of the transaction the view has changed, the transaction is

aborted

n All sites must have the same view!
n To modify V, run a special atomic transaction at all sites.

l  Take care that there are no concurrent views!
l  Similar to commit protocol.
l  Idea: Vs have version numbers; only accept new view if its version number is

higher than your current one

n Recovery: get missed updates from any active node
l  Problem: no unique sequence of transactions

CS742 – Distributed & Parallel DBMS Page 7.38 M. Tamer Özsu

Quorum-Based Protocol

n Assign a vote to each copy of a replicated
object (say Vi) such that ∑iVi = V

n Each operation has to obtain a read quorum
(Vr) to read and a write quorum (Vw) to write
an object

n Then the following rules have to be obeyed in
determining the quorums:
l Vr+ Vw>V an object is not read and written by two

transactions concurrently
l Vw>V/2 two write operations from two transactions

cannot occur concurrently on the same object

Page 20

CS742 – Distributed & Parallel DBMS Page 7.39 M. Tamer Özsu

Quorum Example

Three examples of the voting algorithm:
a)  A correct choice of read and write set
b)  A choice that may lead to write-write conflicts
c)  ROWA

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms
© Prentice-Hall, Inc. 2002

