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Outline 
n  Introduction & architectural issues 
n Data distribution 
n Distributed query processing 
n Distributed query optimization 
n Distributed transactions & concurrency control 
q Distributed reliability 

q Logging 
q Distributed commit protocols 

q Data replication 
q Parallel database systems 
q Database integration & querying 
q Peer-to-Peer data management 
q Stream data management 
q MapReduce-based distributed data management 
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Reliability 

Problem: 

How to maintain  

 atomicity 

 durability 

properties of transactions 

Ch.10/2 
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Types of Failures 

n Transaction failures 
l Transaction aborts (unilaterally or due to deadlock) 
l Avg. 3% of transactions abort abnormally 

n System (site) failures 
l Failure of processor, main memory, power supply, … 
l Main memory contents are lost, but secondary storage 

contents are safe 
l Partial vs. total failure 

n Media failures 
l Failure of secondary storage devices such that the stored 

data is lost 
l Head crash/controller failure (?) 

n Communication failures 
l Lost/undeliverable messages 
l Network partitioning 
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Local Recovery Management 
– Architecture 

n Volatile storage 
l Consists of the main memory of the computer system (RAM). 

n Stable storage 
l Resilient to failures and loses its contents only in the presence 

of media failures (e.g., head crashes on disks). 
l  Implemented via a combination of hardware (non-volatile 

storage) and software (stable-write, stable-read, clean-up) 
components. 
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Recovery Information 

Database Log 
 Every action of a transaction must not only perform the 
action, but must also write a log record to an append-only 
file. 

New "
stable database"

state"

Database"
Log"

Update"
Operation"

Old "
stable database"

state"
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Logging 

The log contains information used by the 
recovery process to restore the consistency of a 
system. This information may include 

l  transaction identifier 

l  type of operation (action) 

l  items accessed by the transaction to perform the action 

l  old value (state) of item (before image) 

l  new value (state) of item (after image) 

            … 
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Why Logging? 

Upon recovery: 
l all of T1's effects should be reflected in the database (REDO if necessary 

due to a failure) 
l none of T2's effects should be reflected in the database (UNDO if 

necessary) 

0 t time 

system  
crash 

T1 Begin End 

Begin T2 
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REDO Protocol 

n REDO'ing an action means performing it again. 
n The REDO operation uses the log information and 

performs the action that might have been done before, or 
not done due to failures. 

n The REDO operation generates the new image. 

Database"
Log "

REDO"
Old "

stable database"
state"

New"
stable database"

state"
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UNDO Protocol 

n UNDO'ing an action means to restore the object to its 
before image. 

n The UNDO operation uses the log information and 
restores the old value of the object. 

New "
stable database"

state"

Database"
Log "

UNDO"
Old"
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When to Write Log Records 
Into Stable Store 

Assume a transaction T updates a page P  
n Fortunate case 

l System writes P in stable database 
l System updates stable log for this update 
l SYSTEM FAILURE OCCURS!... (before T commits) 

 We can recover (undo) by restoring P to its old 
state by using the log 

n Unfortunate case 
l System writes P in stable database 
l SYSTEM FAILURE OCCURS!... (before stable log is 

updated) 

 We cannot recover from this failure because 
there is no log record to restore the old value. 

n Solution:  Write-Ahead Log (WAL) protocol 
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Write–Ahead Log Protocol 

n Notice: 
l  If a system crashes before a transaction is committed, then 

all the operations must be undone. Only need the before 
images (undo portion of the log). 

l Once a transaction is committed, some of its actions might 
have to be redone. Need the after images (redo portion of 
the log). 

n WAL protocol : 
� Before a stable database is updated, the undo portion of the 

log should be written to the stable log 

� When a transaction commits,  the redo portion of the log 
must be written to stable log prior to the updating of the 
stable database. 
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Distributed Reliability 
Protocols 

n Commit protocols 
l How to execute commit command for distributed transactions. 
l  Issue: how to ensure atomicity and durability? 

n Termination protocols 
l  If a failure occurs, how can the remaining operational sites deal 

with it. 
l Non-blocking : the occurrence of failures should not force the sites to 

wait until the failure is repaired to terminate the transaction. 

n Recovery protocols 
l When a failure occurs, how do the sites where the failure occurred 

deal with it. 
l  Independent : a failed site can determine the outcome of a 

transaction without having to obtain remote information. 

n Independent recovery ⇒ non-blocking termination 
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Two-Phase Commit (2PC) 

Phase 1 : The coordinator gets the participants 
ready to write the results into the database 

Phase 2 : Everybody writes the results into the 
database 
l Coordinator :The process at the site where the 

transaction originates and which controls the execution 

l Participant :The process at the other sites that 
participate in executing the transaction 

Global Commit Rule: 
� The coordinator aborts a transaction if and only if at least 

one participant votes to abort it. 

� The coordinator commits a transaction if and only if all of 
the participants vote to commit it. 
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Centralized 2PC 

ready? yes/no commit/abort? commited/aborted 

Phase 1 Phase 2 
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2PC Protocol Actions 
 Participant                      Coordinator                      

No 
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Yes GLOBAL-ABORT 

No 
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ACK 

INITIAL 

write abort 
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State Transitions in 2PC 

INITIAL!

WAIT!

Commit command""
"Prepare"

Vote-commit (all)""
"Global-commit"

INITIAL!

READY!

     Prepare   ""
"Vote-commit"

Global-commit""
"Ack"

   Prepare   ""
"Vote-abort"

Global-abort""
"Ack"

Coordinator" Participants"

  Vote-abort  ""
"Global-abort"

ABORT! COMMIT! COMMIT!ABORT!



Page 9 

CS742 – Distributed & Parallel DBMS Page 6.17 M. Tamer Özsu 

Site Failures - 2PC Termination 

n Timeout in INITIAL 
l Who cares 

n Timeout in WAIT 
l Cannot unilaterally 

commit 
l Can unilaterally abort 

n Timeout in ABORT or 
COMMIT 
l Stay blocked and wait 

for the acks ABORT COMMIT 

COORDINATOR"

INITIAL!

WAIT!

Commit command""
"Prepare"

  Vote-commit  ""
"Global-commit"

ABORT! COMMIT!

  Vote-abort  ""
"Global-abort"
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Site Failures - 2PC Termination 

n Timeout in INITIAL 
l  Coordinator must have failed in INITIAL 

state 
l  Unilaterally abort 

n Timeout in READY 
l  Stay blocked 

INITIAL!

READY!

     Prepare   ""
"Vote-commit"

Global-commit""
"Ack"

   Prepare   "
Vote-abort"

Global-abort""
"Ack"

ABORT! COMMIT!

PARTICIPANTS"
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Site Failures - 2PC Recovery 

n Failure in INITIAL 
l  Start the commit process upon recovery 

n Failure in WAIT 
l  Restart the commit process upon recovery 

n Failure in ABORT or COMMIT 
l  Nothing special if all the acks have been received 
l  Otherwise the termination protocol is involved 

COORDINATOR"

INITIAL!

WAIT!

Commit command"
Prepare"

  Vote-commit  ""
"Global-commit"

ABORT! COMMIT!

  Vote-abort  ""
"Global-abort"
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Site Failures - 2PC Recovery 

n Failure in INITIAL 
l  Unilaterally abort upon recovery 

n Failure in READY 
l  The coordinator has been informed about the local 

decision 
l  Treat as timeout in READY state and invoke the 

termination protocol 

n Failure in ABORT or COMMIT 
l  Nothing special needs to be done 

INITIAL!

READY!

     Prepare   "
Vote-commit"

Global-commit""
"Ack"

   Prepare   "
Vote-abort"

Global-abort""
"Ack"

ABORT! COMMIT!

PARTICIPANTS"
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Problem With 2PC 

n Blocking 
l   Ready  implies that the participant waits for the 

coordinator  
l   If coordinator fails, site is blocked until recovery 
l   Blocking reduces availability 

n Independent recovery is not possible 
n However,  it is known that: 

l  Independent recovery protocols exist only for single site 
failures; no independent recovery protocol exists which is 
resilient to multiple-site failures. 

n So we search for these protocols – 3PC 
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Network Partitioning 

n Simple partitioning 
l Only two partitions 

n Multiple partitioning 
l More than two partitions 

n Formal bounds: 
l There exists no non-blocking protocol that is resilient to a 

network partition if messages are lost when partition 
occurs. 

l There exist non-blocking protocols which are resilient to a 
single network partition if all undeliverable messages are 
returned to sender. 

l There exists no non-blocking protocol which is resilient to a 
multiple partition. 
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Independent Recovery Protocols 
for Network Partitioning 

n No general solution possible  
l allow one group to terminate while the other is blocked  
l  improve availability 

n How to determine which group to proceed? 
l The group with a majority  

n How does a group know if it has majority? 
l Centralized 

u Whichever partitions contains the central site should 
terminate the transaction 

l Voting-based (quorum) 
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Quorum Protocols 

n The network partitioning problem is handled 
by the commit protocol. 

n Every site is assigned a vote Vi. 
n Total number of votes in the system V 
n Abort quorum Va, commit quorum Vc 

l Va + Vc > V  where 0 ≤ Va , Vc ≤ V 
l Before a transaction commits, it must obtain a commit 

quorum Vc 
l Before a transaction aborts, it must obtain an abort 

quorum Va 


