
Page 1 

CS742 – Distributed & Parallel DBMS Page 6.1 M. Tamer Özsu 

Outline 
n  Introduction & architectural issues 
n Data distribution 
n Distributed query processing 
n Distributed query optimization 
n Distributed transactions & concurrency control 
q Distributed reliability 

q Logging 
q Distributed commit protocols 

q Data replication 
q Parallel database systems 
q Database integration & querying 
q Peer-to-Peer data management 
q Stream data management 
q MapReduce-based distributed data management 

CS742 – Distributed & Parallel DBMS Page 6.2 M. Tamer Özsu 

Reliability 

Problem: 

How to maintain  

 atomicity 

 durability 

properties of transactions 

Ch.10/2 



Page 2 

CS742 – Distributed & Parallel DBMS Page 6.3 M. Tamer Özsu 

Types of Failures 

n Transaction failures 
l Transaction aborts (unilaterally or due to deadlock) 
l Avg. 3% of transactions abort abnormally 

n System (site) failures 
l Failure of processor, main memory, power supply, … 
l Main memory contents are lost, but secondary storage 

contents are safe 
l Partial vs. total failure 

n Media failures 
l Failure of secondary storage devices such that the stored 

data is lost 
l Head crash/controller failure (?) 

n Communication failures 
l Lost/undeliverable messages 
l Network partitioning 

CS742 – Distributed & Parallel DBMS Page 6.4 M. Tamer Özsu 

Local Recovery Management 
– Architecture 

n Volatile storage 
l Consists of the main memory of the computer system (RAM). 

n Stable storage 
l Resilient to failures and loses its contents only in the presence 

of media failures (e.g., head crashes on disks). 
l  Implemented via a combination of hardware (non-volatile 

storage) and software (stable-write, stable-read, clean-up) 
components. 

Secondary!
storage!

Stable!
database!

Read" Write!

Write" Read!

Main memory"
Local Recovery"

Manager"

Database Buffer"
Manager"

Fetch,!
Flush! Database!

buffers!
(Volatile!
database)!



Page 3 

CS742 – Distributed & Parallel DBMS Page 6.5 M. Tamer Özsu 

Recovery Information 

Database Log 
 Every action of a transaction must not only perform the 
action, but must also write a log record to an append-only 
file. 

New "
stable database"

state"

Database"
Log"

Update"
Operation"

Old "
stable database"

state"

CS742 – Distributed & Parallel DBMS Page 6.6 M. Tamer Özsu 

Logging 

The log contains information used by the 
recovery process to restore the consistency of a 
system. This information may include 

l  transaction identifier 

l  type of operation (action) 

l  items accessed by the transaction to perform the action 

l  old value (state) of item (before image) 

l  new value (state) of item (after image) 

            … 



Page 4 

CS742 – Distributed & Parallel DBMS Page 6.7 M. Tamer Özsu 

Why Logging? 

Upon recovery: 
l all of T1's effects should be reflected in the database (REDO if necessary 

due to a failure) 
l none of T2's effects should be reflected in the database (UNDO if 

necessary) 

0 t time 

system  
crash 

T1 Begin End 

Begin T2 

CS742 – Distributed & Parallel DBMS Page 6.8 M. Tamer Özsu 

REDO Protocol 

n REDO'ing an action means performing it again. 
n The REDO operation uses the log information and 

performs the action that might have been done before, or 
not done due to failures. 

n The REDO operation generates the new image. 

Database"
Log "

REDO"
Old "

stable database"
state"

New"
stable database"

state"



Page 5 

CS742 – Distributed & Parallel DBMS Page 6.9 M. Tamer Özsu 

UNDO Protocol 

n UNDO'ing an action means to restore the object to its 
before image. 

n The UNDO operation uses the log information and 
restores the old value of the object. 

New "
stable database"

state"

Database"
Log "

UNDO"
Old"

stable database"
state"

CS742 – Distributed & Parallel DBMS Page 6.10 M. Tamer Özsu 

When to Write Log Records 
Into Stable Store 

Assume a transaction T updates a page P  
n Fortunate case 

l System writes P in stable database 
l System updates stable log for this update 
l SYSTEM FAILURE OCCURS!... (before T commits) 

 We can recover (undo) by restoring P to its old 
state by using the log 

n Unfortunate case 
l System writes P in stable database 
l SYSTEM FAILURE OCCURS!... (before stable log is 

updated) 

 We cannot recover from this failure because 
there is no log record to restore the old value. 

n Solution:  Write-Ahead Log (WAL) protocol 



Page 6 

CS742 – Distributed & Parallel DBMS Page 6.11 M. Tamer Özsu 

Write–Ahead Log Protocol 

n Notice: 
l  If a system crashes before a transaction is committed, then 

all the operations must be undone. Only need the before 
images (undo portion of the log). 

l Once a transaction is committed, some of its actions might 
have to be redone. Need the after images (redo portion of 
the log). 

n WAL protocol : 
� Before a stable database is updated, the undo portion of the 

log should be written to the stable log 

� When a transaction commits,  the redo portion of the log 
must be written to stable log prior to the updating of the 
stable database. 

CS742 – Distributed & Parallel DBMS Page 6.12 M. Tamer Özsu 

Distributed Reliability 
Protocols 

n Commit protocols 
l How to execute commit command for distributed transactions. 
l  Issue: how to ensure atomicity and durability? 

n Termination protocols 
l  If a failure occurs, how can the remaining operational sites deal 

with it. 
l Non-blocking : the occurrence of failures should not force the sites to 

wait until the failure is repaired to terminate the transaction. 

n Recovery protocols 
l When a failure occurs, how do the sites where the failure occurred 

deal with it. 
l  Independent : a failed site can determine the outcome of a 

transaction without having to obtain remote information. 

n Independent recovery ⇒ non-blocking termination 



Page 7 

CS742 – Distributed & Parallel DBMS Page 6.13 M. Tamer Özsu 

Two-Phase Commit (2PC) 

Phase 1 : The coordinator gets the participants 
ready to write the results into the database 

Phase 2 : Everybody writes the results into the 
database 
l Coordinator :The process at the site where the 

transaction originates and which controls the execution 

l Participant :The process at the other sites that 
participate in executing the transaction 

Global Commit Rule: 
� The coordinator aborts a transaction if and only if at least 

one participant votes to abort it. 

� The coordinator commits a transaction if and only if all of 
the participants vote to commit it. 

CS742 – Distributed & Parallel DBMS Page 6.14 M. Tamer Özsu 

Centralized 2PC 

ready? yes/no commit/abort? commited/aborted 

Phase 1 Phase 2 

C C C 

P 

P 

P 

P 

P 

P 

P 

P 



Page 8 

CS742 – Distributed & Parallel DBMS Page 6.15 M. Tamer Özsu 

2PC Protocol Actions 
 Participant                      Coordinator                      

No 

Yes 

VOTE-COMMIT 

Yes GLOBAL-ABORT 

No 

write abort 
in log 

Abort 

Commit 
ACK 

ACK 

INITIAL 

write abort 
in log 

write ready 
in log 

write commit 
in log 

Type of 
msg 

WAIT 

Ready to 
Commit? 

write commit 
in log 

Any No? write abort 
in log 

ABORT COMMIT 

COMMIT ABORT 

write 
begin_commit 

in log 

write 
end_of_transaction 

in log 

READ
Y 

INITIAL 

PREPARE 

VOTE-ABORT 

VOTE-COMMIT 

U
ni

la
te

ra
l a

bo
rt

 

CS742 – Distributed & Parallel DBMS Page 6.16 M. Tamer Özsu 

State Transitions in 2PC 

INITIAL!

WAIT!

Commit command""
"Prepare"

Vote-commit (all)""
"Global-commit"

INITIAL!

READY!

     Prepare   ""
"Vote-commit"

Global-commit""
"Ack"

   Prepare   ""
"Vote-abort"

Global-abort""
"Ack"

Coordinator" Participants"

  Vote-abort  ""
"Global-abort"

ABORT! COMMIT! COMMIT!ABORT!



Page 9 

CS742 – Distributed & Parallel DBMS Page 6.17 M. Tamer Özsu 

Site Failures - 2PC Termination 

n Timeout in INITIAL 
l Who cares 

n Timeout in WAIT 
l Cannot unilaterally 

commit 
l Can unilaterally abort 

n Timeout in ABORT or 
COMMIT 
l Stay blocked and wait 

for the acks ABORT COMMIT 

COORDINATOR"

INITIAL!

WAIT!

Commit command""
"Prepare"

  Vote-commit  ""
"Global-commit"

ABORT! COMMIT!

  Vote-abort  ""
"Global-abort"

CS742 – Distributed & Parallel DBMS Page 6.18 M. Tamer Özsu 

Site Failures - 2PC Termination 

n Timeout in INITIAL 
l  Coordinator must have failed in INITIAL 

state 
l  Unilaterally abort 

n Timeout in READY 
l  Stay blocked 

INITIAL!

READY!

     Prepare   ""
"Vote-commit"

Global-commit""
"Ack"

   Prepare   "
Vote-abort"

Global-abort""
"Ack"

ABORT! COMMIT!

PARTICIPANTS"



Page 10 

CS742 – Distributed & Parallel DBMS Page 6.19 M. Tamer Özsu 

Site Failures - 2PC Recovery 

n Failure in INITIAL 
l  Start the commit process upon recovery 

n Failure in WAIT 
l  Restart the commit process upon recovery 

n Failure in ABORT or COMMIT 
l  Nothing special if all the acks have been received 
l  Otherwise the termination protocol is involved 

COORDINATOR"

INITIAL!

WAIT!

Commit command"
Prepare"

  Vote-commit  ""
"Global-commit"

ABORT! COMMIT!

  Vote-abort  ""
"Global-abort"

CS742 – Distributed & Parallel DBMS Page 6.20 M. Tamer Özsu 

Site Failures - 2PC Recovery 

n Failure in INITIAL 
l  Unilaterally abort upon recovery 

n Failure in READY 
l  The coordinator has been informed about the local 

decision 
l  Treat as timeout in READY state and invoke the 

termination protocol 

n Failure in ABORT or COMMIT 
l  Nothing special needs to be done 

INITIAL!

READY!

     Prepare   "
Vote-commit"

Global-commit""
"Ack"

   Prepare   "
Vote-abort"

Global-abort""
"Ack"

ABORT! COMMIT!

PARTICIPANTS"



Page 11 

CS742 – Distributed & Parallel DBMS Page 6.21 M. Tamer Özsu 

Problem With 2PC 

n Blocking 
l   Ready  implies that the participant waits for the 

coordinator  
l   If coordinator fails, site is blocked until recovery 
l   Blocking reduces availability 

n Independent recovery is not possible 
n However,  it is known that: 

l  Independent recovery protocols exist only for single site 
failures; no independent recovery protocol exists which is 
resilient to multiple-site failures. 

n So we search for these protocols – 3PC 

CS742 – Distributed & Parallel DBMS Page 6.22 M. Tamer Özsu 

Network Partitioning 

n Simple partitioning 
l Only two partitions 

n Multiple partitioning 
l More than two partitions 

n Formal bounds: 
l There exists no non-blocking protocol that is resilient to a 

network partition if messages are lost when partition 
occurs. 

l There exist non-blocking protocols which are resilient to a 
single network partition if all undeliverable messages are 
returned to sender. 

l There exists no non-blocking protocol which is resilient to a 
multiple partition. 



Page 12 

CS742 – Distributed & Parallel DBMS Page 6.23 M. Tamer Özsu 

Independent Recovery Protocols 
for Network Partitioning 

n No general solution possible  
l allow one group to terminate while the other is blocked  
l  improve availability 

n How to determine which group to proceed? 
l The group with a majority  

n How does a group know if it has majority? 
l Centralized 

u Whichever partitions contains the central site should 
terminate the transaction 

l Voting-based (quorum) 

CS742 – Distributed & Parallel DBMS Page 6.24 M. Tamer Özsu 

Quorum Protocols 

n The network partitioning problem is handled 
by the commit protocol. 

n Every site is assigned a vote Vi. 
n Total number of votes in the system V 
n Abort quorum Va, commit quorum Vc 

l Va + Vc > V  where 0 ≤ Va , Vc ≤ V 
l Before a transaction commits, it must obtain a commit 

quorum Vc 
l Before a transaction aborts, it must obtain an abort 

quorum Va 


