Outline

- Introduction & architectural issues
- Data distribution
- Distributed query processing
- Distributed query optimization
- Distributed transactions & concurrency control
- Distributed reliability
- Data replication
- Parallel database systems
- Database integration & querying
- Peer-to-Peer data management
 - Stream data management
 - Stream architecture
 - Query processing
 - MapReduce-based distributed data management

Inputs & Outputs

- Inputs: One or more sources generate data continuously, in real time, and in fixed order
 - Sensor networks – weather monitoring, road traffic monitoring, motion detection
 - Web data – financial trading, news/sports tickers
 - Scientific data – experiments in particle physics
 - Transaction logs – telecom, point-of-sale purchases
 - Network traffic analysis (IP packet headers) – bandwidth usage, routing decisions, security
- Outputs: Want to collect and process the data online
 - Environment monitoring
 - Location monitoring
 - Correlations across stock prices
 - Denial-of-service attack detection
- Up-to-date answers generated continuously or periodically
Traditional Database Management System (DBMS)

Transient queries
- issued once, then forgotten

Persistent data
- stored until deleted by user or application

Data Stream Management System (DSMS)

Transient data
- deleted as window slides forward

Persistent queries
- generate up-to-date answers as time goes on
DSMSs – Novel Problems

- Push-based (data-driven), rather than pull-based (query-driven) computation model
 - New data arrive continuously and must be processed
 - Query plans require buffers, queues, and scheduling mechanisms
 - Query operators must be non-blocking
 - Must adapt to changing system conditions throughout the lifetime of a query
 - Load shedding may be required if the system can’t keep up with the stream arrival rates

DSMS Implementation Choices

- Application on top of a relational DBMS
 - Application simulates data-driven processing
 - Inefficient due to the semantic gap between the DBMS and the DSMS-like application
- Use advanced features of the DBMS engine
 - Triggers, materialized views, temporal/sequence data models
 - Still based upon query-driven model, triggers don’t scale and are not expressive enough
- Specialized DSMS
 - Incorporate streaming semantics and data-driven processing model inside the engine
Abstract System Architecture

Stream Data Models

- Append-only sequence of timestamped items that arrive in some order.
- More relaxed definitions are possible
 - Revision tuples
 - Sequence of events (as in publish/subscribe systems)
 - Sequence of sets (or bags) of elements with each set storing elements that have arrived during the same unit of time.
 - ...
- Possible models
 - Unordered cash register
 - Ordered cash register
 - Unordered aggregate
 - Ordered aggregate
Processing Model

- Stream-in-stream-out
- **Problem:**
 - Streams have unbounded length *(system point of view)*
 - New data are more accurate/interesting *(user point of view)*
- **Solution:**
 - Windows

Windows

- **Based on direction of movement of endpoints**
 - Two endpoints can be fixed, moving forward, or moving backward
 - Nine possibilities, interesting ones
 - Fixed window
 - Sliding window
 - Landmark window
- **Based on direction of window size**
 - Logical (or time-based) window
 - Physical (or count-based) window
 - Predicate window
- **Based on windows within windows**
 - Elastic window
 - N-of-N window
- **Based on window update interval**
 - Jumping window
 - Tumbling window
Stream Query Languages

- Queries are persistent
- They may be monotonic or non-monotonic
 - Monotonic: result always grows
 - If \(Q(t) \) is the result of a query at time \(t \), given two executions at time \(t_i \) and \(t_j \), \(Q(t_i) \subseteq Q(t_j) \) for all \(t_i > t_j \)
 - Non-monotonic: deletions from the result are possible

Monotonic query semantics:
- \(Q(t) = \bigcup_{t_i = 1}^{t} (Q(t_i) - Q(t_{i-1})) \cup Q(0) \)

Non-monotonic query semantics:
- \(Q(t) = \bigcup_{t_i < t} Q(t_i) \)

Declarative Languages

- Syntax similar to SQL + window specifications
- Examples: CQL, GSQL, StreaQuel
- CQL
 - Three types of operators:
 - Relation-to-relation
 - Stream-to-relation
 - Relation-to-stream
 - Join of one-minute windows on the a-attribute:
    ```sql
    SELECT *
    FROM S1 [RANGE 1 min], S2 [RANGE 1 min]
    WHERE S1.a=S2.a
    ```
 - ROWS for count-based windows, RANGE for time-based windows
Declarative Languages (cont’d)

- GSQL
 - Input and output are streams (composability)
 - Each stream should have an ordering attribute (e.g., timestamp)
 - Subset of operators of SQL (selection, aggregation with group-by, join)
 - Stream merge operator
 - Only landmark windows, sliding windows may be simulated

- StreaQuel
 - SQL syntax
 - Query includes a for-loop construct with a variable \(t \) that iterates over time
 - Sliding window over stream \(S \) with size 5 that should run for 50 time units:

    ```
    for(t=ST; t<ST+50; t++)
    WindowIs(S, t-4, t)
    ```

Object-based Languages

- Use abstract data typing and/or type hierarchies
- Examples: Tribeca, Cougar

- Tribeca
 - Models stream contents according to a type hierarchy
 - SQL-like syntax, accepts a stream as input and generates one or more output streams
 - Operations: projection, selection, aggregation (over the entire input stream or over a sliding window), multiplex and demultiplex (corresponding to union and group-by)

- Cougar
 - Model sources as ADTs
 - SQL-like syntax + \$every() clause to specify re-execution frequency
Procedural Languages

- Let the user specify how the data should flow through the system
- Example: Aurora
- Aurora
 - Accepts streams as inputs and generates output streams
 - Static data sets may be incorporated into query plans via connection points
 - SQuAl algebra
 - Seven operators: projection, union, map, buffered sort, windowed aggregate, binary band join, resample
 - Interface includes
 - Boxes that correspond to operators
 - Edges that connect boxes that correspond to data flow
 - User creates the execution plan

Comparison of Languages

<table>
<thead>
<tr>
<th>Language/System</th>
<th>Allowed inputs</th>
<th>Allowed outputs</th>
<th>Novel operators</th>
<th>Supported windows</th>
<th>Execution frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQL/STREAM</td>
<td>Streams and relations</td>
<td>Streams and relations</td>
<td>Relation-to-stream, stream-to-relation</td>
<td>Sliding</td>
<td>Continuous or periodic</td>
</tr>
<tr>
<td>GSQL/Gigascope</td>
<td>Streams</td>
<td>Streams</td>
<td>Order-preserving union</td>
<td>Landmark</td>
<td>Periodic</td>
</tr>
<tr>
<td>StreaQuel/TelegraphCQ</td>
<td>Streams and relations</td>
<td>Sequences of relations</td>
<td>WindowIs</td>
<td>Fixed, landmark, sliding</td>
<td>Continuous or periodic</td>
</tr>
<tr>
<td>Tribeca</td>
<td>Single stream</td>
<td>Streams</td>
<td>Multiplex, demultiplex</td>
<td>Fixed, landmark, sliding</td>
<td>Continuous</td>
</tr>
<tr>
<td>SQuAl/Aurora</td>
<td>Streams and relations</td>
<td>Streams</td>
<td>Resample, map, buffered sort</td>
<td>Fixed, landmark, sliding</td>
<td>Continuous or periodic</td>
</tr>
</tbody>
</table>
Operators over Unbounded Streams

- Simple relational operators (selection, projection) are fine
- Other operators (e.g., nested loop join) are blocking
 - You need to see the entire inner operand
- For some blocking operators, non-blocking versions exist
 - Symmetric hash join

Blocking Operators

- Alternatives if no non-blocking version exists
 - Constraints over the input streams
 - Schema-level
 - Data-level
 - Punctuations
 - Approximation
 - Summaries
 - Counting methods
 - Sketches
 - Windowed operations
Operators over Sliding Windows

- Joins and aggregation may require unbounded state, so they typically operate over sliding windows
- E.g., track the maximum value in an on-line sequence over a sliding window of the last N time units

![Time series diagram with sliding window]

\[\text{Max} = 75 \text{Max} = ? \]

Operators over Sliding Windows

- Issues
 - Need to store the window so that we “remember what to forget” and when
 - Need to undo previous results by way of negative tuples
Query Processing

- Queuing and scheduling
 - Queues allow sources to push data into the query plan and operators to pull data when they need them
 - Timeslicing
 - Allowing multiple operators to process one or multiple tuples

- Tuple expiration
 - Removing old tuples from their state buffers and (possibly) update answers
 - Time-based window: simple – when time moves
 - Join results have interesting expiration times
 - Negation operator may force tuples to expire earlier
 - Count-based window: no. of tuples constant ➔ overwrite the oldest tuple with the new arriving tuple

Query Processing (cont’d)

- Continuous query processing over sliding windows
 - Negative tuple approach
 - Direct approach
Negative Tuple Approach

- Negative tuples flow through the plan
- Corresponding “real” tuples deleted from operator state
- Updated answer generated, if necessary
- Each tuple is processed twice

Direct Approach

- No negative tuples
- Operator states are scanned each time window moves
- Updated answer generated, if necessary
- Each tuple is processed once, but state maintenance expensive
Periodic Query Evaluation

- Generate output periodically rather than continuously
- No need to react to every insertion/expiration
- E.g., compute MAX over a 10-minute window that slides every minute
 - Store MAX over each non-overlapping one-minute chunk
 - Take the max of the MAXes stored in each chunk

\[
\text{max} = \max(10, 17, 13, 17, 32) = 37
\]

DSMS Optimization Framework

- General idea: similar to cost-based DBMS query optimization
- Generate candidate query plans
 - New DSMS-specific rewritings: selections and time-based sliding windows commute, but not selections and count-based windows
- Compute the cost of some of the plans and choose the cheapest plan
 - New cost model for persistent queries:
 ✦ per unit time
 ✦ queries typically evaluated in main memory, so disk I/O is not a concern
Additional DSMS Optimizations – Scheduling

- Scheduling
- Many tuples at a time:
 - Each operator gets a timeslice and processes all the tuples in its input queue
- Many operators at a time:
 - Each tuple is processed by all the operators in the pipeline
- Choice of scheduling strategy depends upon optimization goal
 - Minimize end-to-end latency?
 - Minimize queue sizes?

Additional DSMS Optimizations – Adaptivity

- System conditions can change throughout the lifetime of a persistent query
 - Query workload can change
 - Stream arrival rates can change
- Adjust the query plan on-the-fly
 - Or do away with the query plan and route tuples through the query operators according to some routing strategy
 - Eddies approach
Additional DSMS Optimizations – Load Shedding

- Random load shedding
 - Randomly drop a fraction of arriving tuples
- Semantic load shedding
 - Examine the contents of a tuple before deciding whether or not to drop it
 - Some tuples may have more value than others
- Or, rather than dropping tuples:
 - Spill to disk and process during idle times
 - Shorten the windows
 - Update the answer less often

Additional DSMS Optimizations – Multi-Query Processing

- DBMS: queries are typically issued individually
- DSMS: many persistent queries may be in the system at any given time
 - Some of them may be similar and could be executed together
 - E.g., similar SELECT and WHERE clauses, but different window length in the FROM clause
 - Or, same SELECT and FROM clauses, but different predicate in the WHERE clause