
Page 1

CS742 – Distributed & Parallel DBMS Page 11.1 M. Tamer Özsu

Outline
n  Introduction & architectural issues
n Data distribution
n Distributed query processing
n Distributed query optimization
n Distributed transactions & concurrency control
n Distributed reliability
n Data replication
n Parallel database systems
n Database integration & querying
n Peer-to-Peer data management
q Stream data management

q Stream architecture
q Query processing

q MapReduce-based distributed data management

CS742 – Distributed & Parallel DBMS Page 11.2 M. Tamer Özsu

Inputs & Outputs
n Inputs: One or more sources generate data

continuously, in real time, and in fixed order
l Sensor networks – weather monitoring, road traffic monitoring,

motion detection
l Web data – financial trading, news/sports tickers
l Scientific data – experiments in particle physics
l Transaction logs – telecom, point-of-sale purchases
l Network traffic analysis (IP packet headers) – bandwidth usage,

routing decisions, security

n Outputs: Want to collect and process the data on-
line
l Environment monitoring
l Location monitoring
l Correlations across stock prices
l Denial-of-service attack detection

n Up-to-date answers generated continuously or
periodically

Page 2

CS742 – Distributed & Parallel DBMS Page 11.3 M. Tamer Özsu

Traditional Database
Management System (DBMS)

Persistent data  
#
-  stored until deleted  
 by user or application#

Transient queries 
#
-  issued once,  
 then forgotten#

CS742 – Distributed & Parallel DBMS Page 11.4 M. Tamer Özsu

Data Stream Management
System (DSMS)

Persistent queries 
#
-  generate up-to-date  
 answers as time goes on#

Transient data  
#
-  deleted as window  
 slides forward#

Page 3

CS742 – Distributed & Parallel DBMS Page 11.5 M. Tamer Özsu

DSMSs – Novel Problems

n Push-based (data-driven), rather than pull-
based (query-driven) computation model
l New data arrive continuously and must be processed
l Query plans require buffers, queues, and scheduling

mechanisms
l Query operators must be non-blocking
l Must adapt to changing system conditions throughout the

lifetime of a query
l Load shedding may be required if the system can’t keep up

with the stream arrival rates

CS742 – Distributed & Parallel DBMS Page 11.6 M. Tamer Özsu

DSMS Implementation Choices

n  Application on top of a relational DBMS
l Application simulates data-driven processing
l  Inefficient due to the semantic gap between the DBMS and

the DSMS-like application

n  Use advanced features of the DBMS engine
l Triggers, materialized views, temporal/sequence data

models
l Still based upon query-driven model, triggers don’t scale

and are not expressive enough
n  Specialized DSMS

l  Incorporate streaming semantics and data-driven
processing model inside the engine

Page 4

CS742 – Distributed & Parallel DBMS Page 11.7 M. Tamer Özsu

Abstract System Architecture

CS742 – Distributed & Parallel DBMS Page 11.8 M. Tamer Özsu

Stream Data Models

n Append-only sequence of timestamped items
that arrive in some order.

n More relaxed definitions are possible
l Revision tuples
l Sequence of events (as in publish/subscribe systems)
l Sequence of sets (or bags) of elements with each set storing

elements that have arrived during the sameunit of time.
l …

n Possible models
l Unordered cash register
l Ordered cash register
l Unordered aggregate
l Ordered aggregate

Page 5

CS742 – Distributed & Parallel DBMS Page 11.9 M. Tamer Özsu

Processing Model

n Stream-in-stream-out
n Problem:

l Streams have unbounded length (system point of view)
l New data are more accurate/interesting (user point of view)

n Solution:
l Windows

Data Stream#
System#

CS742 – Distributed & Parallel DBMS Page 11.10 M. Tamer Özsu

Windows

n Based on direction of movement of endpoints
l Two endpoints can be fixed, moving forward, or moving backward
l Nine possibilities, interesting ones

u Fixed window
u Sliding window
u Landmark window

n Based on direction of window size
l Logical (or time-based) window
l Physical (or count-based) window
l Predicate window

n Based on windows within windows
l Elastic window
l N-of-N window

n Based on window update interval
l Jumping window
l Tumbling window

Page 6

CS742 – Distributed & Parallel DBMS Page 11.11 M. Tamer Özsu

Stream Query Languages

n Queries are persistent
n They may be monotonic or non-monotonic

l Monotonic: result always grows
u  If Q(t) is the result of a query at time t, given two executions at

time ti and tj, Q(ti) ⊆ Q(tj) for all ti> tj

l Non-monotonic: deletions from the result are possible

n Monotonic query semantics:
l 

n Non-monotonic query semantics:
l 

Q(t) = (Q(ti)−Q(ti−1))
ti=1

t

 ∪Q(0)

Q(t) = Q(ti)
ti=0

t



CS742 – Distributed & Parallel DBMS Page 11.12 M. Tamer Özsu

Declarative Languages

n Syntax similar to SQL + window specifications
n Examples: CQL, GSQL, StreaQuel
n CQL

l Three types of operators:
u Relation-to-realtion
u Stream-to-relation
u Relation-to-stream

l Join of one-minute windows on the a-attribute:
SELECT *
FROM S1 [RANGE 1 min], S2 [RANGE 1 min]
WHERE S1.a=S2.a

l ROWS for count-based windows, RANGE for time-based
windows

Page 7

CS742 – Distributed & Parallel DBMS Page 11.13 M. Tamer Özsu

Declarative Languages
(cont’d)

n GSQL
l  Input and output are streams (composability)
l Each stream should have an ordering attribute (e.g., timestamp)
l Subset of operators of SQL (selection, aggregation with group-by,

join)
l Stream merge operator
l Only landmark windows, sliding windows may be simulated

n StreaQuel
l SQL syntax
l Query includes a for-loop construct with a variable t that iterates

over time
l Sliding window over stream S with size 5 that should run for 50

time units:
for(t=ST; t<ST+50; t++)

WindowIs(S, t-4, t)

CS742 – Distributed & Parallel DBMS Page 11.14 M. Tamer Özsu

Object-based Languages

n Use abstract data typing and/or type
hierarchies

n Examples: Tribeca, Cougar
n Tribeca

l Models stream contents according to a type hierarchy
l SQL-like syntax, accepts a stream as input and generates

one or more output streams
l Operations: projection, selection, aggregation (over the

entire input stream or over a sliding window), multiplex
and demultiplex (corresponding to union and group-by)

n Cougar
l Model sources as ADTs
l SQL-like syntax + $every() clause to specify re-execution

frequency

Page 8

CS742 – Distributed & Parallel DBMS Page 11.15 M. Tamer Özsu

Procedural Languages

n Let the user specify how the data should flow
through the system

n Example: Aurora
n Aurora

l Accepts streams as inputs and generates output streams
l Static data sets may be incorporated into query plans via

connection points
l SQuAl algebra

u Seven operators: projection, union, map, buffered sort,
windowed aggregate, binary band join, resample

l  Interface includes
u Boxes that correspond to operators
u Edges that connect boxes that correspond to data flow
u User creates the execution plan

CS742 – Distributed & Parallel DBMS Page 11.16 M. Tamer Özsu

Comparison of Languages
Language/
System

Allowed
inputs

Allowed
outputs

Novel
operators

Supported
windows

Execution
frequency

CQL/
STREAM

Streams and
relations

Streams and
relations

Relation-to-
stream,
stream-to-
relation

Sliding Continuous
or periodic

GSQL/
Gigascope

Streams Streams Order-
preserving
union

Landmark Periodic

StreaQuel/
TelegraphCQ

Streams and
relations

Sequences of
relations

WindowIs Fixed,
landmark,
sliding

Continuous
or periodic

Tribeca Single
stream

Streams Multiplex,
demultiplex

Fixed,
landmark,
sliding

Continuous

SQuAl/
Aurora

Streams and
relations

Streams Resample,
map,
buffered sort

Fixed,
landmark,
sliding

Continuous
or periodic

Page 9

CS742 – Distributed & Parallel DBMS Page 11.17 M. Tamer Özsu

Operators over Unbounded
Streams

n Simple relational operators
(selection, projection) are fine

n Other operators (e.g., nested
loop join) are blocking
l You need to see the entire inner

operand

n For some blocking operators,
non-blocking versions exist
l Symmetric hash join

σ
a

a

a

a

b

pass
or drop

S1

a
b
d
a
c

e
f
g
d
b

d
b

f

f
insert

probe

generate
result

S1 S2

CS742 – Distributed & Parallel DBMS Page 11.18 M. Tamer Özsu

Blocking Operators

n Alternatives if no non-blocking version exists
l Constraints over the input streams

u Schema-level
u Data-level

s  Punctuations

l Approximation
u Summaries

s  Counting methods
s  Sketches

l Windowed operations

Page 10

CS742 – Distributed & Parallel DBMS Page 11.19 M. Tamer Özsu

Operators over Sliding
Windows

n Joins and aggregation may require unbounded state, so
they typically operate over sliding windows

n E.g., track the maximum value in an on-line sequence
over a sliding window of the last N time units

75 53 67 68 71 67 73 70 68 65 64 62 61

time

Max = 75 Max = ?

CS742 – Distributed & Parallel DBMS Page 11.20 M. Tamer Özsu

Operators over Sliding
Windows

n Issues
l Need to store the window so that we “remember what to

forget” and when
l Need to undo previous results by way of negative tuples

Page 11

CS742 – Distributed & Parallel DBMS Page 11.21 M. Tamer Özsu

Query Processing

n Queuing and scheduling
l Queues allow sources to push data into the query plan and

operators to pull data when they need them
l Timeslicing
l Allowing multiple operators to process one or multiple

tuples

n Tuple expiration
l Removing old tuples from their state buffers and (possibly)

update answers
l Time-based window: simple – when time moves

u Join results have interesting expiration times
u Negation operator may force tuples to expire earlier

l Count-based window: no. of tuples constant è overwrite
the oldest tuple with the new arriving tuple

CS742 – Distributed & Parallel DBMS Page 11.22 M. Tamer Özsu

Query Processing (cont’d)

n Continuous query processing over sliding
windows
l Negative tuple approach
l Direct approach

Page 12

CS742 – Distributed & Parallel DBMS Page 11.23 M. Tamer Özsu

Negative Tuple Approach

n Negative tuples flow
through the plan

n Corresponding “real”
tuples deleted from
operator state

n Updated answer
generated, if
necessary

n Each tuple is
processed twice

σ σ

Stream 1 Stream 2

MAX

Index
lookup

Index
lookup

Negative
tuple

CS742 – Distributed & Parallel DBMS Page 11.24 M. Tamer Özsu

Direct Approach

n No negative tuples
n Operator states are

scanned each time
window moves

n Updated answer
generated, if
necessary

n Each tuple is
processed once, but
state maintenance
expensive

σ σ

Stream 1 Stream 2

MAX

Check
timestamps

Check
timestamps

Page 13

CS742 – Distributed & Parallel DBMS Page 11.25 M. Tamer Özsu

Periodic Query Evaluation

n Generate output periodically rather than continuously
n No need to react to every insertion/expiration
n E.g., compute MAX over a 10-minute window that slides

every minute
l Store MAX over each non-overlapping one-minute chunk
l Take the max of the MAXes stored in each chunk

time

max = max(10,17,…,37,32) = 37

10 17 13 33 35 28 15 16 37 32

CS742 – Distributed & Parallel DBMS Page 11.26 M. Tamer Özsu

DSMS Optimization Framework

n General idea: similar to cost-based DBMS
query optimization

n Generate candidate query plans
l New DSMS-specific rewritings: selections and time-based

sliding windows commute, but not selections and count-
based windows

n Compute the cost of some of the plans and
choose the cheapest plan
l New cost model for persistent queries:

u per unit time
u queries typically evaluated in main memory, so

disk I/O is not a concern

Page 14

CS742 – Distributed & Parallel DBMS Page 11.27 M. Tamer Özsu

Additional DSMS Optimizations –
Scheduling

n Scheduling
n Many tuples at a time:

l Each operator gets a timeslice and processes all the tuples
in its input queue

n Many operators at a time:
l Each tuple is processed by all the operators in the pipeline

n Choice of scheduling strategy depends upon
optimization goal
l Minimize end-to-end latency?
l Minimize queue sizes?

CS742 – Distributed & Parallel DBMS Page 11.28 M. Tamer Özsu

Additional DSMS Optimizations –
Adaptivity

n System conditions can change throughout the
lifetime of a persistent query
l Query workload can change

l Stream arrival rates can change

n Adjust the query plan on-the-fly
l Or do away with the query plan and route tuples through

the query operators according to some routing strategy

u Eddies approach

Page 15

CS742 – Distributed & Parallel DBMS Page 11.29 M. Tamer Özsu

Additional DSMS
Optimizations – Load
Shedding

n Random load shedding
l Randomly drop a fraction of arriving tuples

n Semantic load shedding
l Examine the contents of a tuple before deciding whether or

not to drop it
l Some tuples may have more value than others

n Or, rather than dropping tuples:
l Spill to disk and process during idle times
l Shorten the windows
l Update the answer less often

CS742 – Distributed & Parallel DBMS Page 11.30 M. Tamer Özsu

Additional DSMS Optimizations –
Multi-Query Processing

n DBMS: queries are typically issued
individually

n DSMS: many persistent queries may be in the
system at any given time
l Some of them may be similar and could be executed

together
l E.g., similar SELECT and WHERE clauses, but different

window length in the FROM clause
l Or, same SELECT and FROM clauses, but different

predicate in the WHERE clause

