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Outline 
n  Introduction & architectural issues 
n Data distribution 
n Distributed query processing 
n Distributed query optimization 
n Distributed transactions & concurrency control 
n Distributed reliability 
n Data replication 
n Parallel database systems 
n Database integration & querying 
n Peer-to-Peer data management 
q Stream data management 

q Stream architecture 
q Query processing 

q MapReduce-based distributed data management 
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Inputs & Outputs 
n Inputs: One or more sources generate data 

continuously, in real time, and in fixed order 
l Sensor networks – weather monitoring, road traffic monitoring, 

motion detection 
l Web data – financial trading, news/sports tickers 
l Scientific data – experiments in particle physics 
l Transaction logs – telecom, point-of-sale purchases 
l Network traffic analysis (IP packet headers) – bandwidth usage, 

routing decisions, security 

n Outputs: Want to collect and process the data on-
line 
l Environment monitoring 
l Location monitoring 
l Correlations across stock prices 
l Denial-of-service attack detection 

n Up-to-date answers generated continuously or 
periodically 
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Traditional Database 
Management System (DBMS) 

Persistent data  
#
-  stored until deleted  
  by user or application#

Transient queries 
#
-  issued once,  
  then forgotten#
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Data Stream Management 
System (DSMS) 

Persistent queries 
#
-  generate up-to-date  
  answers as time goes on#

Transient data  
#
-  deleted as window  
  slides forward#
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DSMSs – Novel Problems 

n Push-based (data-driven), rather than pull-
based (query-driven) computation model 
l New data arrive continuously and must be processed 
l Query plans require buffers, queues, and scheduling 

mechanisms 
l Query operators must be non-blocking 
l Must adapt to changing system conditions throughout the 

lifetime of a query 
l Load shedding may be required if the system can’t keep up 

with the stream arrival rates 
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DSMS Implementation Choices 

n  Application on top of a relational DBMS 
l Application simulates data-driven processing 
l  Inefficient due to the semantic gap between the DBMS and 

the DSMS-like application 

n  Use advanced features of the DBMS engine 
l Triggers, materialized views, temporal/sequence data 

models 
l Still based upon query-driven model, triggers don’t scale 

and are not expressive enough 
n  Specialized DSMS 

l  Incorporate streaming semantics and data-driven 
processing model inside the engine 
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Abstract System Architecture 
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Stream Data Models 

n Append-only sequence of timestamped items 
that arrive in some order. 

n More relaxed definitions are possible 
l Revision tuples 
l Sequence of events (as in publish/subscribe systems) 
l Sequence of sets (or bags) of elements with each set storing 

elements that have arrived during the sameunit of time. 
l … 

n Possible models 
l Unordered cash register 
l Ordered cash register 
l Unordered aggregate 
l Ordered aggregate 
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Processing Model 

n Stream-in-stream-out 
n Problem: 

l Streams have unbounded length (system point of view) 
l New data are more accurate/interesting (user point of view) 

n Solution: 
l Windows 

Data Stream#
System#
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Windows 

n Based on direction of movement of endpoints 
l Two endpoints can be fixed, moving forward, or moving backward 
l Nine possibilities, interesting ones 

u Fixed window 
u Sliding window 
u Landmark window 

n Based on direction of window size 
l Logical (or time-based) window 
l Physical (or count-based) window 
l Predicate window 

n Based on windows within windows 
l Elastic window 
l N-of-N window 

n Based on window update interval 
l Jumping window 
l Tumbling window 



Page 6 

CS742 – Distributed & Parallel DBMS Page 11.11 M. Tamer Özsu 

Stream Query Languages 

n Queries are persistent 
n They may be monotonic or non-monotonic 

l Monotonic: result always grows 
u  If Q(t) is the result of a query at time t, given two executions at 

time ti and tj, Q(ti) ⊆ Q(tj) for all ti> tj 

l Non-monotonic: deletions from the result are possible 

n Monotonic query semantics: 
l    

n Non-monotonic query semantics: 
l    

Q(t) = (Q(ti )−Q(ti−1))
ti=1

t

 ∪Q(0)

Q(t) = Q(ti )
ti=0

t


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Declarative Languages 

n Syntax similar to SQL + window specifications 
n Examples: CQL, GSQL, StreaQuel 
n CQL 

l Three types of operators: 
u Relation-to-realtion 
u Stream-to-relation 
u Relation-to-stream 

l Join of one-minute windows on the a-attribute: 
SELECT *  
FROM  S1 [RANGE 1 min], S2 [RANGE 1 min] 
WHERE  S1.a=S2.a 

l ROWS for count-based windows, RANGE for time-based 
windows 
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Declarative Languages 
(cont’d) 

n GSQL 
l  Input and output are streams (composability) 
l Each stream should have an ordering attribute (e.g., timestamp) 
l Subset of operators of SQL (selection, aggregation with group-by, 

join) 
l Stream merge operator 
l Only landmark windows, sliding windows may be simulated 

n StreaQuel 
l SQL syntax 
l Query includes a for-loop construct with a variable t that iterates 

over time 
l Sliding window over stream S with size 5 that should run for 50 

time units: 
for(t=ST; t<ST+50; t++) 

WindowIs(S, t-4, t) 
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Object-based Languages 

n Use abstract data typing and/or type 
hierarchies 

n Examples: Tribeca, Cougar 
n Tribeca 

l Models stream contents according to a type hierarchy 
l SQL-like syntax, accepts a stream as input and generates 

one or more output streams  
l Operations: projection, selection, aggregation (over the 

entire input stream or over a sliding window), multiplex 
and demultiplex (corresponding to union and group-by) 

n Cougar 
l Model sources as ADTs 
l SQL-like syntax + $every() clause to specify re-execution 

frequency 
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Procedural Languages 

n Let the user specify how the data should flow 
through the system 

n Example: Aurora 
n Aurora 

l Accepts streams as inputs and generates output streams 
l Static data sets may be incorporated into query plans via 

connection points 
l SQuAl algebra 

u Seven operators: projection, union, map, buffered sort, 
windowed aggregate, binary band join, resample 

l  Interface includes 
u Boxes that correspond to operators 
u Edges that connect boxes that correspond to data flow 
u User creates the execution plan 
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Comparison of Languages 
Language/
System 

Allowed 
inputs 

Allowed 
outputs 

Novel 
operators 

Supported 
windows 

Execution 
frequency 

CQL/
STREAM 

Streams and 
relations 

Streams and 
relations 

Relation-to-
stream, 
stream-to-
relation 

Sliding Continuous 
or periodic 

GSQL/ 
Gigascope 

Streams Streams Order-
preserving 
union 

Landmark Periodic 

StreaQuel/ 
TelegraphCQ 

Streams and 
relations 

Sequences of 
relations 

WindowIs Fixed, 
landmark, 
sliding 

Continuous 
or periodic 

Tribeca Single 
stream 

Streams Multiplex, 
demultiplex 

Fixed, 
landmark, 
sliding 

Continuous 

SQuAl/
Aurora 

Streams and 
relations 

Streams Resample, 
map, 
buffered sort 

Fixed, 
landmark, 
sliding 

Continuous 
or periodic 
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Operators over Unbounded 
Streams 

n Simple relational operators 
(selection, projection) are fine 

n Other operators (e.g., nested 
loop join) are blocking 
l You need to see the entire inner 

operand  

n For some blocking operators, 
non-blocking versions exist  
l Symmetric hash join 

σ
a 

a 
 
 
a 
 
a 

b 

pass 
or drop 

S1 

a 
b 
d 
a 
c 

e 
f 
g 
d 
b 

d 
b 
 
f 

f 
insert 

probe 

generate 
result 

S1 S2 
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Blocking Operators 

n Alternatives if no non-blocking version exists 
l Constraints over the input streams 

u Schema-level 
u Data-level 

s  Punctuations 

l Approximation 
u Summaries 

s  Counting methods 
s  Sketches 

l Windowed operations 
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Operators over Sliding 
Windows 

n Joins and aggregation may require unbounded state, so 
they typically operate over sliding windows 

n E.g., track the maximum value in an on-line sequence 
over a sliding window of the last N time units 

75 53 67 68 71 67 73 70 68 65 64 62 61 

time 

Max = 75 Max = ? 
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Operators over Sliding 
Windows 

n Issues 
l Need to store the window so that we “remember what to 

forget” and when 
l Need to undo previous results by way of negative tuples 
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Query Processing 

n Queuing and scheduling 
l Queues allow sources to push data into the query plan and 

operators to pull data when they need them 
l Timeslicing 
l Allowing multiple operators to process one or multiple 

tuples 

n Tuple expiration 
l Removing old tuples from their state buffers and (possibly) 

update answers 
l Time-based window: simple – when time moves 

u Join results have interesting expiration times 
u Negation operator may force tuples to expire earlier 

l Count-based window: no. of tuples constant è overwrite 
the oldest tuple with the new arriving tuple 
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Query Processing (cont’d) 

n Continuous query processing over sliding 
windows 
l Negative tuple approach 
l Direct approach 
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Negative Tuple Approach 

n Negative tuples flow 
through the plan 

n Corresponding “real” 
tuples deleted from 
operator state 

n Updated answer 
generated, if 
necessary 

n Each tuple is 
processed twice 

σ σ 

Stream 1 Stream 2 

MAX 

Index 
lookup 

Index 
lookup 

Negative 
tuple 
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Direct Approach 

n No negative tuples 
n Operator states are 

scanned each time 
window moves 

n Updated answer 
generated, if 
necessary 

n Each tuple is 
processed once, but 
state maintenance 
expensive 

σ σ 

Stream 1 Stream 2 

MAX 

Check 
timestamps 

Check 
timestamps 



Page 13 

CS742 – Distributed & Parallel DBMS Page 11.25 M. Tamer Özsu 

Periodic Query Evaluation 

n Generate output periodically rather than continuously 
n No need to react to every insertion/expiration 
n E.g., compute MAX over a 10-minute window that slides 

every minute 
l Store MAX over each non-overlapping one-minute chunk 
l Take the max of the MAXes stored in each chunk 

time 

max = max(10,17,…,37,32) = 37 

10 17 13 33 35 28 15 16 37 32 
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DSMS Optimization Framework 

n General idea: similar to cost-based DBMS 
query optimization 

n Generate candidate query plans 
l New DSMS-specific rewritings: selections and time-based 

sliding windows commute, but not selections and count-
based windows 

n Compute the cost of some of the plans and 
choose the cheapest plan 
l New cost model for persistent queries:  

u per unit time 
u queries typically evaluated in main memory, so 

disk I/O is not a concern 
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Additional DSMS Optimizations – 
Scheduling 

n Scheduling 
n Many tuples at a time: 

l Each operator gets a timeslice and processes all the tuples 
in its input queue 

n Many operators at a time: 
l Each tuple is processed by all the operators in the pipeline 

n Choice of scheduling strategy depends upon 
optimization goal 
l Minimize end-to-end latency?  
l Minimize queue sizes? 
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Additional DSMS Optimizations – 
Adaptivity 

n System conditions can change throughout the 
lifetime of a persistent query  
l Query workload can change 

l Stream arrival rates can change 

n Adjust the query plan on-the-fly 
l Or do away with the query plan and route tuples through 

the query operators according to some routing strategy 

u Eddies approach 
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Additional DSMS 
Optimizations – Load 
Shedding 

n Random load shedding 
l Randomly drop a fraction of arriving tuples 

n Semantic load shedding 
l Examine the contents of a tuple before deciding whether or 

not to drop it 
l Some tuples may have more value than others 

n Or, rather than dropping tuples: 
l Spill to disk and process during idle times 
l Shorten the windows 
l Update the answer less often 
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Additional DSMS Optimizations – 
Multi-Query Processing 

n DBMS: queries are typically issued 
individually 

n DSMS: many persistent queries may be in the 
system at any given time 
l Some of them may be similar and could be executed 

together 
l E.g., similar SELECT and WHERE clauses, but different 

window length in the FROM clause 
l Or, same SELECT and FROM clauses, but different 

predicate in the WHERE clause 


