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Outline 
n  Introduction & architectural issues 
n Data distribution 
n Distributed query processing 
n Distributed query optimization 
n Distributed transactions & concurrency control 
n Distributed reliability 
n Data replication 
n Parallel database systems 
n Database integration & querying 
q Peer-to-Peer data management 

q P2P Infrastructure 
q Schema mapping 
q Querying 
q Replication 

q Stream data management 
q MapReduce-based distributed data management 
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Motivations 

n P2P systems 
l Each peer can have same functionality 
l Decentralized control, large scale 
l Low-level, simple services 

u File sharing, computation sharing, com. sharing 

n Traditional distributed DBMSs 
l High-level data management services 

u queries, transactions, consistency, security, etc. 
l Centralized control, limited scale 

n P2P + distributed database  
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Problem Definition 

n P2P system 
l No centralized control, very large scale 
l Very dynamic: peers can join and leave the network at any 

time  
l Peers can be autonomous and unreliable 

n Techniques designed for distributed data 
management need be extended 
l Too static, need to be decentralized, dynamic and self-

adaptive 
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Peer Reference Architecture 



CS742 – Distributed & Parallel DBMS Page 10.5 M. Tamer Özsu 

Potential Benefits of P2P Systems 

n Scale up to very large numbers of peers 
n Dynamic self-organization 
n Load balancing 
n Parallel processing 
n High availability through massive replication 



CS742 – Distributed & Parallel DBMS Page 10.6 M. Tamer Özsu 

P2P vs Traditional 
Distributed DBMS 

P2P Distributed 
DBMS 

Joining the 
network 

Upon peer’s 
initiative 

Controled by DBA 

Queries No schema,  
key-word based 

Global schema, 
static optimization 

Query answers Partial Complete 

Content location Using neighbors 
or DHT 

Using directory 
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Requirements for P2P Data 
Management 

n Autonomy of peers 
l Peers should be able to join/leave at any time, control their 

data with respect to other (trusted) peers 

n Query expressiveness 
l Key-lookup, key-word search, SQL-like 

n Efficiency 
l Efficient use of bandwidth, computing power, storage 



CS742 – Distributed & Parallel DBMS Page 10.8 M. Tamer Özsu 

Requirements for P2P Data 
Management (cont’d) 

n Quality of service (QoS) 
l User-perceived efficiency: completeness of results, response 

time, data consistency, … 

n Fault-tolerance 
l Efficiency and QoS despite failures 

n Security 
l Data access control in the context of very open systems  
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P2P Network Topologies 

n Pure P2P systems 
l Unstructured systems 

u  e.g. Napster, Gnutella, Freenet, Kazaa, BitTorrent 
l Structured systems (DHT) 

u  e.g. LH* (the earliest form of DHT), CAN, CHORD, 
Tapestry, Freepastry, Pgrid, Baton 

n Super-peer (hybrid) systems 
l  e.g. Edutela, JXTA 

n Two issues 
l  Indexing data 
l Searching data 
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P2P Unstructured Network 

n High autonomy (peer only needs to know neighbor to 
login) 

n Searching by 
l flooding the network: general, may be inefficient 
l Gossiping between selected peers: robust, efficient 

n High-fault tolerance with replication 
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Search over Centralized 
Index 

1.  A peer asks the 
central index 
manager for 
resource 

2.  The response 
identifies the 
peer with the 
resource 

3.  The peer is 
asked for the 
resource 

4.  It is transferred 
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Search over Distributed Index 

1.  A peer sends the 
request for 
resource to all its 
neighbors 

2.  Each neighbor 
propagates to its 
neighbors if it 
doesn’t have the 
resource 

3.  The peer who 
has the resource 
responds by 
sending the 
resource 
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P2P Structured Network 

n Simple API with put(key, data) and get(key) 
l  The key (an object id) is hashed to generate a peer id, which stores  the 

corresponding data 
n Efficient exact-match search 

l O(log n) for put(key, data), get(key) 
n Limited autonomy since a peer is responsible for a range of 

keys 
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Distributed Hash Table (DHT) 
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Super-peer Network 

n Super-peers can perform complex functions (meta-
data management, indexing, access control, etc.) 
l Efficiency and QoS 
l Restricted autonomy 
l SP = single point of failure ⇒ use several super-peers 
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Search over a Super-peer 
System 

1.  A peer sends the 
request for resource 
to all its super-peer  

2.  The super-peer 
sends the request to 
other super-peers if 
necessary 

3.  The super-peer one 
of whose peers has 
the resource 
responds by 
indicating that peer 

4.  The super-peer 
notifies the original 
peer 
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P2P Systems Comparison 

Requirements Unstructured DHT Super-peer 

Autonomy high low avg 

Query exp. high low high 

Efficiency low high high 

QoS low high high 

Fault-tolerance high high low 

Security low low high 
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P2P Schema Mapping 

n Problem: support decentralized schema 
mapping so that a query expressed on one 
peer’s schema can be reformulated to a query 
on another peer’s schema 

n Main approaches 
l Pairwise schema mapping 
l Mapping based on machine learning 
l Common agreement mapping 
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Pairwise Schema Mapping 

n Each user defines the 
mapping between the 
local schema and the 
schema of any other peer 
that contains data that 
are of interest 

n Relying on the 
transitivity of the defined 
mappings, the system 
tries to extract mappings 
between schemas that 
have no defined mapping 
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n This approach is generally used when the 
shared data are defined based on ontologies 
and taxonomies as proposed for the semantic 
web 

n It uses machine learning techniques to 
automatically extract the mappings between 
the shared schemas 

n The extracted mappings are stored over the 
network, in order to be used for processing 
future queries 

Mapping Based on Machine 
Learning 
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Common Agreement 
Mapping 

n  Some (cooperating) 
peers must agree on 
a Common Schema 
Description (CSD) 

n  Given a CSD, a peer 
schema can be 
specified using views 

l  Similar to the LAV 
approach 

n  When a peer decides 
to share data, it 
needs to map its local 
schema to the CSD 
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Querying over P2P Systems 

n P2P networks provide basic query routing 
l Sufficient for simple, exact-match queries, e.g. with a DHT 

n Supporting more complex queries, particularly 
in DHTs, is difficult 

n Main types of complex queries 
l Top-k queries 
l Join queries 
l Range queries 
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Top-k Query 

n Returns only k of the most relevant answers, ordered by 
relevance 
l Like for a search engine 

n Scoring function (sf) determines the relevance (score) of 
answers to the query 

n Example 
SELECT  * 
FROM  Patient    P 
WHERE  (P.disease = “diabetes”) AND  
  (P.height < 170) AND (P.weight > 70) 
ORDER BY sf(height, weight) 
STOP AFTER 10  
l   Example of sf: weight − (height -100) 
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General Model for Top-k Queries 

n Suppose we have: 
l n data items 

u  items can be document, tuples, etc. 
l m lists of n data items such that 

u Each data item has 
s  a local score in each list 
s  an overall score computed based on its local scores in all lists 

using a given scoring function  

u Each list 
s  contains all n data items (or item ids) 
s  is sorted in decreasing order of the local scores 

n The objective is: 
l Given a scoring function, find the k data items whose 

overall scores are the highest 
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Execution Cost of Top-k Queries 

n Two modes of access to a sorted list 
l Sorted (sequential) access 

u Starts with the first data item, then accesses each next 
item 

l Random access 
u Looks up a given data item in the list by its identifier 

(e.g. TID) 
 

n Given a top-k algorithm A and a database D 
(i.e. set of sorted lists), the cost of executing A 
over D is:  
l Cost(A, D) = (#sorted-access * sorted-access-cost) + 

(#random-access * random-access-cost) 
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Basic Top-k Algorithms 

n Fagin’s Algorithm (FA) 
l General model of top-k queries using sorted lists 
l Simple algorithm 

u Do sorted access in parallel to the lists until at least k 
data items have been seen in all lists  

n Threshold Algorithm (TA) 
l Proposed independently by several groups  
l Efficient algorithm over sorted lists 
l The basis for many TA-style distributed algorithms 

u Mainly for DHTs 
u Algorithms for unstructured or super-peer simpler 
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TA 

n Similar to FA in doing sorted access to the lists 
l But different stopping condition 

n Unlike FA, no need to wait until the lists give k 
items 
l Once an item has been seen from a sorted access, get all its 

scores through random access 

n But how do we know that the scores of seen 
items are higher than those of unseen items? 
l Use a threshold (T) to predict maximum possible score of 

unseen items 
u based on the last scores seen in the lists under sorted 

access 
l Then stop when there are at least k data items whose 

overall score ≥ T 
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TA Example 

n  Assume sf( ) = s1 + s2 + s3, k = 3,  
 Y: {top seen items with overall scores} 

n  At position 1 
l  Look up the local scores of items d1, d2 and d3 in 

other lists using random access and compute 
their overall scores (which are 65, 63 and 70, 
respectively) 

l  Y = {(d1,70) (d2,65) (d3,63)}, T = 30 + 28 + 30 = 88  

n  Then 
l  At position 2, Y = {(d3,70) (d4,70) (d5,65)}, T = 84 
l  At position 3, Y = {(d3,71) (d5,70) (d8,70)}, T = 80 
l  At position 4, Y = same, T = 75 
l  At position 5, Y = same, T = 72 
l  At position 6, Y = same, T = 63 

u  which is less than the overall score of the three 
data items in Y. Thus, TA stops 

n  Note that the contents of Y at position 6 
is exactly the same as at position 3 
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Improvement over TA: BPA 

n Best Position Algorithm 
n Main idea: keep track of the positions (and scores) of 

the items seen under sorted or random access 
l  Enables BPA to stop as soon as possible 

u  In the previous example, BPA stops at position 3  

n Best position = the greatest seen position in a list 
such that any position before it is also seen 
l  Thus, we are sure that all positions between 1 and best 

position have been seen 

n Stopping condition 
l  Based on best positions overall score, i.e. the overall score 

computed based on the best positions in all lists 
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Join Query Processing in 
DHTs 

n A DHT relies on hashing to store and locate 
data 
l Basis for parallel hash join algorithms 

n Basic solution in the context of the PIER P2P 
system 
l Let us call it PIERjoin 
l Assume that the joined relations and the result relations 

have a home which are the peers that store horizontal 
fragments of the relation 

u Recall def. of home from Chapter 8 
l Make use of the put method for distributing tuples onto a 

set of peers based on their join attribute so that tuples with 
the same join attribute values are stored at the same peers 

l Then apply the probe/join phase 
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PIERjoin Algorithm 

1.  Multicast phase 
l  The query originator peer multicasts Q to all peers that 

store tuples of the join relations R and S, i.e., their homes. 

2.  Hash phase 
l  Each peer that receives Q scans its local relation, searching 

for the tuples that satisfy the select predicate (if any) 
l  Then, it sends the selected tuples to the home of the result 

relation, using put operations 
l  The DHT key used in the put operation uses the home of the 

result relation and the join attribute 

3.  Probe/join phase 
l  Each peer in the home of the result relation, upon receiving 

a new tuple, inserts it in the corresponding hash table, 
probes the opposite hash table to find matching tuples and 
constructs the result joined tuples 
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Range Query Processing 

n Range query 
l   WHERE clause of the form “attribute A in range [a; b]” 

n Difficult to support in structured P2P systems, 
in particular, DHTs 
l Hashing tends to destroy the ordering of data that is useful 

in finding ranges quickly 

n Two main approaches for supporting range 
queries in structured P2P systems 
l Extend a DHT with proximity or order-preserving 

properties 
u Problem: data skew that can result in peers with 

unbalanced ranges, which hurts load balancing 
l Maintain the key ordering with a tree-based structure 

u Better at maintaining balanced ranges of keys 
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BATON 

n BATON (BAlanced Tree Overlay Network) 
n Organizes peers as a balanced binary tree 

l Each node of the tree is maintained by a peer 
l The position of a node is determined by a (level, number) 

tuple, with level starting from 0 at the root, number 
starting from 1 at the root and sequentially assigned using 
in-order traversal 

l Each tree node stores links to its parent, children, adjacent 
nodes and selected neighbor nodes that are nodes at the 
same level 

l Two routing tables: a left routing table and a right routing 
table store links to the selected neighbor nodes 



CS742 – Distributed & Parallel DBMS Page 10.33 M. Tamer Özsu 

BATON Structure-tree Index 

n Each node (or peer) is assigned a range of values 
l Maintained at the routing table of each link 
l Required to be to the right of the range managed by its left subtree and less 

than the range managed by its right subtree 
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Range Query Processing in 
BATON 

Input: Q, a range query in the form [a,b] 
Output:  T: result relation 
1. Search for the peer storing the lower bound of the range 

 At query originator node do  
  find peer p that holds value a  
  send Q to p 

2. A peer p that receives Q (from query originator or its left 
adjacent 

peer) searches for local tuples and sends Q to its right 
adjacent node 
 At each peer p that receives Q 
  Tp  = Range(p)  ∩ [a,b] 
  send Tp to query originator 
  If (Range(RighAdjacent(p)) ∩ [a,b]) not empty 
   send Q to right adjacent peer of p 

 
n  With X nodes covering the range, Q is answered in O(log n + X) steps 
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Example of Range Query 
Execution 

n  Consider Q with range [7; 45] 
issued at node 7 

n  First, execute an exact match 
query looking for a node 
containing the lower bound of the 
range (see dashed line) 

n  Since the lower bound is in node 
4’s range, check locally for tuples 
belonging to the range and forward 
Q to its adjacent right node (node 
9) 

n  Node 9 checks for local tuples 
belonging to the range and 
forwards Q to node 2 

n  Nodes 10, 5, 1 and 6 receive Q, 
check for local tuples and contact 
their respective right adjacent 
node until the node containing the 
upper bound of the range is 
reached 
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Replica Consistency 

n To increase data availability and access performance, 
P2P systems replicate data, however, with very 
different levels of replica consistency 
l The earlier, simple P2P systems such as Gnutella and Kazaa deal 

only with static data (e.g., music files) and replication is “passive” as 
it occurs naturally as peers request and copy files from one another 
(basically, caching data) 

n In more advanced P2P systems where replicas can be 
updated, there is a need for proper replica 
management techniques 

n Replica consistency in DHTs 
l Basic support  - Tapestry 
l Replica reconciliation - OceanStore 
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Tapestry 
n Decentralized object location and routing on top of 

a structured overlay 
n Routes messages to logical end-points (i.e., not 

associated with physical location), such as nodes or 
object replicas. 
l  This enables message delivery to mobile or replicated 

endpoints in the presence of network instability 

n Location and routing  
l  Let O be an object identified by id(O), the insertion of O 

involves two nodes: the server node (noted ns) that holds O and 
the root node (noted nr) that holds a mapping in the form 
(id(O); ns) indicating that the object identified by id(O) is 
stored at node ns 

l  The root node is dynamically determined by a globally 
consistent deterministic algorithm 
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Object Publishing in 
Tapestry 

n  When O is inserted into ns, ns 
publishes id(O) at its root node by 
routing a message from ns to nr 
containing the mapping  (id(O); ns) 

n  This mapping is stored at all nodes 
along the message path 

n  During a location query (e.g., 
“id(O)?”, the message that looks for 
id(O) is initially routed towards nr, 
but it may be stopped before 
reaching it once a node containing 
the mapping      (id(O); ns) is found 

n  For routing a message to id(O)’s 
root, each node forwards this 
message to its neighbor whose 
logical identifier is the most similar 
to id(O) 
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Replica Management in Tapestry 

n  Each node represents a peer and 
contains the peer’s logical identifier in 
hexadecimal format 

n  Two replicas O1 and O2 of object O (e.g., a 
book file) are inserted into distinct peers 
(O1 at peer 4228 and O2 at peer AA93). 
The identifier of O1 is equal to that of O2 
(i.e., 4378) 

n  When O1 is inserted into its server node 
(peer 4228), the mapping (4378; 4228) is 
routed from peer 4228 to peer 4377 (the 
root node for O1’s identifier) 

n  As the message approaches the root 
node, the object and the node identifiers 
become increasingly similar 

n  In addition, the mapping (4378; 4228) is 
stored at all peers along the message 
path 
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OceanStore 

n OceanStore is a data management system 
designed to provide continuous access to 
persistent information 

n Relies on Tapestry and assumes untrusted 
powerful servers connected by high-speed links 

n To improve performance, data are allowed to 
be cached anywhere, anytime 

n Allows concurrent updates on replicated 
objects; it relies on reconciliation to assure data 
consistency 
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Reconciliation in OceanStore 

n  Ri and ri denote, respectively, a primary 
and a secondary copy of object R 

n  Nodes n1 and n2 are concurrently 
updating R as follows 
l  Nodes that hold primary copies of R, 

called the master group of R, are 
responsible for ordering updates 

l  (a) n1 and n2 perform tentative updates 
on their local secondary replicas and 
send these updates to the master group 
of R as well as to other random 
secondary replicas 

l  (b) The tentative updates are ordered by 
the master group based on timestamps 
assigned by n1 and n2, and epidemically 
propagated among secondary replicas 

l  (c) Once the master group obtains an 
agreement, the result of updates is 
multicast to secondary replicas 
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Conclusion 

n Advanced P2P applications will need high-level 
data management services 

n Various P2P networks will improve 
l Network-independence crucial to exploit and combine them 

n Many technical issues 
l Decentralized schema management, complex query 

processing, transaction support and replication, and data 
privacy 

n Important to characterize applications that can 
most benefit from P2P with respect to other 
distributed architectures 


