
CS655! 8-1!

Module 8���
Transport Layer Protocols���

CS655! 8-2!

Computer Networking: A
Top Down Approach "
5th edition. "
Jim Kurose, Keith Ross"
Addison-Wesley, April
2009. "
!

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:
v  If you use these slides (e.g., in a class) in substantially unaltered form, that
you mention their source (after all, we’d like people to use our book!)
v  If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2010
J.F Kurose and K.W. Ross, All Rights Reserved

Please note: Most of these slides
come from this book. Note their
copyright notice below…!

CS655! 8-3!

Transport services & protocols���
• provide logical communication

between app processes running
on different hosts!

• transport protocols run in end
systems !
➡  send side: breaks app messages

into segments, passes to
network layer!

➡  rcv side: reassembles segments
into messages, passes to app
layer!

• more than one transport protocol
available to apps!
➡  Internet: TCP and UDP!

application!
transport!
network!
data link!
physical

application!
transport!
network!
data link!
physical

CS655! 8-4!

Transport Layer is End-to-End���
client

application

transport

network

link

physical

network

link

physical

link

physical

link

physical

server

router bridge, hub,
link-layer switch

bridge, hub,
link-layer switch

application

transport

network

link

physical

CS655! 8-5!

Internet Protocols���

FTP Telnet NFS SMTP HTTP …!

TCP! UDP!

IP!

X.25! Ethernet! Packet!
Radio! ATM! FDDI! …!

Application!

Transport!

Network!

Data Link!
Physical!

CS655! 8-6!

Internet Apps: Their Protocols
& Transport Protocols���

Applications! Data Loss! Throughput! Time Sensitive! Application
Layer Protocol!

Transport
Protocol!

Email! No loss! Elastic ! No! smtp ! TCP!

remote terminal
access!

No loss! Elastic! Yes! telnet! TCP!

Web! No loss! Elastic ! No! http! TCP!

File transfer! No loss! Elastic! No! ftp! TCP!

streaming
multimedia!

Loss tolerant! audio:
5kbps-1Mbps!
video:
10kbps-5Mbps!

Yes, 100’s msec! Proprietary! TCP or UDP!

Remote file
server!

No loss! Elastic! No! NFS! TCP or UDP
(typically UDP)!

Internet
telephony!

Loss tolerant! Depends on
encoding,
32kbps typically!

Yes, few secs! SIP, RIP,
Prorietary!

TCP or UDP
(typically UDP)!

CS655! 8-7!

Internet transport-layer
protocols���

• UDP: unreliable, unordered
delivery!
➡  Process-to-process data delivery!

✦  Multiplexing/demultiplexing!

➡  End-to-end error checking!

• TCP: reliable, in-order delivery!
➡  congestion control !
➡  flow control!
➡  connection setup!

• services not available: !
➡  delay guarantees!
➡  bandwidth guarantees!

application!
transport!
network!
data link!
physical !

network!
data link!
physical

!
network!
data link!
physical

!
network!
data link!
physical

!
network!
data link!
physical

!
network!
data link!
physical

!
network!
data link!
physical

application!
transport!
network!
data link!
physical

CS655! 8-8!

The programmer's conceptual
view of a TCP/IP Internet���

IP

Application Application

TCP UDP

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed. ���
© Addison-Wesley Publishers 2000 	

CS655! 8-9!

How Apps Access Transport
Services���

• Through sockets!
• Socket: a host-local, application-created, OS-controlled interface (a “door”) into

which application process can both send and receive messages to/from
another application process!

• Socket API!
➡  introduced in BSD4.1 UNIX, 1981!
➡  explicitly created, used, released by apps !
➡  client/server paradigm !
➡  two types of transport service via socket API: !

✦  unreliable datagram !
✦  reliable, byte stream-oriented !

process

Transport
Service

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

socket

controlled by
application
developer
controlled by
operating
system

host or
server

internet
Transport
Service

CS655! 8-10!

UDP: User Datagram Protocol���
• “no frills,” “bare bones”

Internet transport protocol!
• “best effort” service, UDP

segments may be:!
➡  lost!
➡  delivered out of order to app!

• connectionless:!
➡  no handshaking between

UDP sender, receiver!
➡  each UDP segment handled

independently of others!

Why is there a UDP?!
• no connection establishment

(which can add delay)!
• simple: no connection state at

sender, receiver!
• small segment header!
• no congestion control: UDP

can blast away as fast as
desired!

CS655! 8-11!

Client/server socket interaction:
UDP���

Server (running on hostid)!

close
clientSocket

read datagram from
clientSocket

create socket,
 clientSocket =
DatagramSocket()

Client!

Create datagram with server IP and
port=x; send datagram via
 clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

CS655! 8-12!

UDP Use and Format���
• often used for streaming

multimedia apps!
➡  loss tolerant!
➡  rate sensitive!

• other UDP uses!
➡  DNS!
➡  SNMP!

• reliable transfer over
UDP: add reliability at
application layer!
➡  application-specific error

recovery!!

source port # dest port #

32 bits

Application!
data !

(message)

UDP segment format

length checksum
Length, in!

bytes of UDP!
segment,!

including!
header

CS655! 8-13!

UDP checksum���

Sender:!
• treat segment contents as

sequence of 16-bit integers!
• checksum: addition (1’s

complement sum) of segment
contents!

• sender puts checksum value
into UDP checksum field!

!

Receiver:!
• compute checksum of received

segment!
• check if computed checksum

equals checksum field value:!
➡  NO - error detected!
➡  YES - no error detected. !

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment!

CS655! 8-14!

TCP: Transport Control
Protocol���

• full duplex data:!
➡  bi-directional data flow in

same connection!
➡  MSS: maximum segment size!

• connection-oriented: !
➡  handshaking (exchange of

control msgs) inits sender,
receiver state before data
exchange!

• flow controlled:!
➡  sender will not overwhelm

receiver!

• point-to-point:!
➡  one sender, one receiver !

• reliable, in-order byte
steam:!
➡  no “message boundaries”!

• pipelined:!
➡  TCP congestion and flow

control set window size!

• send & receive buffers!

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

CS655! 8-15!

Socket programming with
TCP���

Client must contact server!
• server process must first be

running!
• server must have created

socket (door) that welcomes
client’s contact!

Client contacts server by:!
• creating client-local TCP socket!
• specifying IP address, port

number of server process!
• when client creates socket:

client TCP establishes
connection to server TCP!

• when contacted by client, server
TCP creates new socket for
server process to communicate
with client!
➡  allows server to talk with

multiple clients!
➡  source port numbers used to

distinguish clients!

TCP provides reliable, in-order!
 transfer of bytes (“pipe”) !
between client and server!

application viewpoint!

CS655! 8-16!

TCP Client/server socket
interaction���

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client!

send request using
clientSocket read request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

CS655! 8-17!

o
u

tT
o

S
e

rv
e

r

to network from network

in
F

ro
m

S
e

rv
e

r

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

Stream Jargon���

• stream is a sequence of characters
that flow into or out of a process.!

• input stream is attached to some
input source for the process, e.g.,
keyboard or socket.!

• output stream is attached to an
output source, e.g., monitor or
socket.!

CS655! 8-18!

Socket programming with TCP���

Example client-server app:!
1) client reads line from standard input (inFromUser stream) , sends to server

via socket (outToServer stream)!
2) server reads line from socket!
3) server converts line to uppercase, sends back to client!
4) client reads, prints modified line from socket (inFromServer stream)!

CS655! 8-19!

Example: TCP Java client���
import java.io.*;
import java.net.*;
class TCPClient {

 public static void main(String argv[]) throws Exception
 {
 String sentence;
 String modifiedSentence;

 BufferedReader inFromUser =
 new BufferedReader(new InputStreamReader(System.in));

 Socket clientSocket = new Socket("hostname", 6789);

 DataOutputStream outToServer =
 new DataOutputStream(clientSocket.getOutputStream());

create
input stream

create
clientSocket object

of type Socket,
connect to server

create
output stream

attached to socket

This package defines Socket()
and ServerSocket() classes

server port #

server name,
e.g., www.umass.edu

CS655! 8-20!

Example: TCP Java client
(cont’d)���

 BufferedReader inFromServer =
 new BufferedReader(new
 InputStreamReader(clientSocket.getInputStream()));

 sentence = inFromUser.readLine();

 outToServer.writeBytes(sentence + '\n');

 modifiedSentence = inFromServer.readLine();

 System.out.println("FROM SERVER: " + modifiedSentence);

 clientSocket.close();

 }
}

create
input stream

attached to socket

send line
to server

read line
from server

close socket
(clean up behind yourself!)

CS655! 8-21!

Example: TCP Java server���
import java.io.*;
import java.net.*;

class TCPServer {

 public static void main(String argv[]) throws Exception
 {
 String clientSentence;
 String capitalizedSentence;

 ServerSocket welcomeSocket = new ServerSocket(6789);

 while(true) {

 Socket connectionSocket = welcomeSocket.accept();

 BufferedReader inFromClient =
 new BufferedReader(new
 InputStreamReader(connectionSocket.getInputStream()));

wait, on welcoming
socket accept() method

for client contact create,
new socket on return

create
welcoming socket

at port 6789

create input
stream, attached

to socket

CS655! 8-22!

Example: TCP Java server
(cont’d)���

 DataOutputStream outToClient =
 new DataOutputStream(connectionSocket.getOutputStream());

 clientSentence = inFromClient.readLine();

 capitalizedSentence = clientSentence.toUpperCase() + '\n';

 outToClient.writeBytes(capitalizedSentence);
 }
 }
}

read in line
from socket

create output
stream, attached

to socket

write out line
to socket

end of while loop,
loop back and wait for
another client connection

CS655! 8-23!

TCP segment structure���

source port # dest port #

32 bits

application!
data !

(variable length)

sequence number
acknowledgement number

Receive window

Urg data ptr checksum

F S R P A U head!
len

not!
used

Options (variable length)

URG: urgent data !
(generally not used)

ACK: ACK #!
valid

PSH: push data now!
(generally not used)!

RST, SYN, FIN:!
connection estab!
(setup, teardown!

commands)!

bytes !
rcvr willing!
to accept!

counting!
by bytes !
of data!
(not segments!)!

Internet!
checksum!

(as in UDP)!

CS655! 8-24!

Principles of Reliable Data
Transfer���• important in app., transport, link layers!

• characteristics of unreliable channel will determine complexity of
reliable data transfer protocol!

• Note: slides use the term “packet” but at transport layer, these are
segments!

CS655! 8-25!

send!
side

receive!
side

rdt_send(): called from above,
(e.g., by app.). Passed data to !
deliver to receiver upper layer

udt_send(): called by rdt,!
to transfer packet over !
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Principles of Relialable Data
Transfer���

CS655! 8-26!

Reliable Transfer over a Reliable
Channel���

• underlying channel perfectly reliable!
➡  no bit errors!
➡  no loss of packets!

• separate FSMs for sender, receiver:!
➡  sender sends data into underlying channel!
➡  receiver read data from underlying channel!

Wait for
call from
above

segment= make_segment(data)
udt_send(segment)

rdt_send(data)
extract (segment,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(segment)

sender! receiver!

CS655! 8-27!

What can go wrong (1)?���

• Underlying channel may flip bits in segment!
• Error detection:!

➡  Checksum to detect bit errors!
• Recovering from errors:!

➡ acknowledgements (ACKs): receiver explicitly tells sender that
segment received OK!

➡ negative acknowledgements (NAKs): receiver explicitly tells
sender that segment had errors!

➡ sender retransmits segment on receipt of NAK!
• Stop-and-wait!

➡ Sender sends one segment, then waits for the receiver to
respond!

➡ We will come back to this later!

CS655! 8-28!

Handling duplicates���

• What happens if ACK/NAK corrupted?!
➡  sender doesn’t know what happened at receiver!!
➡  can’t just retransmit: possible duplicate!

• Sender retransmits current segment if ACK/NAK garbled!
• Sender adds sequence number to each segment!

➡  For stop-and-go protocol a 1-bit sequence number with modulo-2
arithmetic is sufficient!

• Receiver discards (does not deliver up to the application)
duplicate segments!

CS655! 8-29!

What can go wrong (2)?���

• Segments (data or ACK) may be lost !
• Sender waits a “reasonable” amount of time for ACK!

➡  Retransmits if no ACK received in this time!
➡  If segment (data or ACK) simply delayed (not lost)!

✦  Retransmission will be duplicate, but use of sequence numbers
already handles this!

✦  Receiver must specify the sequence number of segment being ACKed!
➡  Requires countdown timer!

• Sequence numbers!
➡ For data: byte stream “number” of first byte in segment’s data!
➡ For ACKs: if pipelined, segment number of next byte expected from

other side!
✦  Cumulative ACK!

CS655! 8-30!

What can go wrong (3)?���

• Data segments may come out of order!
• TCP specification does not say what to do!
• Two alternatives!

➡  Receiver discards out of order segments!
✦  Simplifies receiver design!
✦  Wastes network bandwidth!

➡  Receiver keeps out of order segments and fills in the missing ones when
they arrive!
✦  Usually this is what is implemented!

CS655! 8-31!

TCP Sender Events���
data rcvd from app:!
• Create segment with

sequence number!
• start timer if not already

running (think of timer as
for oldest unacked
segment)!

• expiration interval:
TimeOutInterval !

timeout:!
• retransmit segment that

caused timeout!
• restart timer!
 Ack rcvd:!
• If acknowledges

previously unacked
segments!
➡  update what is known to be

acked!
➡  start timer if there are

outstanding segments!
!

CS655! 8-32!

TCP sender���
(simplified)���

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

CS655! 8-33!

TCP Round Trip Time and Timeout���

• How to set TCP timeout value?!
➡ longer than RTT!

✦  but RTT varies!

➡ too short: premature timeout!
✦  unnecessary retransmissions!

➡ too long: slow reaction to segment loss!
• How to estimate RTT?!

➡  SampleRTT: measured time from segment transmission until ACK receipt!
✦  ignore retransmissions!

➡  SampleRTT will vary, want estimated RTT “smoother”!
✦  average several recent measurements, not just current SampleRTT!

CS655! 8-34!

TCP Flow Control���
• receive side of TCP

connection has a receive
buffer:!

• speed-matching service:
matching the send rate to
the receiving app’s drain
rate!

sender won’t overflow!
receiver’s buffer by!
transmitting too much,!
too fast

flow control

• app process may be slow
at reading from buffer!

CS655! 8-35!

TCP Flow control: how it works���

• spare room in buffer (ignoring out-of-order segments)
RcvWindow = RcvBuffer-[LastByteRcvd - LastByteRead]

• Receiver advertises spare room by including value of
RcvWindow in segments!

• Sender limits unACKed data to RcvWindow
➡  guarantees receive buffer doesn’t overflow

CS655! 8-36!

TCP Connection Management���

Recall: TCP is a connection-oriented protocol!
• sender, receiver establish “connection” before exchanging data segments!
• initialize TCP variables:!

➡  Sequence numbers!
➡  buffers, flow control info (e.g. RcvWindow)!

• client: connection initiator!

 Socket clientSocket = new Socket("hostname","port number"); !
• server: contacted by client!
 Socket connectionSocket = welcomeSocket.accept();

CS655! 8-37!

Three-Way Handshake���

Step 1: client host sends TCP SYN
segment to server!
➡  specifies initial sequence number!
➡  no data!

Step 2: server host receives SYN,
replies with SYNACK segment!
➡  server allocates buffers!
➡  specifies server initial sequence

number!
Step 3: client receives SYNACK,

replies with ACK segment, which
may contain data!

Connection!
request!

client

SYN=1, seq=client_isn

server

SYN=1, seq=server_isn,

Ack=client_isn+1

SYN=0,Ack=server_isn+1

Connection!
granted!

ACK!

CS655! 8-38!

Closing a TCP Connection���
client closes socket:

clientSocket.close(); !
Step 1: client end system sends TCP FIN

control segment to server !
Step 2: server receives FIN, replies with

ACK. Closes connection, sends FIN. !

Step 3: client receives FIN, replies with
ACK. !
➡  Enters “timed wait” - will respond

with ACK to received FINs !

Step 4: server, receives ACK.
Connection closed. !

Note: with small modification, can
handle simultaneous FINs.!

client

FIN=1

server

ACK

ACK

FIN=1

close!

close!

closed!

tim
ed

 w
ai

t!

CS655! 8-39!

Principles of Congestion Control���

• Congestion: informally, “too many sources sending
too much data too fast for the network to handle”!

• different from flow control!!
• manifestations:!

➡  lost packets (buffer overflow at routers)!
➡  long delays (queueing in router buffers)!

CS655! 8-40!

Causes/costs of congestion:
Simple Scenario���

• two senders, two
receivers!

• one router, infinite
buffers !

• no retransmission!

• large delays when
congested!

• maximum
achievable
throughput!

unlimited shared
output link buffers!

Host A!
λin : original data !

Host B!

λout!

CS655! 8-41!

Causes and Effects of
Congestion���

• With finite buffers at routers, packets may be dropped as #in increases!
➡  Retransmission needed!
➡  Offered load #’in > #in !

-  More work (retransmissions) for given #out!

-  Unneeded retransmissions: link carries multiple copies of segment!

• With multi-hop connections, upstream routers receive two types of traffic:!
➡  Forwarded traffic from downstream routers!
➡  Traffic they may receive directly from hosts!
➡  As #’in increases, more dropped packages and more transmissions!

✦  #out will approach 0!
-  When packet dropped, any upstream transmission capacity used for that packet was

wasted!!

CS655! 8-42!

Approaches to Congestion
Control���

Two broad approaches towards congestion control:!
1.  end-end congestion control:!

➡  no explicit feedback from network!
➡  congestion inferred from end-system observed loss, delay!
➡  approach taken by TCP!

2.  network-assisted congestion control:!
➡  routers provide feedback to end systems!

✦  single bit indicating congestion (SNA, DECbit, TCP/IP ECN, ATM)!
✦  explicit rate sender should send at!

