
CS655! 6-1!

Module 6���
Fault Tolerance���

CS655! 6-2!

Dependability���
• Reliability!

➡  A measure of success with which a system conforms to some authoritative
specification of its behavior.!

➡  Probability that the system has not experienced any failures within a given
time period.!

➡  Typically used to describe systems that cannot be repaired or where the
continuous operation of the system is critical.!

• Availability!
➡  The fraction of the time that a system meets its specification.!
➡  The probability that the system is operational at a given time t.!

• Safety!
➡  When the system temporarily fails to conform to its specification, nothing

catastrophic occurs.!
• Maintainability!

➡  Measure of how easy it is to repair a system.!

CS655! 6-3!

• Failure !
➡  The deviation of a system from the behavior that is described in its

specification.!
• Error!

➡  The part of the state which is incorrect.!
• Fault!

➡  Cause of an error.!

Fundamental Definitions���

CS655! 6-4!

Faults to Failures���

Fault Error Failure
causes results in

CS655! 6-5!

• Hard faults!
➡  Permanent!

➡  Resulting failures are called hard failures!

• Soft faults!
➡  Transient or intermittent!

➡  Resulting failures are called soft failures!

Types of Faults���

CS655! 6-6!

Fault Classification���
Permanent

fault

Incorrect
design

Unstable
environment

Operator
mistake

Transient
error

System
Failure

Unstable or
marginal

components

Intermittent
error

Permanent
error

CS655! 6-7!

Failure Models���

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure
 Receive omission
 Send omission

A server fails to respond to incoming requests
A server fails to receive incoming messages
A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure
 Value failure
 State transition failure

The server's response is incorrect
The value of the response is wrong
The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms ���
© Prentice-Hall, Inc. 2002	

CS655! 6-8!

How to Improve Dependability���
• Mask failures by redundancy!

➡  Information redundancy!
✦  E.g., add extra bits to detect and recovered data transmission errors!

➡  Time redundancy!
✦  Transactions; e.g., when a transaction aborts re-execute it without adverse effects.!

➡  Physical redundancy!
✦  Hardware redundancy!

✓  Take a distributed system with 4 file servers, each with a 0.95 chance of being up at any
instant !

✓  The probability of all 4 being down simultaneously is 0.054 = 0.000006!
✓  So the probability of at least one being available (i.e., the reliability of the full system) is

0.999994, far better than 0.95!
✓  If there are 2 servers, then the reliability of the system is (1-0.052) = 0.9975!

✦  Software redundancy!
✓  Process redundancy with similar considerations!

• A design that does not require simultaneous functioning of a substantial
number of critical components.!

CS655! 6-9!

Hardware Redundancy���

• Two computers are employed for a single application, one acting as a
standby!
➡  Very costly, but often very effective solution!

• Redundancy can be planned at a finer grain!
➡  Individual servers can be replicated!
➡  Redundant hardware can be used for non-critical activities when no faults are

present!
➡  Redundant routes in network!

CS655! 6-10!

Process Redundancy���
• Process groups!

➡  All members of a group receive a message sent to the group.!
➡  If one process fails, others can take over.!
➡  Can be dynamic; processes can have multiple memberships.!
➡  Flat versus hierarchical groups:!

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms ���
© Prentice-Hall, Inc. 2002	

CS655! 6-11!

Management of Replicated
Processes���

• Primary copy!
➡  Primary-backup setup!
➡  Coordinator is the primary that coordinates all updates!
➡  If coordinator fails, one backup takes over (usually through an election

procedure)!
➡  Processes are organized hierarchically!

• Replicated-writes!
➡  Active replication and quorum-based protocols!
➡  Flat group organization!
➡  No single points of failure!

CS655! 6-12!

Fault Tolerance of Process
Groups���

• A system is k fault tolerant if it can survive faults in k components and
still meets its specification.!

• If failures are safe (silent), then k+1 processes are sufficient to get k fault
tolerance.!

• In case of arbitrary failures, 2k+1 processes are required (since k failing
processes can all generate the same result by chance)!
➡  This assumes that each process reaches its decision independently!
➡  What if processes gang up to produce wrong results? General problem is

having a process group reach an agreement. !
✦  In this case you need 2k+1 correctly functioning processes, for a total of 3k+1

processes.!
• In both cases we assume that communication failures do not occur.!

CS655! 6-13!

Communication Failures���

• Point-to-point communication !
➡  TPC protocol masks the failures by acknowledgement and retransmission!

• RPC and RMI semantics in the presence of failures!
➡  We studies these under the respective topics!
➡  See slides 3-13 to 3-19 for RPC!
➡  See slides 3-43 to 3-45 for RMI!

CS655! 6-14!

Transactional Dependability���

• Problem: How to maintain !
➡  atomicity!
➡  durability!
!properties of transactions!

• Focus is on data: Failures that affect ACID properties of data!
➡  Transaction failures!

✦  Transaction aborts (unilaterally or due to deadlock)!
✦  Avg. 3% of transactions abort abnormally!

➡  System (site) failures!
✦  Failure of processor, main memory, power supply, …!
✦  Main memory contents are lost, but secondary storage contents are safe!
✦  Partial vs. total failure!

➡  Media failures!
✦  Failure of secondary storage devices such that the stored data is lost!
✦  Head crash/controller failure!

➡  Communication failures!
✦  Lost/undeliverable messages!
✦  Network partitioning!

CS655! 6-15!

Distributed Reliability Protocols���
• Commit protocols!

➡  How to execute commit command for distributed transactions.!
➡  Issue: how to ensure atomicity and durability?!

✦  A transaction that executes at different sites has to complete (i.e., abort or
commit) the same way everywhere!

• Termination protocols!
➡  If a failure occurs, how can the remaining operational sites deal with it.!
➡  Non-blocking : the occurrence of failures should not force the sites to wait

until the failure is repaired to terminate the transaction.!
• Recovery protocols!

➡  When a failure occurs, how do the sites where the failure occurred deal
with it.!

➡  Independent : a failed site can determine the outcome of a transaction
without having to obtain remote information.!

CS655! 6-16!

Two-Phase Commit (2PC)���
Phase 1: The coordinator gets the participants ready to commit their

writes!
Phase 2: Everybody commits!

➡  Coordinator :The process at the site where the transaction
originates and which controls the execution!

➡  Participant :The process at the other sites that participate in
executing the transaction!

Global Commit Rule:!
➡  The coordinator aborts a transaction if and only if at least one

participant votes to abort it.!
➡  The coordinator commits a transaction if and only if all of the

participants vote to commit it.!

CS655! 6-17!

Centralized 2PC���

ready? yes/no commit/abort? commited/aborted

Phase 1 Phase 2

C C C

P

P

P

P

P

P

P

P

CS655! 6-18!

2PC Protocol Actions���
 Participant Coordinator

No

Yes

VOTE-COMMIT

Yes GLOBAL-ABORT

No

write abort
in log

Abort

Commit
ACK

ACK

INITIAL

write abort
in log

write ready
in log

write commit
in log

Type of
msg

WAIT

Ready to
Commit?

write commit
in log

Any No? write abort
in log

ABORT COMMIT

COMMIT ABORT

write
begin_commit

in log

write
end_of_transaction

in log

READY

INITIAL

PREPARE

VOTE-ABORT

GLOBAL-COMMIT

CS655! 6-19!

State Transitions in 2PC���
INITIAL

WAIT

Commit command
 Prepare

Vote-commit (all)
 Global-commit

INITIAL

READY

 Prepare
 Vote-commit

Global-commit
 Ack

 Prepare
 Vote-abort

Global-abort
 Ack

Coordinator Participants

 Vote-abort
 Global-abort

ABORT COMMIT COMMIT ABORT

CS655! 6-20!

Site Failures - 2PC Termination���
• Timeout in INITIAL!

➡  Who cares!

• Timeout in WAIT!
➡  Cannot unilaterally commit!
➡  Can unilaterally abort!

• Timeout in ABORT or COMMIT!
➡  Stay blocked and wait for the acks!

COORDINATOR

INITIAL

WAIT

Commit command
 Prepare

 Vote-commit
 Global-commit

ABORT COMMIT

 Vote-abort
 Global-abort

CS655! 6-21!

Site Failures - 2PC Termination���
• Timeout in INITIAL!

➡  Coordinator must have failed in
INITIAL state!

➡  Unilaterally abort!

• Timeout in READY!
➡  Stay blocked!

INITIAL

READY

 Prepare
 Vote-commit

Global-commit
 Ack

 Prepare
Vote-abort

Global-abort
 Ack

ABORT COMMIT

PARTICIPANTS

CS655! 6-22!

Site Failures - 2PC Recovery���

• Failure in INITIAL!
➡  Start the commit process upon recovery!

• Failure in WAIT!
➡  Restart the commit process upon recovery!

• Failure in ABORT or COMMIT!
➡  Nothing special if all the acks have been

received!
➡  Otherwise the termination protocol is involved!

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

 Vote-commit
 Global-commit

ABORT COMMIT

 Vote-abort
 Global-abort

CS655! 6-23!

• Failure in INITIAL!
➡  Unilaterally abort upon recovery!

• Failure in READY!
➡  The coordinator has been informed about

the local decision!
➡  Treat as timeout in READY state and

invoke the termination protocol!
• Failure in ABORT or COMMIT!

➡  Nothing special needs to be done!

INITIAL

READY

 Prepare
Vote-commit

Global-commit
 Ack

 Prepare
Vote-abort

Global-abort
 Ack

ABORT COMMIT

PARTICIPANTS

Site Failures - 2PC Recovery���

CS655! 6-24!

2PC Recovery Protocols –���
Additional Cases���

• Arise due to non-atomicity of log and message send actions!
• Coordinator site fails after writing “begin_commit” log and before sending
“prepare” command!
➡  treat it as a failure in WAIT state; send “prepare” command!

• Participant site fails after writing “ready” record in log but before “vote-
commit” is sent!
➡  treat it as failure in READY state!
➡  alternatively, can send “vote-commit” upon recovery!

• Participant site fails after writing “abort” record in log but before “vote-
abort” is sent!
➡  no need to do anything upon recovery!

CS655! 6-25!

2PC Recovery Protocols –���
Additional Case���

• Coordinator site fails after logging its final decision record but before
sending its decision to the participants!
➡  coordinator treats it as a failure in COMMIT or ABORT state!
➡  participants treat it as timeout in the READY state!

• Participant site fails after writing “abort” or “commit” record in log but
before acknowledgement is sent!
➡  participant treats it as failure in COMMIT or ABORT state!
➡  coordinator will handle it by timeout in COMMIT or ABORT state!

CS655! 6-26!

Problem With 2PC���

• Blocking!
➡  Ready implies that the participant waits for the coordinator !
➡  If coordinator fails, site is blocked until recovery!
➡  Blocking reduces availability!

• Independent recovery is not possible!
• However, it is known that:!

➡  Independent recovery protocols exist only for single site failures; no
independent recovery protocol exists which is resilient to multiple-site
failures.!

• So we search for these protocols – 3PC!

CS655! 6-27!

Quorum Protocols for ���
Network Partitioning���

• The network partitioning problem is handled by the commit protocol.!
• Every site is assigned a vote Vi.!
• Total number of votes in the system V!
• Abort quorum Va, commit quorum Vc!

➡  Va + Vc > V where 0 ≤ Va, Vc ≤ V!
➡  Before a transaction commits, it must obtain a commit quorum Vc!
➡  Before a transaction aborts, it must obtain an abort quorum Va!

CS655! 6-28!

Network Partitioning &
Replication���

• A group of replica managers are partitioned into two or more
subgroups such that members of one subgroup can communicate with
each other but members of different subgroups cannot communicate
with one another.!

Client + front end	

B	

withdraw(B, 4)	

Client + front end	

Replica managers	

deposit(B,3);	

U	
T	
 Network	

partition	

B	

B	
 B	

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed. �
© Addison-Wesley Publishers 2000 !

CS655! 6-29!

Replica Management with Network
Partitioning���

• Optimistic approach!
➡  Available copies with validation!

✦  Let each partition perform updates freely!
✦  Validate when partition is repaired and those that violate one-copy serializability

are aborted.!

• Pessimistic!
➡  Quorum-based!

✦  Reduce availability (even when there is no partitioning)!
✦  Updates can only occur in the partition that has a majority of the replica

managers!

