
Transactions and Transaction Support in SQL

M. Tamer Özsu

David R. Cheriton School of Computer Science
University of Waterloo

CS 348
Introduction to Database Management

Fall 2012

CS 348 Transactions Fall 2012 1 / 39

Notes

Outline

1 Why We Need Transactions
Concurrency
Failures

2 Transactions
Properties
Formal Definition
Completion States

3 Transactions in SQL
Transaction Specification
Isolation Levels

CS 348 Transactions Fall 2012 2 / 39

Notes

Why We Need Transactions

• A database is a shared resource accessed by many users and
processes concurrently.

• Both queries and modifications
• Not managing this concurrent access to a shared resource will
cause problems (not unlike in operating systems)

• Problems due to concurrency
• Problems due to failures

CS 348 Transactions Fall 2012 3 / 39

Notes

Problems Caused by Concurrency

Accounts(Anum, CId, BranchId, Balance)

• Application 1: You are depositing money to your bank account.

update Accounts
set Balance = Balance + 100
where Anum = 9999

• Application 2: The branch is calculating the balance of the
accounts.

select Sum(Balance)
from Accounts

Problem – Inconsistent reads
If the applications run concurrently, the total balance returned to
application 2 may be inaccurate.

CS 348 Transactions Fall 2012 4 / 39

Notes

Another Concurrency Problem

• Application 1: You are depositing money to your bank account at
an ATM.
update Accounts
set Balance = Balance + 100
where Anum = 9999

• Application 2: Your partner is withdrawing money from the same
account at another ATM.
update Accounts
set Balance = Balance - 50
where Anum = 9999

Problem – Lost Updates
If the applications run concurrently, one of the updates may be “lost”,
and the database may be inconsistent.

CS 348 Transactions Fall 2012 5 / 39

Notes

Yet Another Concurrency Problem

• Application 1:
update Employee
set Salary = Salary + 1000
where WorkDept = ’D11’

• Application 2:
select * from Employee
where WorkDept = ’D11’

select * from Employee
where Lastname like ’A%’

Problem – Non-Repeatable Reads
If there are employees in D11 with surnames that begin with “A”,
Application 2’s queries may see them with different salaries.

CS 348 Transactions Fall 2012 6 / 39

Notes

High-Level Lesson

We need to worry about interaction between two applications when
• one reads from the database while the other writes to (modifies)
the database;

• both write to (modify) the database.

We do not worry about interaction between two applications when
both only read from the database.

CS 348 Transactions Fall 2012 7 / 39

Notes

Problems Caused by Failures

• Update all account balances at a bank branch.

update Accounts
set Balance = Balance * 1.05
where BranchId = 12345

Problem
If the system crashes while processing this update, some, but not all,
tuples with BranchId = 12345 (i.e., some account balances) may
have been updated.

Problem
If the system crashes after this update is processed but before all of the
changes are made permanent (updates may be happening in the
buffer), the changes may not survive.

CS 348 Transactions Fall 2012 8 / 39

Notes

Another Failure-Related Problem

• transfer money between accounts:
update Accounts
set Balance = Balance - 100
where Anum = 8888

update Accounts
set Balance = Balance + 100
where Anum = 9999

Problem
If the system fails between these updates, money may be withdrawn
but not redeposited.

CS 348 Transactions Fall 2012 9 / 39

Notes

High-Level Lesson

We need to worry about partial results of applications on the database
when a crash occurs.

We need to make sure that when applications are completed their
changes to the database survive crashes.

CS 348 Transactions Fall 2012 10 / 39

Notes

Transactions

Definition (Transaction)
An application-specified atomic and durable unit of work (a process).

• Concurrency transparency
• Failure transparency

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

CS 348 Transactions Fall 2012 11 / 39

Notes

Properties of Transactions

Atomic: a transaction occurs entirely, or not at all
Consistency: each transaction preserves the consistency

of the database
Isolated: concurrent transactions do not interfere

with each other
Durable: once completed, a transaction’s changes

are permanent

CS 348 Transactions Fall 2012 12 / 39

Notes

How do DBMSs Guarantee These

Isolation: Concurrency control algorithms and techniques guarantee
concurrent transactions do not interfere with each other
and don’t see each other’s changes until they complete.

• Some sort of mutual exclusion is typically
implemented (i.e., locking) but alternatives exist

Atomicity & Durability: Recovery management guarantees that
committed transactions are durable (despite failures), and
that aborted transactions have no effect on the database.

• DBMS logs every action securely so that it can
consult the log later to determine what to do.

Good news/Bad news...
We will not study these; they are covered in CS448.

CS 348 Transactions Fall 2012 13 / 39

Notes

Transaction Definition – Formal

Let
• oi (x) be some operation of transaction T operating on data item
x , where oi 2 fread;writeg and oi is atomic;

• OS [oi ;
• N 2 fabort; commitg

Transaction T is a partial order T = f�;�g where

1 � = OS [fNg,
2 For any two operations oi , oj 2 OS , if oi = r(x) and oj = w(x)

for any data item x , then either oi � oj or oj � oi ,
3 8oi 2 OS ; oi � N .

CS 348 Transactions Fall 2012 14 / 39

Notes

Example

Consider a transaction T :

T = fRead(x);Read(y); x x + y ;Write(x); commitg

Then

� =fr [x]; r [y];w [x]; cg
�=f(r [x];w [x]); (r [y];w [x]); (w [x]; c); (r [x]; c); (r [y]; c)g

DAG representation

r[x]

c

r[y]

w[x]

CS 348 Transactions Fall 2012 15 / 39

Notes

How Do Transactions Help?

• Application 1: You are depositing money to your bank account at
an ATM.
update Accounts
set Balance = Balance + 100
where Anum = 9999

• Application 2: Your partner is withdrawing money from the same
account at another ATM.
update Accounts
set Balance = Balance - 50
where Anum = 9999

Isolation
If each of these applications run as a transaction, their effects would be
isolated from each other – Application 2 can’t see Application 1’s
update until Application 1 completes.

CS 348 Transactions Fall 2012 16 / 39

Notes

How Do Transactions Help?

• Update all account balances at a bank branch.

update Accounts
set Balance = Balance * 1.05
where BranchId = 12345

Atomicity
If the application runs as a transaction, either all the accounts will get
updated or none of them will.

CS 348 Transactions Fall 2012 17 / 39

Notes

Transaction Completion

COMMIT: Any updates a transaction has made become permanent
and visible to other transactions. Before COMMIT,
changes are tentative.

• Atomicity: commit is the “all” in “all-or-nothing”
execution.

• Durability: updates will survive crashes.
ABORT: Any updates a transaction may have made are undone

(erased), as if the transaction never ran at all.
• Isolation: abort is the “nothing” in “all-or-nothing”
execution.

A transaction that has started but has not yet aborted or committed is
said to be active.

CS 348 Transactions Fall 2012 18 / 39

Notes

Transactions in SQL

• A new transaction is begun when an application first executes an
SQL command.

• Two SQL commands are available to terminate a transaction:
• commit: commits the transaction
• rollback: abort the transaction

• A new transaction begins with the application’s next SQL
command after commit or rollback.

CS 348 Transactions Fall 2012 19 / 39

Notes

Example Transaction – Single Statement

The start of a new SQL expression (SELECT, UPDATE, INSERT,
DELETE, CREATE) automatically starts a transaction – no explicit
command required, but the termination needs to be specified.

SELECT *
FROM Employee
WHERE WorkDept = ’D11’
COMMIT

UPDATE Employee
SET Salary = Salary + 1000
WHERE WorkDept = ’D11’
COMMIT

CS 348 Transactions Fall 2012 20 / 39

Notes

Example Transaction – Embedded SQL

...
main()

...
EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL UPDATE Employee

SET Salary = Salary + 1000
WHERE WorkDept = ’D11’;

EXEC SQL COMMIT;
return(0);
...
error:

printf("update failed, sqlcode = %ldnn",SQLCODE);
EXEC SQL ROLLBACK;
return(-1);

...

CS 348 Transactions Fall 2012 21 / 39

Notes

Explicitly Aborting Transaction

main() { ...
EXEC SQL BEGIN DECLARE SECTION;

int actno1, actno2; real amount;
EXEC SQL END DECLARE SECTION;
gets(actno1,actno2,amount);
EXEC SQL UPDATE Accounts

SET Balance = Balance + :amount WHERE Anum = :actno2;
SELECT Balance INTO tempbal FROM Accounts
WHERE Anum = :actno1;

if (tempbal - :amount)<0 {
printf(”insufficient funds”);
EXEC SQL ROLLBACK;
return(-1);}

else {
EXEC SQL UPDATE Accounts
SET Balance = Balance + :amount WHERE Anum = :actno1;
EXEC SQL COMMIT;
printf(”funds transfer completed”);
return(0); } }

CS 348 Transactions Fall 2012 22 / 39

Notes

Setting Transaction Properties

set transaction <transaction mode>
[, <transaction mode>] [, <transaction mode>]

transaction mode ::= <diagnostic size>
| <access mode>
| <isolation level>

• Diagnostic size determines how many error conditions can be
recorded.

• Access mode indicates whether the transaction is READ ONLY or
READ WRITE (default).

• Isolation level determines how the interactions of transactions are
to be managed (remember the concurrency problems).

CS 348 Transactions Fall 2012 23 / 39

Notes

SQL Isolation Levels

• Different isolation levels deal with different concurrency problems.
• Four isolation levels are supported, with the highest being
serializability:
Level 0 (Read Uncommitted): transaction may see uncommitted

updates
Level 1 (Read Committed): transaction sees only committed

changes, but non-repeatable reads are possible
Level 2 (Repeatable Read): reads are repeatable, but “phantoms”

are possible
Level 3 (Serializability)

CS 348 Transactions Fall 2012 24 / 39

Notes

Level 3 – Serializability

• This is the strongest form of isolation level.
• Concurrent transactions must appear to have been executed
sequentially, i.e., one at a time, in some order. If Ti and Tj are
concurrent transactions, then either:

1 Ti will appear to precede Tj , meaning that Tj will “see” any
updates made by Ti , and Ti will not see any updates made by Tj ,
or

2 Ti will appear to follow Tj , meaning that Ti will see Tj ’s updates
and Tj will not see Ti ’s.

CS 348 Transactions Fall 2012 25 / 39

Notes

Serializability: An Example

• An interleaved execution of two transactions, T1 and T2:
Ha = w1[x] r2[x] w1[y] r2[y]

• An equivalent serial execution of T1 and T2:
Hb = w1[x] w1[y]

| {z }

T1

r2[x] r2[y]
| {z }

T2

• An interleaved execution of T1 and T2 with no equivalent serial
execution:

Hc = w1[x] r2[x] r2[y] w1[y]

Ha is serializable because it is equivalent to Hb , a serial schedule.
Hc is not serializable.

CS 348 Transactions Fall 2012 26 / 39

Notes

Transactions and Histories

• Two operations conflict if:
1 they belong to different transactions,
2 they operate on the same object, and
3 at least one of the operations is a write

• Two types of conflicts:
1 Read-Write
2 Write-Write

• An execution history over a set of transactions T1 : : :Tn is an
interleaving of the operations of T1 : : :Tn in which the operation
ordering imposed by each transaction is preserved.

• Two important assumptions:
1 Transactions interact with each other only via reads and writes of

objects
2 A database is a fixed set of independent objects

CS 348 Transactions Fall 2012 27 / 39

Notes

Serializability

Definition ((Conflict) Equivalence)
Two histories are (conflict) equivalent if

• they are over the same set of transactions, and
• the ordering of each pair of conflicting operations is the same in
each history

Definition ((Conflict) Serializability)
A history H is said to be (conflict) serializable if there exists some
serial history H 0 that is (conflict) equivalent to H

CS 348 Transactions Fall 2012 28 / 39

Notes

Testing for Serializability

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

Is this history serializable?

Theorem
A history is serializable iff its serialization graph is acyclic.

CS 348 Transactions Fall 2012 29 / 39

Notes

Serialization Graphs

Serialization graph SGH = (V ;E) for schedule H is defined as:
1 V = fT jT is a committed transaction in Hg
2 E = fTi ! Tj if oij 2 Tiandokl 2 Tk conflict and oij �H oklg

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

T1 T2

T3 T4

CS 348 Transactions Fall 2012 30 / 39

Notes

Serialization Graphs (cont’d)

r1[x] r3[x] w4[y] r2[u] w4[z] r1[y] r3[u] r2[z] w2[z] r3[z] r1[z] w3[y]

T1 T2

T3 T4

The history above is equivalent to

w4[y] w4[z] r2[u] r2[z] w2[z] r1[x] r1[y] r1[z]r3[x] r3[u] r3[z] w3[y]

That is, it is equivalent to executing T4 followed by T2 followed by T1
followed by T3.

CS 348 Transactions Fall 2012 31 / 39

Notes

Level 0 – Read Uncommitted

Transaction at this level may see uncommitted updates of other
transactions.

• Dirty read: Transaction Ti may read the update of uncommitted
transaction Tj .

• If Tj later aborts, the value that Ti read is incorrect.
• Database may be corrupted as well.

CS 348 Transactions Fall 2012 32 / 39

Notes

Read Uncommitted Example – Old Transaction

main() { ...
EXEC SQL BEGIN DECLARE SECTION;

int actno1, actno2; real amount;
EXEC SQL END DECLARE SECTION;
gets(actno1,actno2,amount);
EXEC SQL UPDATE Accounts

SET Balance = Balance + :amount WHERE Anum = :actno2;
SELECT Balance INTO tempbal FROM Accounts
WHERE Anum = :actno1;

if (tempbal - :amount)<0 {
printf(”insufficient funds”);
EXEC SQL ROLLBACK;
return(-1);}

else {
EXEC SQL UPDATE Accounts
SET Balance = Balance + :amount WHERE Anum = :actno1;
EXEC SQL COMMIT;
printf(”funds transfer completed”);
return(0); } }

CS 348 Transactions Fall 2012 33 / 39

Notes

Read Uncommitted Example

Start Balance(777) = $300, Balance(888) = $100, Balance(999)= $200

T1(888; 999; $150) T2(999; 777; $250)

Add $150 to 999 (350)

Test Balance of 888 ($100)

Rollback: Deduct $150 from
999 ($-50) Time

Add $250 to 777 (550)

Test Balance of 999 ($350)

Deduct $250 from 999
and Commit ($100)

CS 348 Transactions Fall 2012 34 / 39

Notes

Level 1 – Read Committed

Transaction at this level will not see uncommitted updates of other
transactions, but non-repeatable reads are possible.

• Non-repeatable read: Transaction Ti reads a value from the
database. Transaction Tj updates that value. When Ti reads the
value again, it will see different value.

• Ti is reading Tj ’s value after Tj commits (so no dirty reads).
• However, Tj ’s update is in between two reads by Ti .

We have seen an example early on.

CS 348 Transactions Fall 2012 35 / 39

Notes

Level 2 – Repeatable Reads

Transaction at this level will not have repeatable reads problem (i.e.,
multiple reads will return the same value), but phantoms are possible.

• Transaction Ti reads a row from a table (perhaps based on a
predicate in WHERE clause).

• Transaction Tj inserts some tuples into the table.
• Ti issues the same read again and reads the original row and a
number of new rows that it did not see the first time (these are
the phantom tuples).

CS 348 Transactions Fall 2012 36 / 39

Notes

Repeatable Reads Example

Application 1:

select *
from Employee
where WorkDept = ’D11’

select *
from Employee
where Salary > 50000

Application 2:

insert into Employee
values(’000123’,’Sheldon’,’Q’,’Jetstream’,’D11’,

’05/01/00’,52000.00)

Problem
Application 1’s second query may see Sheldon Jetstream, even though
its first query does not.

CS 348 Transactions Fall 2012 37 / 39

Notes

Interaction Between Transactions at Different Isolation
Levels

Isolation Level Type of Violation
Dirty Read Nonrepeatable Read Phantom

Read Uncommitted Yes Yes Yes
Read Committed No Yes Yes
Repeatable Read No No Yes
Serializable No No No

CS 348 Transactions Fall 2012 38 / 39

Notes

Snapshot Isolation

A transaction will see a consistent snapshot of the database when it
started executing.

• A transaction reads the committed values from the database when
it starts.

• If it does not make any updates, no problem.
• If it makes updates that do not conflict by any updates made by
any other transaction, it can commit.

• If it makes updates that do conflict by an update made by another
transaction, it has to rollback.

Read-Write conflicts are avoided; only Write-Write conflicts are
managed.

CS 348 Transactions Fall 2012 39 / 39

Notes

	Why We Need Transactions
	Concurrency
	Failures

	Transactions
	Properties
	Formal Definition
	Completion States

	Transactions in SQL
	Transaction Specification
	Isolation Levels

