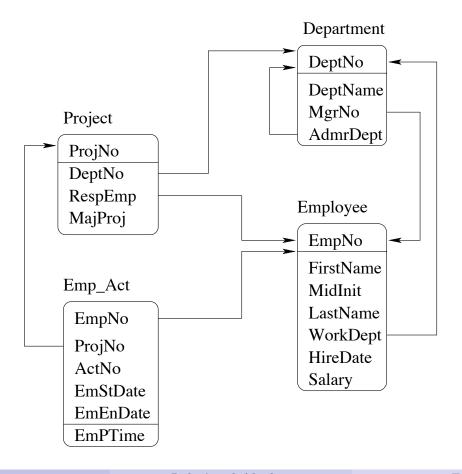
Relational Algebra


M. Tamer Özsu

David R. Cheriton School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Fall 2012

	CS 348	Relational Algebra	Fall 2012	1 / 15
Notes				

Database Schema Used in Examples

CS 348 Relational Algebra Fall 2012 2 / 15

Notes

Relational Algebra

- the relational algebra consists of a set of *operators*
- relational algebra is *closed*
 - each operator takes as input zero or more relations
 - each operator defines a single output relation in terms of its input relation(s)
 - relational operators can be composed to form expressions that define new relations in terms of existing relations.
- Notation:

R is a relation name; E is a relational algebra expression

	CS 348	Relational Algebra	Fall 2012	3 / 15
Notes				

Primary Relational Operators

- Relation Name: R
- Selection: $\sigma_{condition}(E)$
 - result schema is the same as E's
 - result instance includes the subset of the tuples of E that each satisfies the condition
- Projection: $\pi_{attributes}(E)$
 - result schema includes only the specified attributes
 - result instance could have as many tuples as E, except that duplicates are eliminated

	CS 348	Relational Algebra	Fall 2012	4 / 15
Notes	0.2 0.10		1 411 2022	- / -3
110168				

Primary Relational Operators (cont'd)

- Rename: $\rho(R(\overline{F}), E)$
 - \overline{F} is a list of terms of the form $oldname \rightarrow newname$
 - returns the result of E with columns renamed according to \overline{F} .
 - remembers the result as R for future expressions
- Product: $E_1 \times E_2$
 - result schema has all of the attributes of E_1 and all of the attributes of E_2
 - result instance includes one tuple for every pair of tuples (one from each expression result) in E_1 and E_2
 - sometimes called cross-product or Cartesian product
 - renaming is needed when E_1 and E_2 have common attributes

3.7	CS 348	Relational Algebra	Fall 2012	5 / 15
Notes				

Cross Product Example

R

AAA	BBB
a_1	b_1
a_2	b_2
a_3	b_3

S

$\boldsymbol{\mathcal{L}}$	
CCC	DDD
c_1	d_1
c_2	d_2

 $R \times S$

AAA	BBB	CCC	DDD
a_1	b_1	c_1	d_1
a_2	b_2	c_1	d_1
a_3	b_3	c_1	d_1
a_1	b_1	c_2	d_2
a_2	b_2	c_2	d_2
a_3	b_3	c_2	d_2

	CS 348	Relational Algebra	Fall 2012 6	/ 15
No	tes			

Select, Project, Product Examples

- Note: Use *Emp* to mean the Employee relation, *Proj* the project relation
- Find the last names and hire dates of employees who make more than \$100000.

$$\pi_{LastName,HireDate}(\sigma_{Salary>100000}(Emp))$$

• For each project for which department E21 is responsible, find the name of the employee in charge of that project.

$$\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(\sigma_{RespEmp=EmpNo}(Emp imes Proj)))$$

	CS 348	Relational Algebra	Fall 2012 7 / 15
Notes			
-			

Joins

- Conditional join: $E_1 \bowtie_{condition} E_2$
 - equivalent to $\sigma_{condition}(E_1 \times E_2)$
 - special case: equijoin

 $Proj \bowtie_{(RespEmp=EmpNo)} Emp$

- Natural join $(E_1 \bowtie E_2)$
 - The result of $E_1 \bowtie E_2$ can be formed by the following steps
 - 1 form the cross-product of E_1 and E_2 (renaming duplicate attributes)
 - 2 eliminate from the cross product any tuples that do not have matching values for all pairs of attributes common to schemas E_1 and E_2
 - 3 project out duplicate attributes
 - if no attributes in common, this is just a product

	CS 348	Relational Algebra	Fall 2012	8 / 15
Notes				

Example: Natural Join

- Consider the natural join of the Project and Department tables, which have attribute DeptNo in common
 - the schema of the result will include attributes ProjName, DeptNo, RespEmp, MajProj, DeptName, MgrNo, and AdmrDept
 - the resulting relation will include one tuple for each tuple in the Project relation (why?)

	CS 348	Relational Algebra	Fall 2012	9 / 15
Notes				,
11000				

Set-Based Relational Operators

- Union $(R \cup S)$:
 - schemas of R and S must be "union compatible"
 - result includes all tuples that appear either in R or in S or in both
- Difference (R S):
 - schemas of R and S must be "union compatible"
 - result includes all tuples that appear in R and that do not appear in S
- Intersection $(R \cap S)$:
 - schemas of R and S must be "union compatible"
 - ullet result includes all tuples that appear in both R and S
- Union Compatible:
 - Same number of fields.
 - 'Corresponding' fields have the same type

	CS 348	Relational Algebra	Fall 2012	10 / 15
Notes				
110000				

Relational Division

X		
lacksquare	В	C
a_1	b_1	c_1
a_1	b_1	c_2
a_1	b_2	c_2
a_2	b_1	c_1
a_2	b_1	c_2
a_2	b_2	c_2
a_2	b_3	c_3
a_3	b_1	c_1

$$egin{array}{c} X/S \ A \ \hline a_1 \ a_2 \ \end{array}$$

	CS 348	Relational Algebra	Fall 2012 11 / 15
Notes			

Division is the Inverse of Product

 $egin{array}{c} R \ A \ \hline a_1 \ a_2 \ \end{array}$

$$(R imes S)/S$$
 A
 a_1
 a_2

	CS 348	Relational Algebra	Fall 2012	12 / 15
Notes				

Summary of Relational Operators

	CS 348	Relational Algebra	Fall 2012	13 / 15
Notes				

Algebraic Equivalences

• This:

$$\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(\sigma_{RespEmp=EmpNo}(E imes P)))$$

• is equivalent to this:

$$\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(E \bowtie_{RespEmp=EmpNo} P))$$

• is equivalent to this:

$$\pi_{ProjNo,LastName}(E \bowtie_{RespEmp=EmpNo} \sigma_{DeptNo=E21}(P))$$

• is equivalent to this:

$$\pi_{ProjNo,LastName}(\quad (\quad \pi_{LastName,EmpNo}(E)) \bowtie_{RespEmp=EmpNo} (\quad \pi_{ProjNo,RespEmp}(\sigma_{DeptNo=E21}(P))))$$

• More on this topic later when we discuss database tuning...

	CS 348	Relational Algebra	Fall 2012	14 / 15
Notes				,
.1000				

Relational Completeness

Definition (Relationally Complete)

A query language that is at least as expressive as relational algebra is said to be *relationally complete*.

- The following languages are all relationally complete:
 - safe relational calculus
 - relational algebra
 - SQL
- SQL has additional expressive power because it captures duplicate tuples, unknown values, aggregation, ordering, . . .

	CS 348	Relational Algebra	Fall 2012	15 / 15
Notes	0.0 0.10	100140101141 11-80214	1 441 1011	10 / 10
110000				