The Relational Model

M. Tamer Özsu

David R. Cheriton School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Fall 2012

	CS 348	Relational Model	Fall 2012 1 / 13
No	tes		

Review: Network and Hierarchical Models

Idea

Structural information is encoded implicitly using pointers.

Consequences:

- difficult to separate conceptual and physical schemas
- queries must explicitly navigate the data graph \Rightarrow procedural queries
- procedural (not semantic) specification of integrity constraints

	CS 348	Relational Model	Fall 2012	2 / 13
Notes				

The Relational Model

Idea

All information is organized in (flat) relations.

Features:

- simple and clean data model
- powerful and *declarative* query/update languages
- semantic integrity constraints
- data independence

	CS 348	Relational Model	Fall 2012	3 / 13
Notes				

The Relational Model: Formal Definition

Universe Domain Relation

- a set of atomic values **D** with equality (=)
- a name D with a set of values $dom(D) \subseteq \mathbf{D}$
- schema: $R(A_1:D_1,A_2:D_2,\ldots,A_k:D_k)$ with
 - name R
 - A_1, \ldots, A_k a set of distinct attribute names
 - D_1, \ldots, D_k a collection of (not necessarily distinct) domain names
- instance: a finite relation $\mathbf{R} \subseteq \text{dom}(D_1) \times \cdots \times \text{dom}(D_k)$.

Database

- schema: finite set of uniquely-named relation schemas
- instance: a relation R_i for each R_i

Note

- Intention of a relation: The associated relation schema.
- Extension of a relation: The associated set of tuples.

	CS 348	Relational Model	Fall 2012	4 / 13
No				

The Relational Model: Properties

Note

- Relational schemas have named and typed attributes
- Relational instances are finite

Properties of a relation:

- 1 Based on (finite) set theory
 - Attribute ordering: not strictly necessary
 - Value oriented: tuples identified by attribute values
 - Instance has set semantics:
 - No ordering among tuples
 - No duplicate tuples
- 2 All attribute values are atomic
- 3 Degree (arity) = # of attributes in schema
- 4 Cardinality = # of tuples in instance

	CS 348	Relational Model	Fall 2012	5 / 13
Notes				,

Example: A Bibliography Database

Database schema:

```
author(aid:int, name:string)
wrote(author:int, publication:int)
publication(pubid:int, title:string)
book(pubid, publisher, year)
journal(pubid, volume, no, year)
proceedings(pubid, year)
article(pubid, crossref, startpage, endpage)
```

Note

Relational schemas are sometimes abbreviated by omitting the attribute domains.

	CS 348	Relational Model	Fall 2012	6 / 13
Jotes				

Example: A Bibliography Database

Sample database instance:

CS 348 Relational Model Fall 2012 7 / 13
Notes

Example: A Bibliography Database

Sample database instance (tabular form):

author

W	r	Ο.	+	\Box
W	丄	\cup	し	$\overline{}$

aid	name
1	John
2	Sue

author	publication
1	1
1	4
2	3

publication

pubid	title
1	Mathematical Logic
3	Trans. Databases
2	Principles of DB Syst.
4	Query Languages

	CS 348	Relational Model	Fall 2012 8 / 13	
Nc	tes			
				_
				_
				_

Relations vs. SQL Tables

Note

The standard language for interfacing with relational DBMSs is Structured Query Language (SQL). Unfortunately, there are a few important differences between the Relational Model and the data model used by SQL (and relational DBMSs).

Discrepencies between Relational Model and SQL:

- Semantics of Instances
 - Relations are sets of tuples
 - Tables are multisets (bags) of tuples
- 2 Unknown values
 - SQL data model defines a particular value **null** (intended to mean "unknown") which has some special properties (requires *three-value logic*)

	CS 348	Relational Model	Fall 2012	9 / 13
Notes	OD 040	Itelational Wodel	1 an 2012	9 / 13
notes				

Integrity Constraints

A relational schema captures only the structure of relations

Idea

Extend relational/database schema with rules called constraints. An instance is only valid if it satisfies all schema constraints.

Reasons to use constraints:

- 1 Ensure data entry/modification respects database design
 - Shift responsibility from applications to DBMS
- 2 Protect data from bugs in applications

	CS 348	Relational Model	Fall 2012	10 / 13
Notes				- ,
1,000				

Types of Integrity Constraints

- Tuple-level
 - Domain restrictions
 - Attribute comparisons
- Relation-level
 - Key constraints
 - Superkey: a set of attributes for which no pair of distinct tuples in the relation will ever agree on the corresponding values
 - Candidate key: a minimal superkey (a minimal set of attributes that uniquely identifies a tuple)
 - Primary key: a designated candidate key
 - Functional dependencies, etc.

	CS 348	Relational Model	Fall 2012	11 / 13
Notes				

Types of Integrity Constraints (cont'd)

- Database-level
 - Referential integrity
 - Foreign key: Primary key of one relation appearing as attributes of another relation.
 - Referential integrity: A tuple with a non-null value for a foreign key that does not match the primary key value of a tuple in the referenced relation is not allowed.
 - Inclusion dependencies

	CS 348	Relational Model	Fall 2012	12 / 13
Notes				,

Example: Database Schema showing ICs

CS 348 Relational Model Fall 2012 13 / 13

Notes