
CS 348

Introduction to Database Management

Assignment 4

Due: 28 November 2012 9:00AM
Returned: 10 December 2012

Appeal deadline: By the end of final exam on the 19th
Lead TA: Taras Kinash

Plase submit the answers by placing hard copy solutions in the assignment boxes.

Question 1.
Given the following histories:

H1 ={W2(x),W1(x), R3(x), R1(x),W2(y), R3(y), R3(z), R2(x)}
H2 ={R3(z), R3(y),W2(y), R2(z),W1(x), R3(x),W2(x), R1(x)}
H3 ={R3(z),W2(x),W2(y), R1(x), R3(x), R2(z), R3(y),W1(x)}
H4 ={R2(z),W2(x),W2(y),W1(x), R1(x), R3(x), R3(z), R3(y)}

(a) Which of the above histories are conflict equivalent and why?

Solution: The easiest way to reason is to create the following table that shows the con-
flicting operations and their ordering in each of the histories:

Conflicting ops H1 H2 H3 H4

W2(x),W1(x) ≺ � ≺ ≺
W2(x), R3(x) ≺ � ≺ ≺
W2(x), R1(x) ≺ ≺ ≺ ≺
W1(x), R3(x) ≺ ≺ � ≺
W2(y), R3(y) ≺ � ≺ ≺
R2(x),W1(x) � – – –

For any of the histories to be conflict-equivalent, they need to have identical relationships,
i.e., we need to find the entries in the columns to be identical. From this table, one can
see that there are no two columns that are identical. Therefore, none of these histories are
conflct-equivalent.

(b) Which of the above histories are serializable and why?

Solution: Again, it is best to refer to the table in Problem 1. From this table, you can
reason about serializability by building serialization graphs for each history as follows.

1

• H1 is not serializable since it has the following serialization graph, which contains a
cycle:

T2
))

T2ii

��
T3

• H2 is not serializable since it has the following serialization graph, which contains a
cycle:

T1
))

T2ii

T3

OO

• H3 is serializable since it it has the following serialization graph that is equivalent
to the serial history T2 → T3 → T1:

T2
//

T1

T3

OO

• H4 is serializable since it it has the following serialization graph that is equivalent
to the serial history T2 → T1 → T3:

T2
//

T1

��
T3

Question 2.
Question 16.7 in your book.

Solution: The answer to each question is given below.

1. Because we are inserting a new row in the table Enrolled, you may think that READ
UNCOMMITTED would be sufficient. However, note that this isolation level is only
allowable for read-only queries. Therefore, READ COMMITTED would need to be used.

2. Because we are updating one existing row in the table Enrolled, we need an exclusive
access to the row which we are updating. So we would use READ COMMITTED.

3. To prevent other transactions from inserting or updating the table Enrolled while we are
reading from it (known as the phantom problem), we would need to use SERIALIZABLE.

4. same as above.

Page 2

Question 3.
Question 19.5 in your book. Please give 2-3 sentence (not longer) justification of your answer.

Solution: The answer to each case is given below:

1. 1NF. BCNF decomposition: AB, CD, ACE.

2. 1NF. BCNF decomposition: AB, BF

3. BCNF.

4. BCNF.

5. BCNF.

Question 4.
Question 20.1 in your book, but only the first part.

Solution:

• If we create a dense unclustered B+ tree index on 〈age, sal〉 of the Emp relation we will
be able to do an index-only scan to answer the 5th query. A hash index would not serve
our purpose here, since the data entries will not be ordered by age! If index only scans
are not allowed create a clustered B+ tree index on just the age field of Emp.

• We should create an unclustered B+Tree index on deptid of the Emp relation and another
unclustered index on 〈dname, did〉 in the Dept relation. Then, we can do an index only
search on Dept and then get the Emp records with the proper deptids for the second
query.

• We should create an unclustered index on ename of the Emp relation for the third query.

• We want a clustered sparse B+ tree index on floor of the Dept index so we can get the
department on each floor in floor order for the sixth query.

• Finally, a dense unclustered index on sal will allow us to average the salaries of all
employees using an index only-scan. However, the dense unclustered B+ tree index on
〈age, sal〉 that we created to support Query (5) can also be used to compute the average
salary of all employees, and is almost as good for this query as an index on just sal. So
we should not create a separate index on just sal.

Page 3

