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Design Process – Where are we?

Conceptual 
Schema

(ER Model)

Concepual
Design

Logical
Design

Logical Schema
(Relational 

Model)

Step 1 – ER-to-relational
mapping

Step 2 – Normalization:
“Improving” the design
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Relational Design Principles

• Relations should have semantic unity
• Information repetition should be avoided

• Anomalies: insertion, deletion, modification
• Avoid null values as much as possible

• Certainly avoid excessive null values

• Avoid spurious joins
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A Parts/Suppliers Database Example

• Description of a
parts/suppliers database:

• Each type of part has a name
and an identifying number,
and may be supplied by zero
or more suppliers. Each
supplier may offer the part
at a different price.

• Each supplier has an
identifying number, a name,
and a contact location for
ordering parts.

PnamePno

Supplies

Part

Supplier

Price

City

Sno

Sname
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Parts/Suppliers Example (cont.)

Suppliers
Sno Sname City
S1 Magna Ajax
S2 Budd Hull
Parts
Pno Pname
P1 Bolt
P2 Nut
P3 Screw

Supplies
Sno Pno Price
S1 P1 0.50
S1 P2 0.25
S1 P3 0.30
S2 P3 0.40

An instance of the parts/suppliers database.
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Alternative Parts/Suppliers Database

Pno Supplied_Items City

Sname

PricePname

Sno

An alternative E-R model for the parts/suppliers database.
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Alternative Example (cont.)

Supplied_Items
Sno Sname City Pno Pname Price
S1 Magna Ajax P1 Bolt 0.50
S1 Magna Ajax P2 Nut 0.25
S1 Magna Ajax P3 Screw 0.30
S2 Budd Hull P3 Screw 0.40

A database instance corresponding to the alternative E-R model.
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Change Anomalies

Consider
• Is one schema better than the other?
• What does it mean for a schema to be good?

• The single-table schema suffers from several kinds of problems:
• Update problems (e.g. changing name of supplier)
• Insert problems (e.g. add a new item)
• Delete problems (e.g. Budd no longer supplies screws)
• Likely increase in space requirements

• The multi-table schema does not have these problems.
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Another Alternative Parts/Supplier Database

Is more tables always better?

Snos
Sno
S1
S2

Snames
Sname
Magna
Budd

Cities
City
Ajax
Hull

Inums
Inum
I1
I2
I3

Inames
Iname
Bolt
Nut
Screw

Prices
Price
0.50
0.25
0.30
0.40

Information about relationships is lost!
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Designing Good Databases

Goals
• A methodology for evaluating schemas (detecting anomalies).
• A methodology for transforming bad schemas into good schemas
(repairing anomalies).

• How do we know an anomaly exists?
• Certain types of integrity constraints reveal regularities in

database instances that lead to anomalies.

• What should we do if an anomaly exists?
• Certain schema decompositions can avoid anomalies while

retaining all information in the instances
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Functional Dependencies (FDs)

Idea: Express the fact that in a relation schema (values of) a set of
attributes uniquely determine (values of) another set of attributes.

Definition (Functional Dependency)
Let R be a relation schema, and X ;Y � R sets of attributes. The
functional dependency

X ! Y

holds on R if whenever an instance of R contains two tuples t and u
such that t [X ] = u [X ] then it is also true that t [Y ] = u [Y ].

We say that X functionally determines Y (in R).

Notation: t [A1; : : : ;Ak ] means projection of tuple t onto the attributes
A1; : : : ;Ak . In other words, (t :A1; : : : ; t :Ak ).
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Examples of Functional Dependencies

Consider the following relation schema:

EmpProj
SIN PNum Hours EName PName PLoc Allowance

• SIN determines employee name
SIN ! EName

• project number determines project name and location
PNum ! PName, PLoc

• allowances are always the same for the same number of hours at
the same location

PLoc, Hours ! Allowance
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Functional Dependencies and Keys

• Keys (as defined previously):
• A superkey is a set of attributes such that no two tuples (in an

instance) agree on their values for those attributes.
• A candidate key is a minimal superkey.
• A primary key is a candidate key chosen by the DBA

• Relating keys and FDs:
• If K � R is a superkey for relation schema R, then dependency
K ! R holds on R.

• If dependency K ! R holds on R and we assume that R does not
contain duplicate tuples (i.e. relational model) then K � R is a
superkey for relation schema R
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Closure of FD Sets

How do we know what additional FDs hold in a schema?

• The closure of the set of functional dependencies F (denoted F+)
is the set of all functional dependencies that are satisfied by every
relational instance that satisfies F .

• Informally, F+ includes all of the dependencies in F , plus any
dependencies they imply.
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Reasoning About FDs

Logical implications can be derived by using inference rules called
Armstrong’s axioms

• (reflexivity) Y � X ) X ! Y
• (augmentation) X ! Y ) XZ ! YZ
• (transitivity) X ! Y , Y ! Z ) X ! Z

The axioms are
• sound (anything derived from F is in F+)
• complete (anything in F+ can be derived)

Additional rules can be derived
• (union) X ! Y , X ! Z ) X ! YZ
• (decomposition) X ! YZ ) X ! Y
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Reasoning About FDs (example)

Example: F = f SIN, PNum ! Hours
SIN ! EName
PNum ! PName, PLoc
PLoc, Hours ! Allowance g

A derivation of SIN, PNum ! Allowance:
1 SIN, PNum ! Hours (2 F )
2 PNum ! PName, PLoc (2 F )
3 PLoc, Hours ! Allowance (2 F )
4 SIN, PNum ! PNum (reflexivity)
5 SIN, PNum ! PName, PLoc (transitivity, 4 and 2)
6 SIN, PNum ! PLoc (decomposition, 5)
7 SIN, PNum ! PLoc, Hours (union, 6, 1)
8 SIN, PNum ! Allowance (transitivity, 7 and 3)
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Computing Attribute Closures

• There is a more efficient way of using Armstrong’s axioms, if we
only want to derive the maximal set of attributes functionally
determined by some X (called the attribute closure of X ).

function ComputeX+(X ;F )
begin

X+ := X ;
while true do

if there exists (Y ! Z ) 2 F such that
(1) Y � X+, and
(2) Z 6� X+

then X+ := X+ [ Z
else exit;

return X+;
end
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Computing Attribute Closures (cont’d)

Let R be a relational schema and F a set of functional dependencies on
R. Then

Theorem: X is a superkey of R if and only if

ComputeX+(X ;F ) = R

Theorem: X ! Y 2 F+ if and only if

Y � ComputeX+(X ;F )
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Attribute Closure Example

Example: F = f SIN ! EName
PNum ! PName, PLoc
PLoc, Hours ! Allowance g

ComputeX+({Pnum,Hours},F):

FD X+

initial Pnum,Hours
Pnum!Pname,Ploc Pnum,Hours,Pname,Ploc

PLoc,Hours!Allowance Pnum,Hours,Pname,Ploc,Allowance
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Schema Decomposition

Definition (Schema Decomposition)
Let R be a relation schema (= set of attributes). The collection
fR1; : : : ;Rng of relation schemas is a decomposition of R if

R = R1 [R2 [ � � � [Rn

A good decomposition does not

• lose information
• complicate checking of constraints
• contain anomalies (or at least contains fewer anomalies)
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Lossless-Join Decompositions

We should be able to construct the instance of the original table from
the instances of the tables in the decomposition

Example: Consider replacing

Marks
Student Assignment Group Mark
Ann A1 G1 80
Ann A2 G3 60
Bob A1 G2 60

by decomposing (i.e. projecting) into two tables

SGM
Student Group Mark
Ann G1 80
Ann G3 60
Bob G2 60

AM
Assignment Mark
A1 80
A2 60
A1 60
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Lossless-Join Decompositions (cont.)

But computing the natural join of SGM and AM produces

Student Assignment Group Mark
Ann A1 G1 80
Ann A2 G3 60
Ann A1 G3 60
Bob A2 G2 60
Bob A1 G2 60

. . . and we get extra data (spurious tuples). We would therefore lose
information if we were to replace Marks by SGM and AM.

If re-joining SGM and AM would always produce exactly the tuples in
Marks, then we call SGM and AM a lossless-join decomposition.

CS 348 Schema Refinement Fall 2012 23 / 43

Notes



Lossless-Join Decompositions (cont.)

A decomposition fR1;R2g of R is lossless if and only if the common
attributes of R1 and R2 form a superkey for either schema, that is

R1 \R2 ! R1 or R1 \R2 ! R2

Example: In the previous example we had

R = {Student, Assignment, Group, Mark} ,
F = {(Student, Assignment ! Group, Mark)} ,

R1 = {Student, Group, Mark} ,
R2 = {Assignment, Mark}

Decomposition fR1;R2g is lossy because R1 \R2 (= fMarkg) is not a
superkey of either fStudent ;Group;Markg or fAssignment ;Markg
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Dependency Preservation

How do we test/enforce constraints on the decomposed schema?

Example: A table for a company database could be

R
Proj Dept Div

FD1: Proj ! Dept,
FD2: Dept ! Div, and
FD3: Proj ! Div

and two decompositions
D1 = {R1[Proj, Dept], R2[Dept, Div]}
D2 = {R1[Proj, Dept], R3[Proj, Div]}

Both are lossless. (Why?)
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Dependency Preservation (cont.)

Which decomposition is better?

• Decomposition D1 lets us test FD1 on table R1 and FD2 on table
R2; if they are both satisfied, FD3 is automatically satisfied.

• In decomposition D2 we can test FD1 on table R1 and FD3 on
table R3. Dependency FD2 is an interrelational constraint:
testing it requires joining tables R1 and R3.

) D1 is better!

Given a schema R and a set of functional dependencies F ,
decomposition D = fR1; : : : ;Rng of R is dependency preserving if
there is an equivalent set of functional dependencies F 0, none of which
is interrelational in D .
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Normal Forms

What is a “good” relational database schema?
Rule of thumb: Independent facts in separate tables:

“Each relation schema should consist of a primary key
and a set of mutually independent attributes”

This is achieved by transforming a schema into a normal form.

Goals:
• Intuitive and straightforward transformation
• Anomaly-free/Nonredundant representation of data

Normal Forms based on Functional Dependencies:
• Boyce-Codd Normal Form (BCNF)
• Third Normal Form (3NF)
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Normal Forms Based on FDs

1NF eliminates relations within relations or relations as attributes of
tuples
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Boyce-Codd Normal Form (BCNF) - Informal

• BCNF formalizes the goal that in a good database schema,
independent relationships are stored in separate tables.

• Given a database schema and a set of functional dependencies for
the attributes in the schema, we can determine whether the
schema is in BCNF. A database schema is in BCNF if each of its
relation schemas is in BCNF.

• Informally, a relation schema is in BCNF if and only if any group
of its attributes that functionally determines any others of its
attributes functionally determines all others, i.e., that group of
attributes is a superkey of the relation.
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Formal Definition of BCNF

Let R be a relation schema and F a set of functional dependencies.

Schema R is in BCNF (w.r.t. F ) if and only if
whenever (X ! Y ) 2 F+ and XY � R, then either

• (X ! Y ) is trivial (i.e., Y � X ), or
• X is a superkey of R

A database schema fR1; : : : ;Rng is in BCNF if each relation schema
Ri is in BCNF.
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BCNF and Redundancy

• Why does BCNF avoid redundancy? Consider:
Supplied_Items
Sno Sname City Pno Pname Price

• The following functional dependency holds:
Sno ! Sname, City

• Therefore, supplier name “Magna” and city “Ajax” must be
repeated for each item supplied by supplier S1.

• Assume the above FD holds over a schema R that is in BCNF.
This implies that:

• Sno is a superkey for R
• each Sno value appears on one row only
• no need to repeat Sname and City values
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Lossless-Join BCNF Decomposition

function DecomposeBCNF (R;F )
begin

Result := {R};
while some Ri 2 Result and (X ! Y ) 2 F+

violate the BCNF condition do begin
Replace Ri by Ri � (Y �X );
Add {X ;Y} to Result;

end;
return Result;

end
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Lossless-Join BCNF Decomposition

• No efficient procedure to do this exists.

• Results depend on sequence of FDs used to decompose the
relations.

• It is possible that no lossless join dependency preserving BCNF
decomposition exists

• Consider R = {A, B, C} and F = {AB ! C, C ! B}.
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BCNF Decomposition - An Example

• R = {Sno,Sname,City,Pno,Pname,Price}
• functional dependencies:
Sno ! Sname,City
Pno ! Pname
Sno,Pno ! Price

• This schema is not in BCNF because, for example, Sno determines
Sname and City, but is not a superkey of R.
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BCNF Decomposition - An Example (cont.)

Decomposition Diagram:
{Sno,Sname,City,Pno,Pname,Price}

{Sno,Sname,City}{Sno,Pno,Pname,Price}

{Sno,Pno,Price} {Pno,Pname}

Sno ï> Sname,City

Pno ï> Pname

• The complete schema is
now
R1 = {Sno,Sname,City}
R2 = {Sno,Pno,Price}
R3 = {Pno,Pname}

• This schema is a
lossless-join, BCNF
decomposition of the
original schema R.
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Third Normal Form (3NF)

Schema R is in 3NF (w.r.t. F ) if and only if whenever (X ! Y ) 2 F+

and XY � R, then either
• (X ! Y ) is trivial, or
• X is a superkey of R, or
• each attribute in Y �X is contained in a candidate key of R

A database schema fR1; : : : ;Rng is in 3NF if each relation schema Ri
is in 3NF.

• 3NF is looser than BCNF
• allows more redundancy
• e.g. R = {A, B, C} and F = {AB ! C, C ! B}.

• lossless-join, dependency-preserving decomposition into 3NF
relation schemas always exists.
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Minimal Cover

Definition: Two sets of dependencies F and G are equivalent iff
F+ = G+.

There are different sets of functional dependencies that have the same
logical implications. Simple sets are desirable.

Definition: A set of dependencies G is minimal if
1 every right-hand side of an dependency in F is a single attribute.
2 for no X ! A is the set F � fX ! Ag equivalent to F .
3 for no X ! A and Z a proper subset of X is the set
F � fX ! Ag [ fZ ! Ag equivalent to F .

Theorem: For every set of dependencies F there is an equivalent
minimal set of dependencies (minimal cover).
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Finding Minimal Covers

A minimal cover for F can be computed in three steps. Note that each
step must be repeated until it no longer succeeds in updating F .

Step 1.
Replace X ! YZ with the pair X ! Y and X ! Z .

Step 2.
Remove A from the left-hand-side of X ! B in F if

B is in ComputeX+(X � fAg;F ).

Step 3.
Remove X ! A from F if A 2 ComputeX+(X ;F � fX ! Ag).
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Dependency-Preserving 3NF Decomposition

Idea: Decompose into 3NF relations and then “repair”

function Decompose3NF (R;F )
begin

Result := {R};
while some Ri 2 Result and (X ! Y ) 2 F+

violate the 3NF condition do begin
Replace Ri by Ri � (Y �X );
Add {X ;Y} to Result;

end;
N := (a minimal cover for F) � (

S
i Fi )

+

for each (X ! Y ) 2 N do
Add {X ;Y} to Result;

end;
return Result;

end
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Dep-Preserving 3NF Decomposition - An Example

• R = {Sno,Sname,City,Pno,Pname,Price}
• Functional dependencies:

Sno ! Sname,City Pno ! Pname
Sno,Pno ! Price Sno, Pname ! Price

• Following same decomposition tree as BCNF example:
R1 = {Sno,Sname,City}
R2 = {Sno,Pno,Price}
R3 = {Pno,Pname}

• Minimal cover:
Sno ! Sname Pno ! Pname
Sno ! City Sno, Pname ! Price

• Add relation to preserve missing dependency
R4 = {Sno, Pname, Price}
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3NF Synthesis

A lossless-join 3NF decomposition that is dependency preserving can
be efficiently computed

function Synthesize3NF (R;F )
begin

Result := ;;
F 0 := a minimal cover for F;
for each (X ! Y ) 2 F 0 do

Result := Result [ {XY };
if there is no Ri 2 Result such that

Ri contains a candidate key for R then begin
compute a candidate key K for R;
Result := Result [ {K};

end;
return Result;

end
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3NF Synthesis - An Example

• R = {Sno,Sname,City,Pno,Pname,Price}
• Functional dependencies:

Sno ! Sname,City Pno ! Pname
Sno,Pno ! Price Sno, Pname ! Price

• Minimal cover:
Sno ! Sname R1 = {Sno, Sname}
Sno ! City R2 = {Sno, City}
Pno ! Pname R3 = {Pno, Pname}
Sno, Pname ! Price R4 = {Sno, Pname, Price}

• Add relation for candidate key R5 = {Sno, Pno}
• Optimization: combine relations R1 and R2 (same key)
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Summary

• Functional dependencies provide clues towards elimination of
(some) redundancies in a relational schema.

• Goals: to decompose relational schemas in such a way that the
decomposition is

(1) lossless-join
(2) dependency preserving
(3) BCNF (and if we fail here, at least 3NF)
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