
NULL VALUES

CHAPTER 5 (6/E)

CHAPTER 8 (5/E)

1

LECTURE OUTLINE

 Dealing with null values

• Three-valued logic

• Effects in WHERE clauses

• IS NULL

• Effects on aggregation

• Effects on GROUP BY, set operations, and SELECT DISTINCT

• Treatment in ORDER BY clauses

• Effects in CHECK constraints

 Outer joins

2

SEMANTICS OF NULL

 Recall possible meanings of NULL

• Unknown value

• Unavailable or withheld value

• Not applicable attribute

 Each stored NULL value incomparable to every other stored value

• Even if other value also NULL

• unknown ≟ 5  unknown

• unknown ≟ unknown  unknown

• Comparisons involving unknown values are neither true nor false.

 Thus, SQL uses a three-valued logic:

• TRUE, FALSE, and UNKNOWN

3

THREE-VALUED LOGIC

 Similarly, any operation involving an unknown value produces an

unknown value for the result.

• e.g., unknown + 5  unknown

4

EVALUATING WHERE

 Recall that WHERE clause evaluates each tuple in turn and returns

only those for which the condition evaluates to true.

 Tuples that evaluate to false or unknown are rejected.

• Cannot use

WHERE phone = NULL

to test for null value in a tuple.

 Many tautologies do not hold for columns with NULLs.

• e.g., no “law of the excluded middle”

SELECT *

FROM Student

WHERE age > 18 OR NOT age > 18

might not return all Student tuples

6

IS NULL

 Most SQL operators are NULL-intolerant.

• They return unknown if an operand is NULL.

 SQL provides special test that is NULL-tolerant

IS [NOT] NULL

 Need to account for NULLs when formulating queries

• Not handling NULLs is a common source of errors

7

WHEN NULLS ARE IGNORED

 Consider aggregating values for budget in the following.

e.g., max(budget), sum(budget), average(budget)

• NULL values in tuples ignored for aggregation (even for COUNT)

• Only non-NULL values included in aggregations.

• i.e., sum() handled differently from +

• Example:

SELECT COUNT(*), COUNT(budget), AVERAGE(gross-budget)

FROM Film

WHERE genre = 'comedy';

• all comedies counted for first aggregation;

• only comedies with non-NULL budget counted for second aggregation;

• only comedies with non-NULL budget and non-NULL gross included in

third aggregation

8

Film
title genre year director minutes budget gross

WHEN ALL NULLS ARE TREATED EQUAL

 Grouping and set operations treat all NULLs as the same value

• e.g., GROUP BY budget forms separate group for all tuples with

NULL value in budget

• Similarly for set operations: all NULLs treated as if a single value

• e.g., {(A,B,NULL),(A,B,C)} ∩ {(A,B,D),(A,B,NULL)} = {(A,B,NULL)}

(SELECT genre, budget

 FROM Film

 WHERE gross > 15000000)

UNION

(SELECT genre, budget

 FROM Film

 WHERE year > 2000)

• Similarly, too, for duplicate elimination with SELECT DISTINCT

 Finally ORDER BY

• NULLs sorted together, but sort order with respect to other values

is implementation-dependent

9

NULLS IN SQL’S DDL

 By default, must be aware of possible NULLs for all columns.

 Recall, however, a column can be declared NOT NULL.

• NULL values cannot occur; querying simplified

• Recall: Primary key columns must be declared NOT NULL

 Unlike WHERE clause, CHECK constraints and FOREIGN KEY

constraints ensure that no tuple returns false.

• Therefore NULLs accepted

• e.g.,

CHECK (age > 18)

allows tuples with NULL value for age

1
1

JOIN OPERATOR

 For convenience, SQL’s join operator (algebra’s ⋈<𝑗𝑜𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛>)

• Permits users to specify a table resulting from a join operation

Table1 [INNER] JOIN Table2 ON <condition>

• May appear in the FROM clause of a query

• Keyword INNER is optional

• Result is a single joined table

• Equivalent to including <condition> in WHERE clause

• Number of rows in result in range [0,|Table1|*|Table2|]

• Data from Table1 appear in result only if matching row exists in Table2.

• Data from Table2 appear in result only if matching row exists in Table1.

1
2

LEFT OUTER JOIN OPERATOR

 Every tuple in left table appears in result

• If matching tuple(s) in right table, works like inner join

• If no matching tuple in right table, one tuple in result with left tuple

values padded with NULL values for columns of right table

Table1 LEFT [OUTER] JOIN Table2 ON <condition>

SELECT *

FROM Customer LEFT JOIN Sale ON Customer.custid = Sale.custid

1
3

Customer
custid name address phone

1205 Lee 633 S. First 555-1219
3122 Willis 41 King 555-9876
2134 Smith 213 Main 555-1234
1697 Ng 5 Queen N. 555-0025
3982 Harrison 808 Main 555-4829

Sale
saleid date custid

A17 5 Dec 3122
B823 5 Dec 1697
B219 9 Dec 3122
C41 15 Dec 1205
X00 23 Dec NULL

Customer.custid name address phone saleid date Sale.custid

1205 Lee 633 S. First 555-1219 C41 15 Dec 1205
3122 Willis 41 King 555-9876 A17 5 Dec 3122
3122 Willis 41 King 555-9876 B219 9 Dec 3122
2134 Smith 213 Main 555-1234 NULL NULL NULL
1697 Ng 5 Queen N. 555-0025 B823 5 Dec 1697
3982 Harrison 808 Main 555-4829 NULL NULL NULL

OTHER OUTER JOIN OPERATORS

 Table1 RIGHT [OUTER] JOIN Table2 ON <condition>

• Every tuple in right table appears in result (padded on left if needed)

 Table1 FULL [OUTER] JOIN Table2 ON <condition>

• Every tuple in either table appears in result (padded if needed)
SELECT *

FROM Customer FULL JOIN Sale ON Customer.custid = Sale.custid

1
4

Customer
custid name address phone

1205 Lee 633 S. First 555-1219
3122 Willis 41 King 555-9876
2134 Smith 213 Main 555-1234
1697 Ng 5 Queen N. 555-0025
3982 Harrison 808 Main 555-4829

Sale
saleid date custid

A17 5 Dec 3122
B823 5 Dec 1697
B219 9 Dec 3122
C41 15 Dec 1205
X00 23 Dec 0000

Customer.custid name address phone saleid date Sale.custid

1205 Lee 633 S. First 555-1219 C41 15 Dec 1205
3122 Willis 41 King 555-9876 A17 5 Dec 3122
3122 Willis 41 King 555-9876 B219 9 Dec 3122
2134 Smith 213 Main 555-1234 NULL NULL NULL
1697 Ng 5 Queen N. 555-0025 B823 5 Dec 1697
3982 Harrison 808 Main 555-4829 NULL NULL NULL
NULL NULL NULL NULL X00 23 Dec 0000

LECTURE SUMMARY

 NULL values need careful consideration.

• Most operators are NULL-intolerant.

• Some queries must use IS [NOT] NULL to operate correctly.

• Aggregations ignore NULLs.

• Partitioning and set operators treat all NULLs as equal.

• Check constraints are NULL-tolerant.

• Include NOT NULL for column declarations where appropriate.

• Recall: required for primary keys

 Outer joins

• LEFT, RIGHT, and FULL

1
6

