
NULL VALUES

CHAPTER 5 (6/E)

CHAPTER 8 (5/E)

1

LECTURE OUTLINE

 Dealing with null values

• Three-valued logic

• Effects in WHERE clauses

• IS NULL

• Effects on aggregation

• Effects on GROUP BY, set operations, and SELECT DISTINCT

• Treatment in ORDER BY clauses

• Effects in CHECK constraints

 Outer joins

2

SEMANTICS OF NULL

 Recall possible meanings of NULL

• Unknown value

• Unavailable or withheld value

• Not applicable attribute

 Each stored NULL value incomparable to every other stored value

• Even if other value also NULL

• unknown ≟ 5 unknown

• unknown ≟ unknown unknown

• Comparisons involving unknown values are neither true nor false.

 Thus, SQL uses a three-valued logic:

• TRUE, FALSE, and UNKNOWN

3

THREE-VALUED LOGIC

 Similarly, any operation involving an unknown value produces an

unknown value for the result.

• e.g., unknown + 5 unknown

4

EVALUATING WHERE

 Recall that WHERE clause evaluates each tuple in turn and returns

only those for which the condition evaluates to true.

 Tuples that evaluate to false or unknown are rejected.

• Cannot use

WHERE phone = NULL

to test for null value in a tuple.

 Many tautologies do not hold for columns with NULLs.

• e.g., no “law of the excluded middle”

SELECT *

FROM Student

WHERE age > 18 OR NOT age > 18

might not return all Student tuples

6

IS NULL

 Most SQL operators are NULL-intolerant.

• They return unknown if an operand is NULL.

 SQL provides special test that is NULL-tolerant

IS [NOT] NULL

 Need to account for NULLs when formulating queries

• Not handling NULLs is a common source of errors

7

WHEN NULLS ARE IGNORED

 Consider aggregating values for budget in the following.

e.g., max(budget), sum(budget), average(budget)

• NULL values in tuples ignored for aggregation (even for COUNT)

• Only non-NULL values included in aggregations.

• i.e., sum() handled differently from +

• Example:

SELECT COUNT(*), COUNT(budget), AVERAGE(gross-budget)

FROM Film

WHERE genre = 'comedy';

• all comedies counted for first aggregation;

• only comedies with non-NULL budget counted for second aggregation;

• only comedies with non-NULL budget and non-NULL gross included in

third aggregation

8

Film
title genre year director minutes budget gross

WHEN ALL NULLS ARE TREATED EQUAL

 Grouping and set operations treat all NULLs as the same value

• e.g., GROUP BY budget forms separate group for all tuples with

NULL value in budget

• Similarly for set operations: all NULLs treated as if a single value

• e.g., {(A,B,NULL),(A,B,C)} ∩ {(A,B,D),(A,B,NULL)} = {(A,B,NULL)}

(SELECT genre, budget

 FROM Film

 WHERE gross > 15000000)

UNION

(SELECT genre, budget

 FROM Film

 WHERE year > 2000)

• Similarly, too, for duplicate elimination with SELECT DISTINCT

 Finally ORDER BY

• NULLs sorted together, but sort order with respect to other values

is implementation-dependent

9

NULLS IN SQL’S DDL

 By default, must be aware of possible NULLs for all columns.

 Recall, however, a column can be declared NOT NULL.

• NULL values cannot occur; querying simplified

• Recall: Primary key columns must be declared NOT NULL

 Unlike WHERE clause, CHECK constraints and FOREIGN KEY

constraints ensure that no tuple returns false.

• Therefore NULLs accepted

• e.g.,

CHECK (age > 18)

allows tuples with NULL value for age

1
1

JOIN OPERATOR

 For convenience, SQL’s join operator (algebra’s ⋈<𝑗𝑜𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛>)

• Permits users to specify a table resulting from a join operation

Table1 [INNER] JOIN Table2 ON <condition>

• May appear in the FROM clause of a query

• Keyword INNER is optional

• Result is a single joined table

• Equivalent to including <condition> in WHERE clause

• Number of rows in result in range [0,|Table1|*|Table2|]

• Data from Table1 appear in result only if matching row exists in Table2.

• Data from Table2 appear in result only if matching row exists in Table1.

1
2

LEFT OUTER JOIN OPERATOR

 Every tuple in left table appears in result

• If matching tuple(s) in right table, works like inner join

• If no matching tuple in right table, one tuple in result with left tuple

values padded with NULL values for columns of right table

Table1 LEFT [OUTER] JOIN Table2 ON <condition>

SELECT *

FROM Customer LEFT JOIN Sale ON Customer.custid = Sale.custid

1
3

Customer
custid name address phone

1205 Lee 633 S. First 555-1219
3122 Willis 41 King 555-9876
2134 Smith 213 Main 555-1234
1697 Ng 5 Queen N. 555-0025
3982 Harrison 808 Main 555-4829

Sale
saleid date custid

A17 5 Dec 3122
B823 5 Dec 1697
B219 9 Dec 3122
C41 15 Dec 1205
X00 23 Dec NULL

Customer.custid name address phone saleid date Sale.custid

1205 Lee 633 S. First 555-1219 C41 15 Dec 1205
3122 Willis 41 King 555-9876 A17 5 Dec 3122
3122 Willis 41 King 555-9876 B219 9 Dec 3122
2134 Smith 213 Main 555-1234 NULL NULL NULL
1697 Ng 5 Queen N. 555-0025 B823 5 Dec 1697
3982 Harrison 808 Main 555-4829 NULL NULL NULL

OTHER OUTER JOIN OPERATORS

 Table1 RIGHT [OUTER] JOIN Table2 ON <condition>

• Every tuple in right table appears in result (padded on left if needed)

 Table1 FULL [OUTER] JOIN Table2 ON <condition>

• Every tuple in either table appears in result (padded if needed)
SELECT *

FROM Customer FULL JOIN Sale ON Customer.custid = Sale.custid

1
4

Customer
custid name address phone

1205 Lee 633 S. First 555-1219
3122 Willis 41 King 555-9876
2134 Smith 213 Main 555-1234
1697 Ng 5 Queen N. 555-0025
3982 Harrison 808 Main 555-4829

Sale
saleid date custid

A17 5 Dec 3122
B823 5 Dec 1697
B219 9 Dec 3122
C41 15 Dec 1205
X00 23 Dec 0000

Customer.custid name address phone saleid date Sale.custid

1205 Lee 633 S. First 555-1219 C41 15 Dec 1205
3122 Willis 41 King 555-9876 A17 5 Dec 3122
3122 Willis 41 King 555-9876 B219 9 Dec 3122
2134 Smith 213 Main 555-1234 NULL NULL NULL
1697 Ng 5 Queen N. 555-0025 B823 5 Dec 1697
3982 Harrison 808 Main 555-4829 NULL NULL NULL
NULL NULL NULL NULL X00 23 Dec 0000

LECTURE SUMMARY

 NULL values need careful consideration.

• Most operators are NULL-intolerant.

• Some queries must use IS [NOT] NULL to operate correctly.

• Aggregations ignore NULLs.

• Partitioning and set operators treat all NULLs as equal.

• Check constraints are NULL-tolerant.

• Include NOT NULL for column declarations where appropriate.

• Recall: required for primary keys

 Outer joins

• LEFT, RIGHT, and FULL

1
6

