
NESTED QUERIES

AND AGGREGATION

CHAPTER 5 (6/E)

CHAPTER 8 (5/E)

1

LECTURE OUTLINE

 More Complex SQL Retrieval Queries

• Self-Joins

• Renaming Attributes and Results

• Grouping, Aggregation, and Group Filtering

• Ordering Results

• Nested SPJ Queries

2

REVIEW OF SPJ QUERIES IN SQL

 SPJ (select-project-join) queries

• SQL’s basic select-from-where queries

• Equivalent to using only , , and ⋈ (or ) in Relational Algebra

(and possibly , if attributes need to be renamed before joining)

3

RENAMING IN SQL

 For convenience, include renaming (like ) as well

 Aliases or tuple variables

• Provide alternative names for tables or columns

SELECT name, sale_date, product, quantity AS amount

FROM Customer C, Sale AS S(id,sale_date,custid), LineItem

WHERE C.custid = S.custid AND id = saleid;

• Keyword AS is optional

4

Customer

custid name address phone
Sale

saleid date custid
LineItem

saleid product quantity price

SELF-JOINS

 Renaming is mandatory if table used more than once in a query

 Example

Give the last names and salaries of employees and their managers whenever
the employee earns more than the manager.

• Think of the EMPLOYEE table as two tables, one for employees and one for
managers.

SELECT E.Lname, E.Salary, M.Lname, M.Salary

FROM EMPLOYEE E, EMPLOYEE M

WHERE E.Super_ssn = M.Ssn and E.Salary > M.Salary;

5

EMPLOYEE

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

M

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

E

Fname Minit Lname Ssn Bdate Address Sex Salary Super_ssn Dno

AGGREGATE FUNCTIONS

 Used to accumulate information from multiple tuples, forming a single-

tuple summary

 Built-in aggregate functions

• COUNT, SUM, MAX, MIN, and AVG

 Used in the SELECT clause

 Examples:

How many movies were directed by Steven Spielberg?

SELECT COUNT(*)

FROM Film

WHERE director='Steven Spielberg‘;

• All tuples in result are counted, with duplicates!

• COUNT(title) or COUNT(director) give same result!

• COUNT(DISTINCT year) would include each year only once!

What was the total movie profit since 2010, across how many directors?

SELECT SUM(gross - budget), COUNT(DISTINCT director)

FROM Film

WHERE year >= 2010;

6

GROUPING BEFORE AGGREGATION

 How can we answer a query such as

“How many films were directed by each director after 2001?”

• Need to produce a result with one tuple per director

1. Partition relation into subsets of tuples based on grouping
column(s)

2. Apply function to each such group independently

3. Produce one tuple per group

 GROUP BY clause to specify grouping attributes

SELECT director, COUNT(*)

FROM Film

WHERE year > 2001

GROUP BY director;

• Every selector in SELECT clause must be a grouping column or an
aggregation function

• e.g., SELECT director, year, COUNT(*)

would not be allowed unless also grouping by year

i.e., GROUP BY director, year

7

HAVING CLAUSE

 After partitioning into groups, whole partitions can be discarded.

• Provides a condition on the grouped tuples

 Having clause cannot reference individual tuples within group

• Can reference grouping column(s) and aggregates only

 Contrast WHERE clause to HAVING clause

Note: As for aggregation, no GROUP BY clause means relation treated as
one group

9

ORDERING OF QUERY RESULTS

 Final output of a query can be sorted by one or more column values

 Use ORDER BY clause

• Keyword DESC for descending order of values

• Optionally use keyword ASC for ascending order (default)

 Example

SELECT dept, term,

 COUNT(DISTINCT instructor) AS num_instructors

FROM Course

GROUP BY dept, term;

ORDER BY dept, term DESC;

• Note that this is sorted ascending by department.

• Within each department, terms sorted in descending order.

• What if DISTINCT omitted? What if term omitted from SELECT clause?

What if dept omitted from GROUP BY clause? What if dept omitted from

ORDER BY clause?

 1
0

Course
dept cnum instructor term

SUMMARY OF SQL QUERIES

1. Assemble all tables according to From clause (“,” means to use ).

2. Keep only tuples matching Where clause.

3. Group into blocks based on Group By clause.

4. Keep only blocks matching Having clause.

5. Create one tuple for each block using Select clause.

6. Order resulting tuples according to Order By clause.

1
1

NESTED QUERIES

 Any table can be used in FROM clause.

 select-from-where produces a table.

 Thus can nest one query within another.

 Example:

Give the biographical information for directors of profitable movies.

SELECT name, birth, city

FROM (SELECT director

 FROM Film

 WHERE gross > budget) AS Profitable,

 Person

WHERE director = name

1
2

Film
title genre year director minutes budget gross

Person
name birth city

NESTED QUERIES (CONT’D.)

 Any column can be used in SELECT and WHERE clauses.

• But refers to only one tuple value at a time

 select-from-where can produce a one-column table that

contains only one tuple.

 Thus queries can also be nested in SELECT and WHERE clauses

 Example:

Which film(s) had the highest budget?

SELECT *

FROM Film

WHERE budget = (SELECT MAX(budget)

 FROM Film);

1
4

USING IN FOR MEMBERSHIP TEST

 Comparison operator IN

• Compares value v with a set (or bag) of values V

• Evaluates to TRUE if v is one of the elements in V

• Allows any relation in WHERE clause

• Can omit DISTINCT from this solution. Why?

1
5

USING IN (CONT’D.)

 Use tuples of values in comparisons

• Requires parentheses

1
6

NESTED 1-COLUMN QUERIES

 Use other comparison operators to compare a single value v

• = ANY (or = SOME) operator

• Returns TRUE if the value v is equal to some value in the set V

• Equivalent to IN

• Also available for >, >=, <, <=, and <>

• >= ALL operator

• Returns TRUE if the value v is greater than or equal to every value

in the set V

• Equivalent to =(SELECT MAX(…)…)

• Also available for =, >, <, <=, and <>

1
7

CORRELATED NESTED QUERIES

 Correlated nested query

• Evaluated once for each tuple in the outer query

 Such queries are easiest to understand (and write correctly) if all

column names are qualified by their relation names.

 Note that the inner query can refer to E, but the outer query cannot

refer to D.

1
8

EXISTS AND UNIQUE FUNCTIONS

 [NOT] EXISTS function

• Check whether result of correlated nested query is empty or not

• EXISTS equivalent to (SELECT COUNT(*) …) <> 0

SELECT name, phone

FROM Customer C

WHERE NOT EXISTS (SELECT *

 FROM Sale S

 WHERE C.custid = S.custid);

• Note that columns selected in inner query are irrelevant.

 SQL function UNIQUE(Q)

• Returns TRUE if no duplicate tuples in result of query Q

1
9

Customer
custid name address phone

Sale
saleid date custid

LECTURE SUMMARY

 Complex SQL:

• Self joins

• Aggregate functions

• Grouping

• Sorting

• Nested queries

 Relational algebra expressions can handle self joins and nested

queries with no additional operators

• Grouping, aggregations, and sorting require additional operators

2
1

