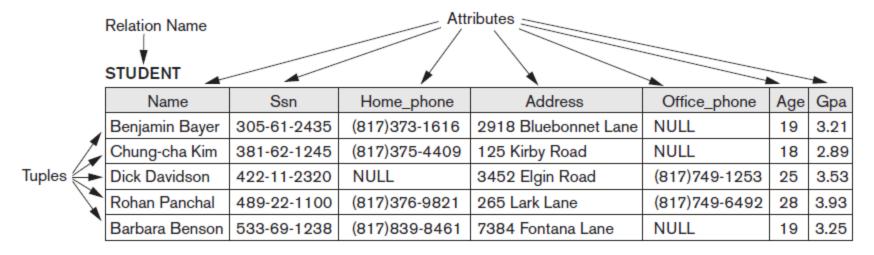
THE RELATIONAL DATA MODEL

CHAPTER 3 (6/E) Chapter 5 (5/E)


LECTURE OUTLINE

- Relational Model Concepts
- Relational Database Schemas
- Update Operations
- Brief History of Database Applications (from Section 1.7)

RELATIONAL MODEL CONCEPTS

- Represent data as a collection of relations
- Table of values
 - Each row (tuple)
 - Represents a record of related data values
 - Facts that typically correspond to a real-world entity or relationship
 - Each column (attribute)
 - Holds a corresponding value for each row
 - Slot for a specific interpretation for a row

RELATIONAL MODEL (CONT'D.)

Figure 3.1

The attributes and tuples of a relation STUDENT.

- Schema describes table
 - Table name, attribute names and types
- Instance denotes the current contents of the table
 - The relation (or relation state)

DOMAINS

Domain D

- Set of atomic values
 - {0,1,2,...}
 - {Jo Smith, Dana Jones, Ashley Wong, Y. K. Lee,...}
- Atomic
 - Each value indivisible
- Domain specified by Data type rather than by enumeration
 - Integer, String, Date, Real, etc.
 - Can be specified by format: (ddd)ddd-dddd

SCHEMAS AND ATTRIBUTES

Relation schema

- A relation name R and a list of attributes: $A_1, A_2, ..., A_n$
- Denoted by $R(A_1, A_2, ..., A_n)$
- Attribute A_i
 - Name of a role in the relation schema R
 - Associated with a domain dom(A_i)
 - Attribute names do not repeat within relation schema, but domains can repeat.
- **Degree** (or **arity**) of a relation
 - Number of attributes *n* in its relation schema

FORMALIZATION

- Relation (or relation state)
 - Set of *n*-tuples $r = \{t_1, t_2, ..., t_m\}$
 - Unordered, no duplicates
 - Each *n*-tuple *t*
 - Ordered list of *n* values $t = \langle v_1, v_2, ..., v_n \rangle$
 - Each value v_i , $1 \le i \le n$, is an element of dom (A_i)
 - Instance of relation schema $R(A_1, A_2, A_3, ..., A_n)$
 - Finite subset of the Cartesian product of the domains defining *R*:
 - $\operatorname{rel}(R) \subseteq (\operatorname{dom}(A_1) \times \operatorname{dom}(A_2) \times \dots \times \operatorname{dom}(A_n))$
- Because of updates, relations are time-varying
 - rel(*R*) is relation state at a given time
 - Reflects only (and all) the valid tuples that represent a particular state of the real world

RELATIONAL MODEL NOTATION

- Symbolic notation
 - Uppercase letters Q, R, S denote relation names
 - Corresponding lowercase letters q, r, s denote corresponding relation states
 - Uppercase letters A, B, C, ..., H denote attributes
 - Attribute A can be qualified with the relation name R to which it belongs using the dot notation, e.g., R.A
 - Lower case letters *t*, *u*, *v* denote tuples

ALTERNATIVE DEFN OF RELATION

- Tuple considered as a function from attributes to values
 - t_j : { $A_1, A_2, A_3, \ldots, A_n$ } $\rightarrow \text{dom}(A_1) \cup \text{dom}(A_2) \cup \ldots \cup \text{dom}(A_n)$
 - Use notation $t_i[A_i]$ or $t_i A_i$ to refer to tuple's value v_i from dom (A_i)
 - Similarly t_j[A_u, A_w, ..., A_z] and t_j.(A_u, A_w, ..., A_z) refer to the subtuple of values <v_u, v_w, ..., v_z> from t_j for attributes A_u, A_w, ..., A_z
- Therefore, tuple is a set of <attribute, value> pairs
- e.g., for attendee (id, givenName, surname, company, dateOfBirth)
 - t = <10483, John, Doe, IBM, 1978-11-05>
 - t[id] = 10483, t[givenName] = John, t[surname] = Doe, t[company] = IBM, t[dateOfBirth] = 1978-11-05
 - t.id = 10483, t.givenName = John, t.surname = Doe, t.company = IBM, t.dateOfBirth = 1978-11-05
 - t = { <id, 10483>, <givenName, John>, <surname, Doe>, <company, IBM>, <dateOfBirth, 1978-11-05> }

VALUES IN TUPLES

- Each value in a tuple is atomic
 - Flat (as opposed to nested) relational model
 - Composite and multivalued attributes not allowed
 - Historically relation is said to be in First normal form (1NF)
- Composite attributes
 - Split into simple component attributes
 - e.g., <u>Waterloo, Ontario</u> treated as atomic or split into two attributes to store <u>Waterloo</u> separately from <u>Ontario</u>
- Multivalued attributes
 - Must be represented by separate relations
 - Recall: *Director* could be stored as attribute of FILM because only one director per film assumed, but multiple characters in a film implies that ROLE must have its own relation.

NULL VALUES

- Assume each domain is augmented with a special NULL value
 - Represent the values of attributes that may be unknown or may not apply to a tuple
- Interpretations for NULL values
 - Nothing is known about the value
 - Value exists but is (currently) not available
 - Value undefined
 - i.e., attribute does not apply to this tuple
- If an attribute for a tuple is mapped to NULL, cannot make any assumptions about the value for that attribute (for that tuple)
 - e.g., Ashley's telephone number is NULL could mean
 - Ashley doesn't have a phone
 - Ashley has a phone but we don't know the number (perhaps withheld)
 - Ashley has a phone that has no number
 - Ashley may or may not have a phone, but regardless we don't have a number for Ashley

MEANING OF A RELATION

Assertion

- Each tuple in the relation interpreted as a fact.
- No other similar facts are of interest to the enterprise.
- e.g., a relation for Classlist includes only registered students and all registered students are included in Classlist
 - presence in list ⇔ registered student

Predicate

- Values in each tuple interpreted as values that satisfy predicate
- e.g., Name of student having ID 83201556 is Lee Wong

LECTURE SUMMARY

- Characteristics differentiate relations from ordinary tables or files
- Schemas vs. instances (states)
- Formal definitions for relations and tuples
- Null values