THE RELATIONAL
DATA MODEL

CHAPTER 3 (6/E)
CHAPTER 5 (5/E)

LECTURE OUTLINE

= Relational Model Concepts

» Relational Database Schemas

» Update Operations

= Brief History of Database Applications (from Section 1.7)

RELATIONAL MODEL CONCEPTS

» Represent data as a collection of relations

= Table of values

« Each row (tuple)

» Represents a record of related data values

« Facts that typically correspond to a real-world entity or relationship
« Each column (attribute)

» Holds a corresponding value for each row

 Slot for a specific interpretation for a row

RELATIONAL MODEL (CONT’D.)

Relation Name

i

_— Attributes —____

P
"
—_— =

N\

STUDENT _ — o —

Name Ssn Home_phone Address Office_phone | Age| Gpa

Benjamin Bayer | 305-61-2435 | (817)373-1616 | 2918 Bluebonnet Lane| NULL 19 | 3.21

/ Chung-cha Kim | 381-62-1245 | (817)375-4409 | 125 Kirby Road NULL 18 | 2.89

Tuples Z\: Dick Davidson |422-11-2320| NULL 3452 Elgin Road (817)749-1253 | 25 | 3.53
\ Rohan Panchal | 489-22-1100| (817)376-9821 | 265 Lark Lane (B17)749-6492 | 28 | 3.93
Barbara Benson | 533-69-1238 | (817)839-8461 | 7384 Fontana Lane NULL 19 | 3.25

Figure 3.1

The attributes and tuples of a relation STUDENT.

= Schema describes table
- Table name, attribute names and types
= |nstance denotes the current contents of the table

* The relation (or relation state)

DOMAINS

= Domain D
» Set of atomic values

- {0,1,2,...}
« {Jo Smith, Dana Jones, Ashley Wong, Y. K. Lee,...}
= Atomic

- Each value indivisible
= Domain specified by Data type rather than by enumeration

* Integer, String, Date, Real, etc.
« Can be specified by format: (ddd)ddd-dddd

SCHEMAS AND ATTRIBUTES

= Relation schema
- Arelation name R and a list of attributes: A, A,, ..., A
* Denoted by R(A, A,, ..., A,)

= Attribute A
* Name of a role in the relation schema R

 Associated with a domain dom(A))

* Attribute names do not repeat within relation schema, but domains
can repeat.

n

= Degree (or arity) of a relation
 Number of attributes n in its relation schema

FORMALIZATION

= Relation (or relation state)
« Setof n-tuplesr={t, t,, ..., t..}
* Unordered, no duplicates

- Each n-tuple t
« Ordered list of n values t =<v,, v,, ..., v,>
- Eachvalue v, 1 <i<n, is an element of dom(A)

* Instance of relation schema R(A;, A,, A;, ..., A,)
* Finite subset of the Cartesian product of the domains defining R:
* rel(R) € (dom(A;) x dom(A,) x ... x dom(A,))
= Because of updates, relations are time-varying

- rel(R) is relation state at a given time

 Reflects only (and all) the valid tuples that represent a particular
state of the real world

RELATIONAL MODEL NOTATION

= Symbolic notation

« Uppercase letters Q, R, S denote relation names

 Corresponding lowercase letters g, r, s denote corresponding
relation states

» Uppercase letters A, B, C, ..., H denote attributes

 Attribute A can be qualified with the relation name R to which it
belongs using the dot notation, e.g., R.A

« Lower case letters t, u, v denote tuples

ALTERNATIVE DEFN OF RELATION

» Tuple considered as a function from attributes to values
* 4 {AL Ay Ag, -, A} > dom(A) udom(A,) U ... Udom(A))
* Use notation t[A] or t.A; to refer to tuple’s value v; from dom(A)
* Similarly t[A,, A, ..., Al and t.(A, A, -.., A,) refer to the subtuple
of values <v,, v,,, ..., v,> from t; for attributes A, A, ..., A,
= Therefore, tuple is a set of <attribute, value> pairs

e.g., for attendee (id, givenName, surname, company, dateOfBirth)

* t =<10483, John, Doe, IBM, 1978-11-05>

* t[id] = 10483, t[givenName] = John, t[surname] = Doe,
tfcompany] = IBM, t[dateOfBirth] = 1978-11-05

e t.id = 10483, t.givenName = John, t.surname = Doe,
t.company = IBM, t.dateOfBirth = 1978-11-05

- t ={<id, 10483>, <givenName, John>, <surname, Doe>,
<company, IBM>, <dateOfBirth, 1978-11-05> }

VALUES IN TUPLES

= Each value in a tuple is atomic

 Flat (as opposed to nested) relational model
- Composite and multivalued attributes not allowed
* Historically relation is said to be in First normal form (1NF)

= Composite attributes

* Split into simple component attributes

* e.g., Waterloo, Ontario treated as atomic or split into two attributes
to store Waterloo separately from Ontario

= Multivalued attributes

* Must be represented by separate relations

 Recall: Director could be stored as attribute of FILM because only
one director per film assumed, but multiple characters in a film
implies that ROLE must have its own relation.

NULL VALUES

= Assume each domain is augmented with a special NULL value
* Represent the values of attributes that may be unknown or may not
apply to a tuple
= Interpretations for NULL values

* Nothing is known about the value
* Value exists but is (currently) not available
* Value undefined
* i.e., attribute does not apply to this tuple
« |f an attribute for a tuple is mapped to NULL, cannot make any
assumptions about the value for that attribute (for that tuple)
* e.g., Ashley’s telephone number is NULL could mean
* Ashley doesn’t have a phone
* Ashley has a phone but we don’t know the number (perhaps withheld)

* Ashley has a phone that has no number

« Ashley may or may not have a phone, but regardless we don'’t have a
number for Ashley

QX
—

MEANING OF A RELATION

= Assertion

» Each tuple in the relation interpreted as a fact.
* No other similar facts are of interest to the enterprise.

* e.g., a relation for Classlist includes only registered students and all
registered students are included in Classlist

» presence in list < registered student
= Predicate

 Values in each tuple interpreted as values that satisfy predicate
* e.g., Name of student having ID 83201556 is Lee Wong

LECTURE SUMMARY

» Characteristics differentiate relations from ordinary tables or files
= Schemas vs. instances (states)
= Formal definitions for relations and tuples

= Null values

