SECURITY

CHAPTER 24 (6/E)

CHAPTER 23 (5/E)

LECTURE OUTLINE

- Threats and countermeasures
- Access control mechanisms
- SQL's grant and revoke
- Role of views

THREATS

- What are the threats?
 - Loss of integrity
 - E.g. Student changing grades for a class they're taking
 - Loss of confidentiality
 - Learning something from the database you shouldn't know
 - Loss of availability
 - "Denial of service"
 - Causing DB to be unavailable to authorized programs / people
- Who's trying to mess with us?
 - Outsiders
 - Amateurs, "Script kiddies", Crackers
 - Corporate competitors
 - Organized crime
 - Government "cyberwarriors"
 - Terrorists / activists
 - Insiders
 - Disgruntled, bribed, or naïve employees
 - Accidental mis-use

HOW SECURE SHOULD WE MAKE DB?

Principle of Easiest Penetration

- "A system is only as strong as its weakest link"
 - Perpetrator will attack most vulnerable part(s) of the system
- To build secure systems, need to think like an attacker!
 - How would you get private information from the Canada Revenue Agency database? Chapters? Facebook? UW?

Principle of Adequate Protection

- "Security is economics"
- Don't spend \$100,000 to protect a system if maximum loss is only \$1000 in damage.
- Don't spend only \$100 to protect a system if maximum loss is \$100,000 in damage.

DEFENSES AGAINST SECURITY BREACH

(Compare to securing your bicycle)

- Prevent it
 - Stop the attack for happening
- Deter it
 - Make the attack harder or more expensive
- Deflect it
 - Make yourself less attractive to attacker
- Detect it
 - Notice that attack is occurring (or has occurred)
- Recover from it
 - Mitigate the effects of the attack

ASPECTS OF DB SECURITY

- Legal and ethical compliance / Business rules
 - Requirements to maintain accurate information
 - Requirements to disclose information to appropriate people
 - Requirements to not disclose information to inappropriate people
- Where will security be enforced?
 - by the physical environment?
 - by locked doors? by armed guards?
 - by the hardware?
 - by the software?
 - by the OS? by the DBMS? by applications programs?
 - DBMS includes security subsystem
- Levels of security
 - Access / no access
 - Partial access
 - Limited authorizations
 - Authorizations based on user role, time of day, location, etc.
 - Emergency access

COUNTERMEASURES

- Access control
 - Limiting access to the database (or parts of the database)
 - Requires authentication (e.g., through login and password)
 - Usually includes auditing
- Inference control
 - Preventing deductions about database content
 - Access to summary data without ability to determine individuals' data
- Flow control
 - Keeping information from being transferred illegitimately
 - Control over covert channels
- Encryption
 - Making information unintelligible unless authorized
 - Making changes traceable to source
 - Requires security keys and key maintenance

AUDIT TRAIL

- Record all operations on DB
 - Which user, which operation, which data
 - Could be integrated with transaction log
 - Include reads as well as writes
- Audit the log if suspicions arise
 - Review accesses and updates during time period
 - Test for irregular behaviour
- Examples:
 - Identify who last changed record
 - Identify authorized, but unethical reading of confidential data
 - e.g., Britney Spears' medical record

ACCESS CONTROL MECHANISMS

- Discretionary access control (DAC)
 - Granting specific user access to specific piece of data in specific way
 - E.g., "let John Smith insert employees into Employee table"
- Mandatory access control (MAC)
 - User's security clearance must match data's security class
 - Bell-LaPadula Model
 - No read-up (to protect data)
 - e.g., must have sufficiently high clearance to read top secret data
 - No write-down (for flow control)
 - e.g., person with high clearance cannot update unclassified object
- Role based access control (RBAC)
 - Users assigned roles
 - Roles entitled to specific permissions on specific data
 - E.g., "emergency physician can update any patient record"

GRANT AND REVOKE

- DAC support in SQL
- If A1 wants to allow A4 to update only the salary attribute of Employee, A1 can issue
 - GRANT UPDATE ON Employee (salary) TO A4;
 or
 - GRANT UPDATE ON Employee (salary) TO A4 WITH GRANT OPTION;
- Similarly to undo an earlier grant, A1 can issue
 - REVOKE SELECT ON Employee FROM A3;
 - A3 can no longer read Employee
 - unless also granted by other user
 - Revocation also propagates to other users granted privilege by A3

GRANULARITY OF PRIVILEGES

- Object
 - Table (or view) vs. column
 - SELECT, INSERT, DELETE, and ALTER are not column specific
 - UPDATE and REFERENCES privileges can specify columns
 - SQL does not support tuple-specific privileges
- System
 - Create, alter, drop tables, views, etc.
 - Creator of object gets all (object) permissions on that object

DAC MODEL: ACCESS CONTROL MATRIX

- Rows represent subjects (users, accounts, programs)
- Columns represent objects (relations, records, columns, views, operations).
- M(i,j) represents privileges that subject i holds on object j.
 - Include who granted the privilege (to support revocation)
 E.g., privileges ⊆ {select, insert, delete, update, ...}, bold ⇒ grant option

	Employee	Department	Dept_locations	Project	Works_on	Dependent
Ashley	sidu (sys)	sidu (sys)	sidu (sys)	sidu (sys)	sidu (sys)	
Bobbie	s (Ashley)	s (Ashley)	s (Ashley, Eddie) idu (Ashley)			sidu (sys)
Charlie	s (Ashley)			s (Ashley)	s (Ashley)	
Dana	s (Ashley, Charlie)					s iu (Bobbie)
Eddie	s (Ashley)	siu (Ashley)	s iu (Ashley)			
Lee	s (Eddie, Charlie)					s (Dana)

VIEWS FOR SECURITY

- View selects some rows and columns from one or more tables.
 - Other data values are inaccessible through view.
- Grant privileges on view without granting privileges on base tables.

GRANT SELECT ON SalesStaff TO Smith;

- Can only access data in view
 - Similar for insert, delete, update
- Other base data is protected

DATA INFERENCE

- Derivation of sensitive data from (supposedly) non-sensitive data
- Direct attack
 - Attacker issues query that directly yields sensitive data
 - Might obfuscate query to fool DBMS

```
SELECT AVG(salary)
FROM staff
WHERE lastname = 'Adams'
OR (sex != 'M' AND sex != 'F')
```

- Solution: k-anonymity
 - Every statistical answer must depend on at least k records
- Indirect attack
 - Infer sensitive data from statistical results
 - Judicial use of several k-anonymous queries
 - SELECT SUM(salary)
 - SELECT SUM(salary) WHERE lastname != 'Adams'

LECTURE SUMMARY

- Overview of database security
 - Threats and countermeasures
- Discretionary Access Control
 - SQL's grant and revoke
 - Security through views
- k-anonymity