
CONCURRENCY &

RECOVERY

CHAPTER 21-22.1, 23 (6/E)

CHAPTER 17-18.1, 19 (5/E)

LECTURE OUTLINE

 Concurrency

• Errors in the absence of concurrency control
• Need to constrain how transactions interleave

• Goal: Preserve Isolation of ACID properties

• Serializability

• Two-phase locking

 Reliability & Recovery

• Errors in the absence of reliability

• Goal: Preserve Atomicity and Durability of ACID
properties

• Types of Failures

• Transaction logs

• Recovery procedure

2

LOST UPDATE PROBLEM

 Problematic interleaving of transactions

• X should be X0 – 5 + 10 = 85

• Occurs when two transactions update the same data item, but both

read the same original value before update

… r1(X);…; r2(X); …; w1(X); …; w2(X)

… r2(X);…; r1(X); …; w1(X); …; w2(X)

3

DB Values T1 T2

X = 80

read_item(X); X = 80

X := X – 5; X = 75

read_item(X); X = 80

X := X + 10; X = 90

X = 75 write_item(X);

X = 90 write_item(X);

DIRTY READ PROBLEM

 Phantom update

• X should be as if T1 didn’t execute at all: X0 + 10 = 90

• Occurs when one transaction updates a database item, which is

read by another transaction but then the first transaction fails

… w1(X);…; r2(X); …; t1 rolled back

4

DB Values T1 T2

X = 80

read_item(X); X = 80

X := X – 5; X = 75

X = 75 write_item(X);

read_item(X); X = 75

X := X + 10; X = 85

X := X / 0; T1 aborts

X = 85 write_item(X);

INCONSISTENT READS PROBLEM

 Transactions should read consistent values for isolated state of DB

• SUM should be either 120 (80+15+25, before T1) or 130 (85+15+30, after T1)

… r2(X); …; w1(X); …; w1(Y); …; r2(Y); …

5

DB Values T1 T2

X = <80, 15, 25>

read_item(X1); X1 = 80

SUM := X1; SUM = 80

read_item(X2); X2 = 15

SUM := SUM+X2; SUM = 95

read_item(X1); X1 = 80

X1 := X1 + 5; X1 = 85

X = <85, 15, 25> write_item(X1);

read_item(X3); X3 = 25

X3 := X3 + 5; X3 = 30

X = <85, 15, 30> write_item(X3);

read_item(X3); X3= 30

SUM := SUM+X3; SUM = 125

UNREPEATABLE READ PROBLEM

 Even with only one update, might read inconsistent values

• Z has a value that depends on two different values of X!

• Occurs when one transaction updates a database item, which is

read by another transaction both before and after the update

…r2(X); … w1(X);…; r2(X); …

6

DB Values T1 T2

X = 80

read_item(X); X = 80

Y := f(X);

read_item(X); X = 80

X := X – 5; X = 75

X = 75 write_item(X);

read_item(X); X = 75

Z := f2(X,Y);

HIGH LEVEL LESSON

 We need to worry about interaction between two applications when

• one reads from the database while the other writes to (modifies) the

database;

• both write to (modify) the database.

 We do not worry about interaction between two applications when

both only read from the database.

8

SCHEDULE

 Sequence of interleaved operations from several transactions

 b1; r1(s); b2; r2(c); w1(s); r1(c); w2(c); w1(c); e1; e2;

9

at ATM window #1 at ATM window #2

1 read_item(savings);

2 savings = savings - $100;

3 read_item(chequing);

4 write_item(savings);

5 read_item(chequing);

6 chequing = chequing - $20;

7 write_item(chequing);

8 chequing = chequing + $100;

9 write_item(chequing);

10 dispense $20 to customer;

SERIAL SCHEDULES

 A schedule S is serial if no interleaving of operations from several

transactions

• For every transaction T, all the operations of T are executed

consecutively

 Assume consistency preservation (ACID property):

• Each transaction, if executed on its own (from start to finish), will

transform a consistent state of the database into another consistent

state.

• Hence, each transaction is correct on its own.

• Thus, any serial schedule will produce a correct result.

 Serial schedules are not feasible for performance reasons:

• Long transactions force other transactions to wait

• When a transaction is waiting for disk I/O or any other event,

system cannot switch to other transaction

• Solution: allow some interleaving

1
1

ACCEPTABLE INTERLEAVINGS

 Need to allow interleaving without sacrificing correctness

 Executing some operations in another order causes a different outcome

• …r1(X); w2(X)… vs. …w2(X); r1(X)…

• T1 will read a different value for X

• …w1(Y); w2(Y)… vs. …w2(Y); w1(Y)...

• DB value for Y after both operations will be different

 Two operations conflict if:

1. They access the same data item X

2. They are from two different transactions

3. At least one is a write operation

• Read-Write conflict : … r1 (X); …; w2(X); …

• Write-Write conflict : … w1(Y); …; w2(Y); …

 Note that two read operations do not conflict.

• …r1(Z); r2(Z)… vs. …r2(Z); r1(Z)...

• both transactions read the same values of Z

 Two schedules are conflict equivalent if the relative order of any two
conflicting operations is the same in both schedules.

1
2

SERIALIZABLE SCHEDULES

 Although any serial schedule will produce a correct result, they
might not all produce the same result.

• If two people try to reserve the last seat on a plane, only one gets
it. The serial order determines which one. The two orderings have
different results, but either one is correct.

• There are n! serial schedules for n transactions; any of them gives
a correct result.

 A schedule S with n transactions is serializable if it is conflict
equivalent to some serial schedule of the same n transactions.

 Serializable schedule “correct” because equivalent to some serial
schedule, and any serial schedule acceptable.

• It will leave the database in a consistent state.

• Interleaving such that

• transactions see data as if they were serially executed

• transactions leave DB state as if they were serially executed

• efficiency achievable through concurrent execution

1
3

TESTING CONFLICT SERIALIZABILITY

 Consider all read_item and write_item operations in a schedule

1. Construct serialization graph

• Node for each transaction T

• Directed edge from Ti to Tj if some operation in Ti appears before a

conflicting operation in Tj

2. The schedule is serializable if and only if the serialization graph

has no cycles.

 Is the following schedule serializable?

b1; ; b2; ; ; b3; ; e2; ; ; e3; ; e1;

Serializable; equivalent to: T2  T1  T3

b2; ; ; e2; b1; ; ; ; ; e1; b3; ; e3;

1
4

T1

T2

T3

DATABASE LOCKS

 Use locks to ensure that conflicting operations cannot occur

• exclusive lock for writing; shared lock for reading

• cannot read item with first getting shared or exclusive lock on it

• cannot write item with first getting write (exclusive) lock on it

 Request for lock might cause transaction to block (wait)

• No lock granted on X if some transaction holds write lock on X

• write lock is exclusive

• Write lock cannot be granted on X if some transaction holds any
lock on X

 Blocked transactions are unblocked and granted the requested lock
when conflicting transaction(s) release their lock(s)

• Like passing a microphone (but two types: one allows sharing)

1
5

T1 T2 holds read (shared) lock holds write (exclusive) lock

requests read lock OK block T1

requests write lock block T1 block T1

ENFORCING CONFLICT SERIALIZABILITY

 Rigorous two-phase locking (2PL):

• Obtain read lock on X if transaction
will read X

• Obtain write lock on X (or promote
read lock to write lock) if transaction
will write X

• Release all locks at end of
transaction

• whether commit or abort

• This is SQL’s protocol.

 Rigourous 2PL ensures conflict
serializability

 Potential problems:

• Deadlock: T1 waits for T2 waits for …
waits for Tn waits for T1

• Requires assassin

• Starvation: T waits for write lock and
other transactions repeatedly grab
read locks before all read locks
released

• Requires scheduler 1
6

T1 T2

request_read(A);

read_lock(A);

read_item(A);

A := A + 100;

request_write(A);

write_lock(A);

write_item(A);

request_read(A);

request_read(B);

read_lock(B);

read_item(B);

B := B -10;

request_write(B);

write_lock(B);

write_item(B);

commit; /*unlock(A,B)*/

read_lock(A);

read_item(A);

…

PURPOSE OF DATABASE RECOVERY

 To bring the database into the most recent consistent
state that existed prior to a failure

 Goal: preserve ACID properties

Atomicity, Consistency, Isolation and Durability

• abort (and restart) transactions active at time of failure

• ensure changes made by committed transactions are

not lost

 Complication due to DB execution model:

• Data items packed into I/O blocks (pages)

• Updated data first stored in DB cache (at time of write)

• Actually written to disk (flushed) sometime later

1
7

POSSIBLE PROBLEMS

 Consider a transaction that transfer funds from one
account (X) to another (Y)

1
8

DB Values T

X = 80; Y = 100

read_item(X);

X := X – 40;

X = 40; Y = 100 write_item(X);

read_item(Y);

Y := Y + 40;

X = 40; Y = 140 write_item(Y);

DB Values T

X = 80; Y = 100

read_item(X);

X := X – 40;

X = 40; Y = 100 write_item(X);

SYSTEM

CRASH!

X = 40; Y = 100

Correct Execution Incorrect Execution

 High level lesson:

• We need to worry about partial results of applications on the

database when a crash occurs.

PROBLEM SITUATION

 How can we recover from a system crash?

• DB files preserved but in-memory data lost

• Contents of data buffers lost

• Executing programs’ states unknown

• T1, T2, T3 have committed

• T4, T5 still in progress

• Any of the transactions might have written data

• Some (unknown) subset of the writes have been flushed to disk

1
9

CAUSES OF FAILURE

 Database may become unavailable for use due to

• Transaction failure

• Incorrect input, deadlock, incorrect synchronization

• Result: transaction abort

• System failure

• Addressing error, application error, operating system fault, etc.

• Media failure

• RAM failure, disk head crash, power disruption, etc.

 We wish to recover from system failure.

• The database server is halted abruptly.

• Processing of in-progress SQL command(s) is halted abruptly.

• Connections to application programs (clients) are broken.

• Contents of memory buffers are lost.

• Database files are not damaged.

• Recovery from media failure similar, but may need to restore

database files from backup 2
0

KEEP A SYSTEM LOG FILE

 Append-only file

• Keep track of all operations of all transactions

• In the order in which operations occurred

 Stored on disk

• Persistent except for disk or catastrophic failure

• Periodically backed up

• Guard against disk and catastrophic failures

 Main memory buffer

• Holds records being appended

• Occasionally whole buffer appended to end of log on disk (flush)

2
1

SYSTEM LOG RECORDS

 [start_transaction, T]

• Transaction T has started execution.

 [write_item, T, X, old_value, new_value]

• T has changed the value of item X from old_value to new_value.

• Before Image (old_value) needed to undo(X)

• After Image (new_value) needed to redo(X)

 [commit, T]

• T has completed successfully and committed

• T’s effects (writes) must be durable

 [abort, T]

• T has been aborted

• T’s effects (writes) must be ignored and undone

 Note: [read_item, T, X] not needed if schedules guaranteed to be

recoverable (values read must have been committed)

2
2

STORAGE STRUCTURE

2
3

Memory Buffers

(cache)

Database File

Disk 1

Log File

Disk 2

T0,begin

T0,X,99,100

T1,begin

T1,Y,199,200

DBMS pages

WRITE-AHEAD LOGGING

 Used to ensure that the log is consistent with the database & to

ensure that the log can be used to recover the database to a

consistent state

 Two rules:

1. Log record for a page must be written before corresponding

page is flushed to disk, and

2. All log records must be written before commit.

 A transaction is said to be committed when (a) all of its operations

are executed, and (b) all its log records are flushed to disk.

 Rule 1 for atomicity

• so that each operation is known and can be undone if

necessary

 Rule 2 for durability

• so that the effect of a committed transaction is known

2
4

RECOVERY PROCESS

1. Roll-back (undo)

• Scan log from tail to head (backward in time)

• create a list of committed transactions

• create a list of rolled-back transactions

• undo updates of active transactions

1. Restore before image

2. Append [undo] record to log (in case of crash during recovery)

2. Roll-forward (redo)

• Scan the log from head to tail (forwards in time)

• Redo updates of committed transactions

• Use after image for new values

3. Restart executing all in-progress transactions (maybe)

(those neither committed nor aborted)

2
5

CHECKPOINTING

 To save redo effort, use checkpoints

• Occasionally flush data buffers

1. Suspend execution of transactions temporarily.

2. Force-write modified (dirty) buffer data to disk.

3. Append [checkpoint] record to log.

4. Flush log to disk.

5. Resume normal transaction execution.

• During recovery, redo required only for log records appearing after

[checkpoint] record

2
7

BACKUPS AND MIRRORING

2
8

Memory Buffer

Database File

Log File

T0,begin

T0,X,99,10

0

Backup Database File

Mirrored Log File

T0,begin

T0,X,99,10

0

RECOVERY FROM MEDIA FAILURE

1. Restore database from backup

2. Use log to determine which transactions had been committed since

the backup

3. Redo committed transaction database updates

2
9

LECTURE SUMMARY

 Characterizing schedules based on serializability

• Serial and non-serial schedules

• Conflict equivalence of schedules

• Serialization graph

 Two-phase locking

• Guarantees conflict serializability

• Deadlock and starvation

 Databases Recovery

• Types of Failure

• Transaction Log

• Transaction Roll-back (Undo) and Roll-Forward (Redo)

• Checkpointing

3
0

