INTRODUCTION TO
TRANSACTION
PROCESSING

CHAPTER 21 (6/E)
CHAPTER 17 (S/E)

LECTURE OUTLINE

» |ntroduction to Transaction Processing
» Desirable Properties of Transactions

= Transaction Support in SQL

DEFINITIONS

= Transaction: an executing program (process) that includes one or
more database access operations

 Alogical unit of database processing

- Example from banking database: Transfer of $100 dollars from a
chequing account to a savings account
 Characteristic operations
* Reads (database retrieval, such as SQL SELECT)
« Writes (modify database, such as SQL INSERT, UPDATE, DELETE)

= Note: Each execution of a program is a distinct transaction with
different parameters

- Bank transfer program parameters: savings account number,
chequing account number, transfer amount

= Online Transaction Processing (OLTP) Systems: Large multi-user
database systems supporting thousands of concurrent transactions
(user processes) per minute

WHY WE NEED TRANSACTIONS

= Adatabase is a shared resource accessed by many
users and processes concurrently.

= Not managing this concurrent access to a shared

resource will cause problems (not unlike in operating
systems)

* Problems due to concurrency
* Problems due to failures

TRANSACTION PROCESSING MODEL

= Simple database model:

- Database: collection of named data items
« Granularity (size) of each data item immaterial
« Afield (data item value), a record, or a disk block
* TP concepts are independent of granularity
= Basic operations on an item X:

* read_item(X): Reads a database item X into a program variable
» For simplicity, assume that the program variable is also named X

« write_item(X): Writes the value of program variable X into the
database item named X

* Read and write operations take some amount of time to execute

COMPUTER STORAGE HIERARCHY

small size
small capacity

processor registers
very fast, very expensive

pOowWer on

program variables

immediate term

small size processor cache
small capacity very fast, very expensive
medium size power on random access memory
medium capacity very short term fast, affordable N
A
small size power off flash / USBE memory
large capacity short term slower, cheap
DB items
large size power off hard drives
very large capacity mid term slow, very cheap
large size power off tape backup

very large capacity long term very slow, affordable

READ AND WRITE OPERATIONS

DBMS pages
/ \C —
\@abase File

Memor :-/)) \tl I:I] Disk

y
Buffers CD ->
(cache)
= Basic unit of data transfer from the disk to the computer main memory is one
disk block (or page).

= read_item(X) includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

3. Copy item X from the buffer to the program variable named X.
= write_item(X) includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if it is not already in some
main memory buffer).

3. Copy item X from the program variable named X into its correct location in
the buffer.

4. Store the updated block from the buffer back to disk
either immediately or, more typically, at some later point in time

BACK TO TRANSACTIONS

= Transaction (sequence of executing operations) may be:

 Stand-alone, specified in a high level language like SQL submitted
Interactively, or

* More typically, embedded within application program
= Transaction boundaries: Begin_transaction and End_transaction

 Application program may include specification of several
transactions separated by Begin and End transaction boundaries

 Transaction code can be executed several times (in a loop),
spawning multiple transactions
 Transactions can end in two states:

« Commit: transaction successfully completes and its results are
committed (made permanent)

» Abort: transaction does not complete and none of its actions are
reflected in the database

TRANSACTION NOTATION

T, T,
read item(X); read_item(X);
X=X-N, X=X+ M;
write_item(X); write_item(X);
read_item(Y);
Y=Y+ N,
write_item(Y);

= Focus on read and write operations
° Ty b5 1 (X); wy(X); ri(Y); wy(Y); ey;
T, by; ry(Y); Wy (Y); ey
= b, and e, specify transaction boundaries (begin and end)
= | specifies a unique transaction identifier (Tid)
* W¢(Z) means transaction 5 writes out the value for data item Z

MODES OF CONCURRENCY

* Interleaved processing: concurrent execution of processes is
Interleaved on a single CPU

= Parallel processing: processes are concurrently executed on
multiple CPUs

A LA
1 1
, B B | :
. . . . ! C '+ CPU,
| 1 ! ! 3 D |: CPUQ Figure 21-1
. i | Interleaved process-
ing versus parallel
— > .
f * * Time processing of con-
t ty ty ty current transactions.

» Basic transaction processing theory assumes interleaving

WHAT CAN GO WRONG?

= Consider two concurrently executing transactions:

at ATM window #1

read_item(savings);

savings = savings - $100;
write_item(savings);
read_item(chequing);
chequing = chequing + $100;

O O B~ WODN P

write_item(chequing);

o o T 9

at ATM window #2

read_item(chequing);
chequing = chequing - $20;
write_item(chequing);
dispense $20 to customer;

= System might crash after transaction begins and before it ends.
* Money lost if between 3 and 6 or between c and d
» Updates lost if write to disk not performed before crash

= Chequing account might have incorrect amount recorded:

« $20 withdrawal might be lost if T2 executed between 4 and 6

« $100 deposit might be lost if T1 executed between a and c
 In fact, same problem if just 6 executed between a and ¢

ACID PROPERTIES

= Atomicity: Atransaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

= Consistency preservation: A correct execution of the transaction must
take the database from one consistent state to another.

= [solation: Even though transactions are executing concurrently, they
should appear to be executed in isolation — that is, their final effect
should be as if each transaction was executed in isolation from start to
finish.

= Durability: Once a transaction is committed, its changes (writes)
applied to the database must never be lost because of subsequent
failure.

= Enforcement of ACID properties:
« Database constraint system (and application program correctness)
responsible for C (introduced in previous classes)
« Concurrency control responsible for | (more in next class)
* Recovery system responsible for A and D (more in next class)

TRANSACTION SUPPORT IN SQL

= Asingle SQL statement is always considered to be atomic.

* Either the statement completes execution without error or it fails
and leaves the database unchanged.

= No explicit Begin_Transaction statement.

 Transaction initiation implicit at first SQL statement and at next SQL
statement after previous transaction terminates

» Every transaction must have an explicit end statement

- COMMIT: the DB must assure that the effects are permanent

* ROLLBACK: the DB must assure that the effects are as if the
transaction had not yet begun

SAMPLE SQL TRANSACTION

update proc() {
EXEC SQL WHENEVER SQLERROR GO TO error;
EXEC SQL INSERT
INTO EMPLOYEE
VALUES ('Robert','Smith’,'991004321',2,35000);
EXEC SQL UPDATE EMPLOYEE
SET SALARY = SALARY *1.1
WHERE DNO = 2;
EXEC SQL COMMIT;
return(0);
error: [* continue if error on rollback */
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK;
return(l);

}

LECTURE SUMMARY

= Transaction concepts
= ACID properties for transactions

» Transaction support in SQL

