
INTRODUCTION TO

TRANSACTION

PROCESSING

CHAPTER 21 (6/E)

CHAPTER 17 (5/E)

LECTURE OUTLINE

 Introduction to Transaction Processing

 Desirable Properties of Transactions

 Transaction Support in SQL

2

DEFINITIONS

 Transaction: an executing program (process) that includes one or
more database access operations

• A logical unit of database processing

• Example from banking database: Transfer of $100 dollars from a
chequing account to a savings account

• Characteristic operations

• Reads (database retrieval, such as SQL SELECT)

• Writes (modify database, such as SQL INSERT, UPDATE, DELETE)

 Note: Each execution of a program is a distinct transaction with
different parameters

• Bank transfer program parameters: savings account number,
chequing account number, transfer amount

 Online Transaction Processing (OLTP) Systems: Large multi-user
database systems supporting thousands of concurrent transactions
(user processes) per minute

3

WHY WE NEED TRANSACTIONS

 A database is a shared resource accessed by many

users and processes concurrently.

 Not managing this concurrent access to a shared

resource will cause problems (not unlike in operating

systems)

• Problems due to concurrency

• Problems due to failures

4

TRANSACTION PROCESSING MODEL

 Simple database model:

• Database: collection of named data items

• Granularity (size) of each data item immaterial

• A field (data item value), a record, or a disk block

• TP concepts are independent of granularity

 Basic operations on an item X:

• read_item(X): Reads a database item X into a program variable

• For simplicity, assume that the program variable is also named X

• write_item(X): Writes the value of program variable X into the

database item named X

 Read and write operations take some amount of time to execute

5

COMPUTER STORAGE HIERARCHY

6

program variables

DB items

READ AND WRITE OPERATIONS

 Basic unit of data transfer from the disk to the computer main memory is one
disk block (or page).

 read_item(X) includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block is not
already in some main memory buffer).

3. Copy item X from the buffer to the program variable named X.

 write_item(X) includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if it is not already in some
main memory buffer).

3. Copy item X from the program variable named X into its correct location in
the buffer.

4. Store the updated block from the buffer back to disk
• either immediately or, more typically, at some later point in time

7

Memor

y

Buffers

(cache)

Database File

Disk

DBMS pages

BACK TO TRANSACTIONS

 Transaction (sequence of executing operations) may be:

• Stand-alone, specified in a high level language like SQL submitted

interactively, or

• More typically, embedded within application program

 Transaction boundaries: Begin_transaction and End_transaction

• Application program may include specification of several

transactions separated by Begin and End transaction boundaries

• Transaction code can be executed several times (in a loop),

spawning multiple transactions

• Transactions can end in two states:

• Commit: transaction successfully completes and its results are

committed (made permanent)

• Abort: transaction does not complete and none of its actions are

reflected in the database

8

TRANSACTION NOTATION

 Focus on read and write operations

• T1: b1; r1(X); w1(X); r1(Y); w1(Y); e1;

• T2: b2; r2(Y); w2(Y); e2;

 bi and ei specify transaction boundaries (begin and end)

 i specifies a unique transaction identifier (Tid)

• w5(Z) means transaction 5 writes out the value for data item Z

9

MODES OF CONCURRENCY

 Interleaved processing: concurrent execution of processes is

interleaved on a single CPU

 Parallel processing: processes are concurrently executed on

multiple CPUs

 Basic transaction processing theory assumes interleaving

1
0

WHAT CAN GO WRONG?

 Consider two concurrently executing transactions:

 System might crash after transaction begins and before it ends.

• Money lost if between 3 and 6 or between c and d

• Updates lost if write to disk not performed before crash

 Chequing account might have incorrect amount recorded:

• $20 withdrawal might be lost if T2 executed between 4 and 6

• $100 deposit might be lost if T1 executed between a and c

• In fact, same problem if just 6 executed between a and c

1
1

at ATM window #1 at ATM window #2

1 read_item(savings); a read_item(chequing);

2 savings = savings - $100; b chequing = chequing - $20;

3 write_item(savings); c write_item(chequing);

4 read_item(chequing); d dispense $20 to customer;

5 chequing = chequing + $100;

6 write_item(chequing);

ACID PROPERTIES

 Atomicity: A transaction is an atomic unit of processing; it is either
performed in its entirety or not performed at all.

 Consistency preservation: A correct execution of the transaction must
take the database from one consistent state to another.

 Isolation: Even though transactions are executing concurrently, they
should appear to be executed in isolation – that is, their final effect
should be as if each transaction was executed in isolation from start to
finish.

 Durability: Once a transaction is committed, its changes (writes)
applied to the database must never be lost because of subsequent
failure.

 Enforcement of ACID properties:

• Database constraint system (and application program correctness)
responsible for C (introduced in previous classes)

• Concurrency control responsible for I (more in next class)

• Recovery system responsible for A and D (more in next class)

1
3

TRANSACTION SUPPORT IN SQL

 A single SQL statement is always considered to be atomic.

• Either the statement completes execution without error or it fails

and leaves the database unchanged.

 No explicit Begin_Transaction statement.

• Transaction initiation implicit at first SQL statement and at next SQL

statement after previous transaction terminates

 Every transaction must have an explicit end statement

• COMMIT: the DB must assure that the effects are permanent

• ROLLBACK: the DB must assure that the effects are as if the

transaction had not yet begun

1
4

SAMPLE SQL TRANSACTION

update_proc() {

EXEC SQL WHENEVER SQLERROR GO TO error;

EXEC SQL INSERT

INTO EMPLOYEE

VALUES ('Robert','Smith','991004321',2,35000);

EXEC SQL UPDATE EMPLOYEE

SET SALARY = SALARY * 1.1

WHERE DNO = 2;

EXEC SQL COMMIT;

return(0);

error: /* continue if error on rollback */

EXEC SQL WHENEVER SQLERROR CONTINUE;

EXEC SQL ROLLBACK;

return(1);

}

1
5

LECTURE SUMMARY

 Transaction concepts

 ACID properties for transactions

 Transaction support in SQL

1
6

