Data Warehousing and Decision Support

M. Tamer Özsu

David R. Cheriton School of Computer Science University of Waterloo

CS 348 Introduction to Database Management Fall 2012

	CS 348	Warehousing	Fall 2012	1 / 16
Notes				

Outline

1 Introduction to Decision Support

On-Line Analytical Processing Multidimensional Data Multidimensional Queries

3 Data Warehousing

Creating and Maintaining a Warehouse Materializing Views

	CS 348	Warehousing	Fall 2012	2 / 16
Notes				
110000				

Transaction Processing

The most common use of relational databases is for operational data.

- Examples:
 - Students enrolling in courses
 - Customers purchasing products
 - Passengers purchasing airline tickets

On-	-Line Transactional Processing (OLTP)
Dat	abases that support the basic operations of a business are generally
clas	sified as OLTP systems.
•	Workload characteristics:
	1 simple queries
	2 many short transactions making small changes
•	Systems tuned to maximize throughput of concurrent transactions

	CS 348	Warehousing	Fall 2012	3 / 16
Notes				

More recent uses of operational data:

Decision Support Summarizing data to support high-level decision making

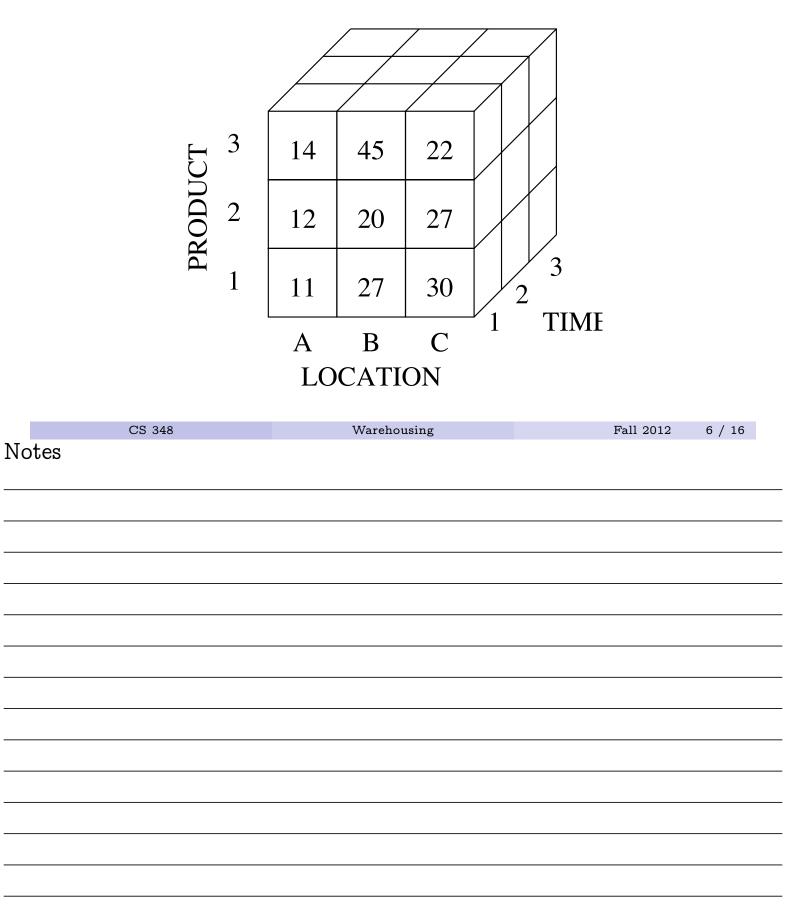
• Complex queries with much aggregation

Data Mining Searching for trends or patterns in data for a business to exploit

• Simple queries, but very data-intensive

Data Warehousing

A *data warehouse* is a separate copy of the operational data used for executing decision support and/or data mining queries.


	CS 348	Warehousing	Fall 2012 4 / 16
No	tes		

On-Line Analytical Processing

6	On Line Application Drocogging (OLAD)					
	On-Line Analytical Processing (OLAP)					
(OLAP is a particular type of decision support					
	 Data is modeled as multidimensional array 					
	 Queries are usually ad hoc 					
	• Queries select and aggregate cells of the array					
	 OLAP systems are divided into two categories: 					
	 Special-purpose OLAP systems 					
	 store data as multidimensional arrays ("MOLAP") provide an OLAD gracific guery language 					
	 provide an OLAP-specific query language 2 Relational databases 					
	 store data in relations ("ROLAP") 					
	• queries written in SQL					
	CS 348 Warehousing	Fall 2012	5 / 16			
Notes	5					

Multidimensional Data

• Example: Number of Sales

Star Schemas

Location

lid	store	city	province	country
Α	Weber	Waterloo	ON	CA
В	F-H	Kitchener	ON	CA
С	Park	Kitchener	ON	CA

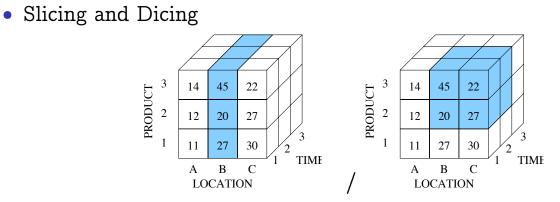
Product

\underline{pid}	pname	category	price
1	Bolt	Hardware	.10
2	Nut	Hardware	.05
3	Wrench	Tools	1.99

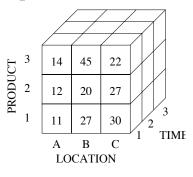
Time

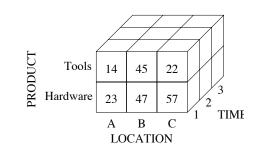
	\underline{tid}	date	week	month	quarter	year
ſ			virtı	ial relatio	on	

Sales


Sales				
lid	pid	tid	sales	
Α	1	1	11	
A	2	1	12	
A	3	1	14	
В	1	1	27	
В	2	1	20	
В	3	1	45	
C	1	1	30	
	2	1	27	
C	3	1	22	
A	1	2	16	
Α	2	2	20	
A	3	2	55	
	÷			

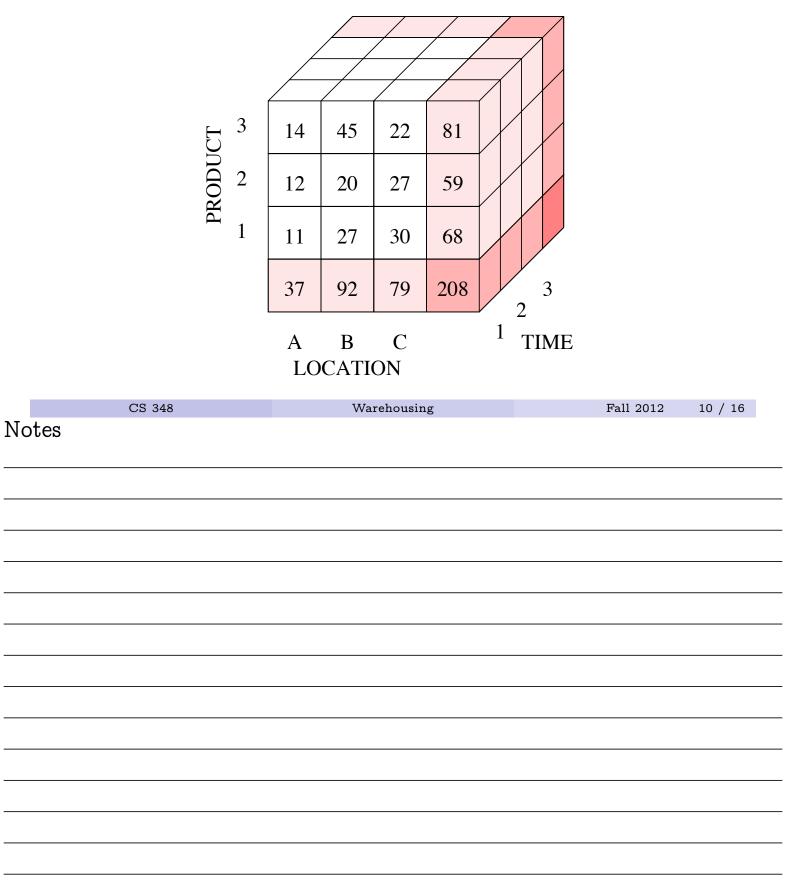
	CS 348	Warehousing	Fall 2012 7 / 16
Notes			


- OLAP queries typically aggregate over one or more dimensions. Examples:
 - Total sales
 - Total sales this year for each product category
 - Total sales for each store per quarter
- OLAP is a tool for *ad hoc* data exploration/visualization
 - Ad hoc queries tend to be iterative
 - Desirable to express queries using operations over previous result


	CS 348	Warehousing	Fall 2012 8 / 16
Nc	tes		

OLAP Query Operations

• Roll-up and Drill-down



	CS 348	Warehousing	Fall 2012	9 / 16
lotes				
10105				

Data Cube

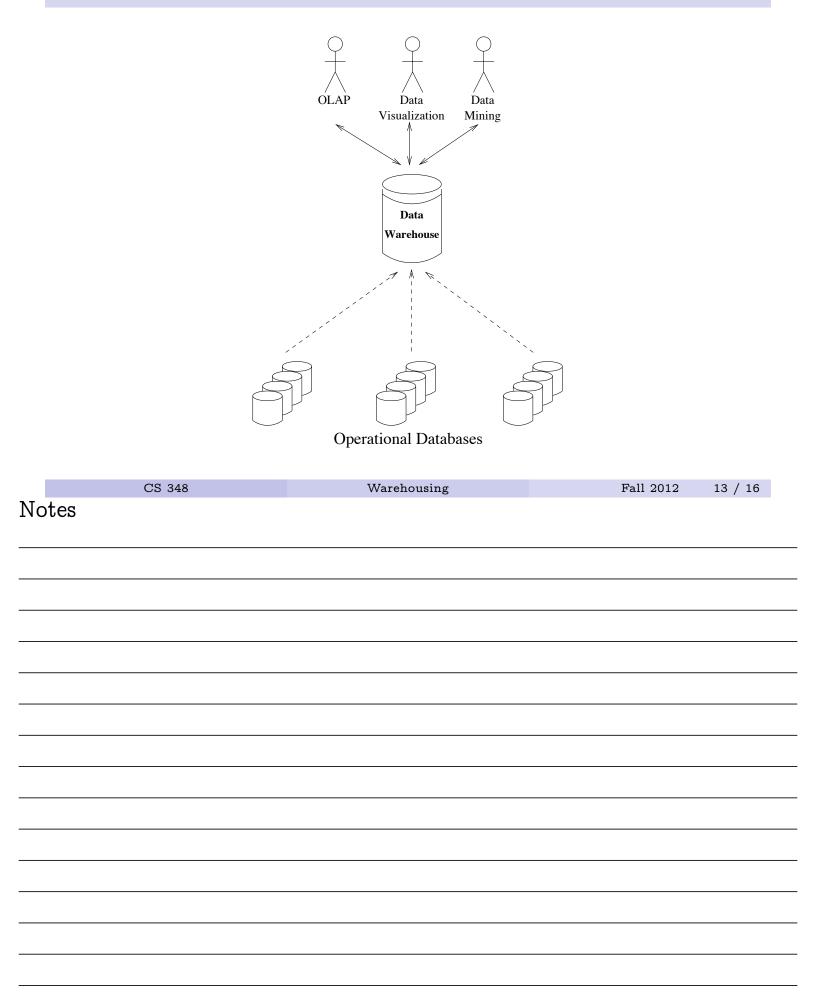
• A *data cube* extends a multidimensional array of data to include all possible aggregated totals

Data Cubes as Relations

	Sale	S			
	lid	pid	tid	sales	
	Α	1	1	11	
	A	2	1	12	
	A	3	1	14	
	A	-	1	37	
	В	1	1	27	
	В	2	1	20	
	В	3	1	45	
	В	-	1	92	
	C	1	1	30	
	C C C C	2	1	27	
	C	3	1	22	
	C	-	1	79	
	-	1	1	68	
	_	2	1	59	
	-	3	1	81	
	_	-	1	208	
	Α	1	2	16	
			:		
Warehousing					

Fall 2012 11 / 16

Notes


CS 348

- Generating the data cube:
 - 1 SUM(sales) GROUP BY location, product, time (raw cells)
 - 2 SUM(sales) GROUP BY location, time
 - **3** SUM(sales) GROUP BY product, time
 - **4** SUM(sales) GROUP BY product, location
 - **5** SUM(sales) GROUP BY product
 - 6 SUM(sales) GROUP BY location
 - **7** SUM(sales) GROUP BY time
 - 8 SUM(sales)
- CUBE operator in SQL:1999 groups by all combinations

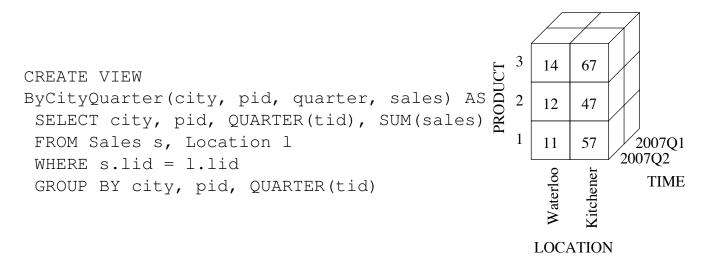
SELECT lid, pid, tid, SUM(sales) FROM Sales GROUP BY CUBE(lid, pid, tid)

	CS 348	Warehousing	Fall 2012	12 / 16
Notes				

Data Warehousing

Creating and Maintaining a Warehouse

Necessary steps when creating a warehouse:


- Extract Run queries against the operational databases to retrieve necessary data
 - Clean Delete or repair tuples with missing or invalid information
- Transform Reorganize the data to fit the conceptual schema of the warehouse
 - Load Populate the warehouse tables; build indexes and/or materialized views

Note

The data in the warehouse needs to be refreshed periodically (typically nightly or weekly). To make this process efficient, the above steps need to be executed *incrementally*.

	CS 348	Warehousing	Fall 2012 14 / 16
Note	S		

• Consider the following view of the Sales data:

- View ByCityQuarter is useful for any query that
 - 1 Rolls-up the Location dimension to *at least* City; and
 - 2 Rolls-up the Time dimension to at least Quarter

	CS 348	Warehousing	Fall 2012	15 / 16
lotes				

- Issues related to using materialized views:
 - 1 Which views to materialize (*view selection*)
 - 2 Which views are useful to answer a query (view matching)
 - **3** Which indexes to build on the views
 - 4 How to refresh the data in the view. Options:
 - Synchronous incremental maintenance
 - Asynchronous incremental maintenance
 - No synchronization (periodic re-creation)

Observation

These are the very same issues that apply to the entire data warehouse, relative to the data in the operational databases.

	CS 348	Warehousing	Fall 2012	16 / 16
Nc	tes			