DATABASES AND DATABASE USERS

CHAPTER 1

Acknowledgement:

Most slides for this course have been adapted from slides made available by Addison Wesley to accompany Elmasri and Navathe's textbook.

LECTURE OUTLINE

- Introduction
- An Example
- Characteristics of the Database Approach
- Actors on the Scene
- Workers behind the Scene
- When Not to Use a DBMS

WEALTH OF DATA

- Traditional database applications
 - Store numeric short textual information
 - Typically for managing enterprises
- Text and multimedia databases
 - Store documents, digital images, audio, and video streams
- Geographic information systems (GIS)
 - Store maps, weather data, and satellite images
 - For route-finding, agriculture, and natural resource management
- Data warehouses and online analytical processing (OLAP) systems
 - Store historical business information
 - For business analytics and decision support
- Real-time and active database technology
 - Store process models, constraints, and key performance indicators
 - Control industrial and manufacturing processes

TERMINOLOGY

Database

- Collection of related data (logically coherent)
- Known facts that can be recorded and that have implicit meaning
- Represents some aspect(s) of the real world (miniworld)
- Built for a specific purpose
- Examples of large databases
 - Amazon.com, Canadian Census, The Bay's product inventory, data collection underlying Quest

- Database management system (DBMS)
 - Collection of programs
 - Enables users to create and maintain a database
 - Allows multiple users and programs to access and manipulate the database concurrently
 - Provides protection against unauthorized access and manipulation
 - Provides means to evolve database and program behaviour as requirements change over time
- Examples of database management systems
 - IBM's DB2, Microsoft's Access and SQL Server, Oracle, MySQL, SAP's SQL Anywhere

- Defining a database
 - Specifying the data types, structures, and constraints of the data to be stored
 - Uses a Data Definition Language
- Meta-data
 - Database definition or descriptive information
 - Stored by the DBMS in the form of a database catalog or data dictionary
- Phases for designing a database:
 - Requirements specification and analysis
 - Conceptual design
 - e.g., using the Entity-Relationship model
 - Logical design
 - e.g., using the relational model
 - Physical design

- Populating a database
 - Inserting data to reflect the miniworld

Query

- Interaction causing some data to be retrieved
- uses a Query Language
- Manipulating a database
 - Querying and updating the database to understand/reflect miniworld
 - Generating reports
 - Uses a Data Manipulation Language

Application program

Accesses database by sending queries and updates to DBMS

Transaction

- An atomic unit of queries and updates that must be executed as a whole
 - e.g., buying a product, transferring funds, switching co-op streams

DBMS SCHEMATIC

Figure 1.1 A simplified database system environment.

AN EXAMPLE

- Movie database
 - Information concerning movies, actors, awards
- Data records
 - Film
 - Person
 - Role
 - Honours
- Define structure of each type of record by specifying data elements to include and data type for each element
 - String (sequence of alphabetic characters)
 - Numeric (integer or real)
 - Date (year or year-month-day)
 - Monetary amount
 - etc.

AN EXAMPLE (CONT'D.)

- Populate MOVIES database
 - Store data to represent each film, actor, director, award, role

Film

title	genre	year	director	runtime	budget	gross
The Company						
Men	drama	2010	John Wells	104	15,000,000	4,439,063
Lincoln	biography	2012	Steven Spielberg	150	65,000,000	181,408,467
War Horse	drama	2011	Steven Spielberg	146	66,000,000	79,883,359
Argo	drama	2012	Ben Affleck	120	44,500,000	135,178,251
Fire Sale	comedy	1977	Alan Arkin	88	1,500,000	0

Person

. 5.55			
name	birth	city	
Ben Affleck	1972	Berkeley	
Alan Arkin	1934	New York	
Tommy Lee Jones	1946	San Saba	
John Wells	1957	Alexandria	
Steven Spielberg	1946	Cincinnati	
Daniel Day-Lewis	1957	Greenwich	

Honours

movie	award	category	winner
Lincoln	Critic's Choice	actor	Daniel Day-Lewis
Argo	Critic's Choice	director	Ben Affleck
Lincoln	Screen Actors Guild	supporting actor	Tommy Lee Jones
Lincoln	Screen Actors Guild	actor	Daniel Day-Lewis
Lincoln	Critic's Choice	screenplay	Tony Kushner
Argo	Screen Actors Guild	cast	Argo
War Horse	BMI Flim	music	John Williams

Role

11010			
actor	movie	persona	
Ben Affleck	Argo	Tony Mendez	
Alan Arkin	Argo	Lester Siegel	
Ben Affleck	The Company Men	Bobby Walker	
Tommy Lee Jones	The Company Men	Gene McClary	
Tommy Lee Jones	Lincoln	Thaddeus Stevens	
Alan Arkin	Fire Sale	Ezra Fikus	
Daniel Day-Lewis	Lincoln	Abraham Lincoln	

AN EXAMPLE (CONT'D.)

- Manipulation involves querying and updating
- Examples of queries:
 - List the cast of characters for Lincoln.
 - Who directed a drama in 2012?
 - Who directed a film in which he or she also played a role?
 - What awards were won by War Horse?
- Examples of updates:
 - Record that Argo won a Golden Globe award for best picture.
 - Add another \$395,533 to the gross earnings for Lincoln.
 - Change the birthplace for Daniel Day-Lewis to London.
 - Delete Fire Sale from the database.

- Reorganizing a database
 - Changes the metadata rather than the data
 - More drastic than data updates
 - May require massive changes to the data
 - May require changes to some application programs
 - Uses the Data Definition Language again
- Examples:
 - Rename gross to be domestic earnings and add a new column for foreign earnings.
 - Move director from FILM to a separate relation DIRECTOR with columns for person and movie
 - Change birth from yyyy to yyyy/mm/dd
 - Split name in PERSON to separate surname from given names.
 - Include column movieID in FILM (to accommodate remakes and other duplications of film title) and update other relations accordingly.

PRE-DBMS DATABASES

- Used traditional file processing
 - Each user defines and implements the files needed for a specific software application
 - As the application base grows
 - many shared files
 - a multitude of file structures
 - a need to exchange data among applications
- Eventually recognized that data is a critical corporate asset (along with capital and personnel)

DATABASE APPROACH

- Single repository maintains data that is defined once and then accessed by various users
- Addresses a variety of problems
 - redundancy: multiple copies
 - inconsistency: independent updates
 - inaccuracy: concurrent updates
 - incompatibility: multiple formats
 - insecurity: proliferation
 - inauditability: poor chain of responsibility
 - inflexibility: changes are difficult to apply

CHARACTERISTICS OF THE DATABASE APPROACH

- Programs isolated from data through abstraction
 - Does not expose details of how (or where) data is stored or how operations are implemented
 - Data sharing through multiple views
- Multiuser transaction processing
 - Encapsulates sequence of operations to behave atomically
- Data is self-defining
 - Database system contains complete definition of structure and constraints as meta-data
 - Database catalog used by:
 - DBMS software
 - Database users who need information about database structure

DATABASE CATALOG

RELATIONS

Relation_name	No_of_columns
STUDENT	4
COURSE	4
SECTION	5
GRADE_REPORT	3
PREREQUISITE	2

COLUMNS

Column_name	Data_type	Belongs_to_relation
Name	Character (30)	STUDENT
Student_number	Character (4)	STUDENT
Class	Integer (1)	STUDENT
Major	Major_type	STUDENT
Course_name	Character (10)	COURSE
Course_number	XXXXNNNN	COURSE
	••••	
Prerequisite_number	XXXXNNNN	PREREQUISITE

Note: Major_type is defined as an enumerated type with all known majors.

XXXXNNNN is used to define a type with four alpha characters followed by four digits.

ACTORS ON THE SCENE

- Database administrator (DBA) responsible for:
 - Authorizing access to the database
 - Coordinating and monitoring its use
 - Acquiring software and hardware resources
 - Tuning the DBMS for best performance
- Database designer responsible for:
 - Identifying the data to be stored
 - Choosing appropriate structures to represent and store this data

ACTORS ON THE SCENE (CONT'D.)

End users

- Those whose jobs require access to the database
 - Naive or parametric end users
 - canned queries and updates
 - Casual end users
 - occasional, special-purpose access
 - Sophisticated end users
 - deep knowledge of database design and DBMS facilities
- Standalone users
 - users of personal databases
- System analysts
 - Determine requirements of end users
- Application programmers
 - Implement complex specifications (business logic) as programs

WORKERS BEHIND THE SCENE

- DBMS system designers and implementers
 - Design and implement the DBMS modules and interfaces as a software package
- Tool developers
 - Design and implement tools
- Operators and maintenance personnel
 - Responsible for running and maintenance of hardware and software environment for database system

WHEN NOT TO USE A DBMS

- More desirable to use regular files for:
 - Simple, well-defined applications with no expected changes at all
 - Small variety of data and/or small amount of data
 - Stringent, real-time requirements that cannot afford DBMS overhead
 - Only single (personal) access to data
- Unlikely that any of these apply to corporate data management.
 - In fact, corporations often maintain many databases across many database systems.

LECTURE SUMMARY

- Database
 - Collection of related data (recorded facts)
- DBMS
 - Generalized software package for implementing and maintaining a computerized database
 - Provides many services to manage data resources
- Several categories of database users