1 Problem 1

Consider four different transaction execution schedules (include read/write operations)

\[H_1 = r_1[x]r_1[y]w_1[y]r_2[y]r_2[x]w_2[y]w_2[x]r_2[z] \]
\[H_2 = r_2[y]r_2[x]w_2[y]w_2[x]r_2[z]r_1[x]r_1[y]w_1[y] \]
\[H_3 = r_3[y]w_2[x]r_1[x]r_1[z]w_3[z]w_3[z]r_1[y]r_2[y] \]
\[H_4 = w_2[x]w_3[z]r_3[x]r_4[y]r_3[z]w_1[y]w_4[x]r_1[x]r_1[z]r_4[z] \]

Answer the following questions:

1. List all the conflicting pairs for \(H_1 \) and \(H_2 \).

\[H_1 = \{ (r_1[x], w_2[x]), (r_1[y], w_2[y]), (w_1[y], r_2[y]), (w_1[y], w_2[y]) \} \]

Transaction Order: \(T_1 \rightarrow T_2 \)

\[H_2 = \{ (r_2[x], w_2[x]), (w_2[x], r_1[x]), (r_2[y], w_2[y]), (r_2[y], w_1[y]), (w_2[y], r_1[y]), (w_2[y], w_1[y]) \} \]

Transaction Order: \(T_2 \rightarrow T_1 \)

2. Are \(H_1 \) and \(H_2 \) conflict equivalent and why?

No, \(H_1 \) Transaction Order: \(T_1 \rightarrow T_2 \neq H_2 \) Transaction Order: \(T_2 \rightarrow T_1 \)

3. For \(H_3 \) and \(H_4 \),

- Give the serialization graph.
- Determine whether or not the schedule is serializable, and justify your answer.
- If the schedule is serializable, specify a serial order of transaction execution to which it is equivalent.

1. \(H_3 \) is not serializable since a cycle is inside the graph (\(T_1 \leftrightarrow T_3 \))
2. H_4 is serializable since no cycle in the graph (Transaction Order: $T_2 \rightarrow T_3 \rightarrow T_1 \rightarrow T_4$)

Problem 2

Suppose user Bob has privileges to read a secret table T. User Mallory wants to see the data in T (but does not have the privileges to do so). If the system is using Discretionary AC (Access Control), Mallory may have the chance to conduct a Trojan Horse Attack by performing the following steps:

1. Mallory creates a table T' and gives INSERT privileges to Bob.
2. Mallory tricks Bob into copying data from T to T' (e.g. by extending the "functionality" of a program used by Bob).
3. Mallory can then see the data that comes from T

Mandatory AC could stop this kind of attack. For example, if we are using the Bell-LaPadula Model, where four different Security Clearances are provided: Top Secret(TS), Secret(S), Confidential(C), unclassified(U). Order of the privilege level is

$$TS > S > C > U$$

(1)
Suppose user Bob still has privileges to read a secret table T, which means
\[\text{clearance}(Bob) := S \] \hspace{1cm} (2)
And User Mallory still wants to see the data in T (but does not have the privileges to do so).
\[\text{clearance}(Mallory) < S \] \hspace{1cm} (3)

Explain: why user Mallory can not see the content of secret table T, if he tries to use the same strategy as described above, under Bell-LaPadula Model.

1. **Mallory** creates a table T' and gives INSERT privileges to Bob.
 - $\text{class}(T') := \text{clearance}(Mallory)$
 - i.e. $\text{class}(T') < S$
2. **Mallory** tricks Bob into copying data from T to T'.
 - writing to T' **fails** for Bob because $\text{clearance}(Bob) \not\in \text{class}(T')$
3. **Mallory** cannot steal the data from T

Problem 3

Consider the following relational schema:

- **EMPLOYEE**(Fname, Lname, Ssn, Bdate, Address, Salary, Dno)
- **PROJECT**(Pname, Pnumber, Plocation, Dnum)
- **WORKS_ON**(Essn, Pno, Hours)

where **WORKS_ON.Esn** is a foreign key to **EMPLOYEE.Ssn**, and **WORKS_ON.Pno** is a foreign key to **PROJECT.Pnumber**.

Consider the following SQL query:

```
SELECT Pnumber , Pname , COUNT(*)
FROM PROJECT , WORKS_ON , EMPLOYEE
WHERE Pnumber = Pno AND Ssn=Esn AND Dno = 5
GROUP BY Pnumber , Pname
```

Draw two query trees that can represent this query. Argue why these are equivalent (i.e., which rules you applied to get one from the other).

One tree is given in Figure 1 and the second one is given in Figure 2. Figure 2 is obtained from the first by:
- Distributing selection over join:
Changing the join order.

Note: it is generally preferred to give a name to the attribute generated by aggregation operators so that the resulting column has a meaningful name. In this case we should have said SELECT Pname, Pnumber, COUNT(*) AS TotalProjects or something like that. If we did that, we could put the COUNT(*) as the next operator after GROUP BY followed by Projection over Pname, Pnumber, TotalProjects.

Problem 4

Let V be a view created over relation R (create view V as $SELECT \ldots FROM \ldots$). Assume that initially Bob has all permissions on R (including permission to grant permissions to others), nobody else has permissions on R, and that Alice and Clara have select permission on V. Now consider the sequence of commands executed by the specified users to grant and revoke permissions as showed in Table 1:
Table 1

<table>
<thead>
<tr>
<th>Order</th>
<th>Command</th>
<th>Executed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grant Select on R To Alice with Grant Option</td>
<td>Bob</td>
</tr>
<tr>
<td>2</td>
<td>Grant Select on R To Clara</td>
<td>Alice</td>
</tr>
<tr>
<td>3</td>
<td>Grant Select on R To Donald</td>
<td>Alice</td>
</tr>
<tr>
<td>4</td>
<td>Grant Select on R To Clara</td>
<td>Bob</td>
</tr>
<tr>
<td>5</td>
<td>Revoke Select on R From Alice</td>
<td>Bob</td>
</tr>
</tbody>
</table>

Question: Which of Bob, Alice, Clara, Donald are authorized to execute each of the commands as showed in Table 2 at the conclusion of this sequence.

Table 2

<table>
<thead>
<tr>
<th>Command</th>
<th>Bob</th>
<th>Alice</th>
<th>Clara</th>
<th>Donald</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT X FROM R WHERE $Y < 100$</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPDATE R SET $Y = Y \ast 3$</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELECT A FROM V WHERE $C = 10$</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREATE VIEW View2 AS SELECT * FROM R</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>