Problem 1

Consider four different transaction execution histories (include read/write opearations)

\[H_1 = \text{r}_1[\text{x}]\text{r}_1[\text{y}]\text{w}_1[\text{y}]\text{r}_2[\text{y}]\text{w}_2[\text{y}]\text{r}_2[\text{x}]\text{w}_2[\text{x}]\text{r}_2[\text{z}] \]
\[H_2 = \text{r}_2[\text{y}]\text{r}_2[\text{x}]\text{w}_2[\text{y}]\text{r}_2[\text{z}]\text{r}_1[\text{x}]\text{r}_1[\text{y}]\text{w}_1[\text{y}] \]
\[H_3 = \text{r}_2[\text{y}]\text{w}_2[\text{x}]\text{r}_1[\text{x}]\text{r}_1[\text{z}]\text{w}_1[\text{z}]\text{w}_3[\text{z}]\text{r}_1[\text{y}]\text{r}_2[\text{y}] \]
\[H_4 = \text{w}_2[\text{x}]\text{w}_3[\text{z}]\text{r}_3[\text{x}]\text{r}_4[\text{y}]\text{r}_3[\text{z}]\text{w}_1[\text{y}]\text{w}_4[\text{x}]\text{r}_1[\text{x}]\text{r}_1[\text{z}]\text{r}_4[\text{z}] \]

Answer the following questions:

1. List all the conflicting pairs for \(H_1 \) and \(H_2 \).
2. Are \(H_1 \) and \(H_2 \) conflict equivalent and why?
3. For \(H_3 \) and \(H_4 \),
 - Give the serialization graph.
 - Determine whether or not the schedule is serializable, and justify your answer.
 - If the schedule is serializable, specify a serial order of transaction execution to which it is equivalent.

Problem 2

Suppose user Bob has privileges to read a secret table \(T \). User Mallory wants to see the data in \(T \) (but does not have the privileges to do so). If the system is using Discretionary AC (Access Control), Mallory may have the chance to conduct a Trojan Horse Attack by performing the following steps:
1. *Mallory* creates a table T' and gives INSERT privileges to *Bob*.

2. *Mallory* tricks *Bob* into copying data from T to T' (e.g. by extending the "functionality" of a program used by *Bob*).

3. *Mallory* can then see the data that comes from T

Mandatory AC could stop this kind of attack. For example, if we are using the *Bell-LaPadula Model*, where four different *Security Clearances* are provided: Top Secret(TS), Secret(S), Confidential(C), unclassified(U). Order of the privilege level is

$$TS > S > C > U$$

(1)

Suppose user *Bob* still has privileges to read a secret table T, which means

$$\text{clearance}(Bob) := S$$

(2)

And User *Mallory* still wants to see the data in T (but does not have the privileges to do so).

$$\text{clearance}(Mallory) < S$$

(3)

Explain: why user *Mallory* can not see the content of secret table T, if he tries to use the same strategy as described above, under *Bell-LaPadula Model*.

Problem 3

Consider the following relational schema:

- **EMPLOYEE**($Fname$, $Lname$, Ssn, $Bdate$, $Address$, $Salary$, Dno)
- **PROJECT**($Pname$, $Pnumber$, $Plocation$, $Dnum$)
- **WORKS_ON**($Essn$, Pno, $Hours$)

where **WORKS_ON**.$Essn$ is a foreign key to **EMPLOYEE**.Ssn, and **WORKS_ON**.Pno is a foreign key to **PROJECT**.$Pnumber$.

Consider the following SQL query:

```sql
SELECT $Pnumber$, $Pname$, COUNT(*)
FROM **PROJECT**, **WORKS_ON**, **EMPLOYEE**
WHERE $Pnumber$ = $Pno$ AND $Ssn$=Essn AND $Dno$ = 5
GROUP BY $Pnumber$, $Pname`
```

Draw two query trees that can represent this query. Argue why these are equivalent (i.e., which rules you applied to get one from the other).
Problem 4

Let V be a view created over relation R (create view V as $SELECT \ldots FROM \ldots$). Assume that initially Bob has all permissions on R (including permission to grant permissions to others), nobody else has permissions on R, and that $Alice$ and $Clara$ have select permission on V.

Now consider the sequence of commands executed by the specified users to grant and revoke permissions as showed in Table 1:

<table>
<thead>
<tr>
<th>Order</th>
<th>Command</th>
<th>Executed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grant Select on R To Alice with Grant Option</td>
<td>Bob</td>
</tr>
<tr>
<td>2</td>
<td>Grant Select on R To Clara</td>
<td>Alice</td>
</tr>
<tr>
<td>3</td>
<td>Grant Select on R To Donald</td>
<td>Alice</td>
</tr>
<tr>
<td>4</td>
<td>Grant Select on R To Clara</td>
<td>Bob</td>
</tr>
<tr>
<td>5</td>
<td>Revoke Select on R From Alice</td>
<td>Bob</td>
</tr>
</tbody>
</table>

Table 1

Question: Which of Bob, $Alice$, $Clara$, $Donald$ are authorized to execute each of the commands as showed in Table 2 at the conclusion of this sequence.

<table>
<thead>
<tr>
<th>Command</th>
<th>Bob</th>
<th>Alice</th>
<th>Clara</th>
<th>Donald</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECT X FROM R WHERE $Y < 100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPDATE R SET $Y = Y \ast 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELECT A FROM V WHERE $C = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREATE VIEW $View2$ AS SELECT $*$ FROM R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2