
What Comes After CS 1 --I- 2: A Deep Breadth Before
Specializing

Troy Vasiga
Department of Computer Science

University of Water loo
Water loo, O N N2L 3G1 Canada

tmjvasiga@math.uwaterloo.ca

Abstract

There has been m u c h discussion of CS1 and CS2 in com-
pu te r science educa t ion circles. This pape r presents a
proposa l for a course subsequent to CS2 t h a t acts as a
"spr ingboard" for s tuden ts diving into more specialized
C o m p u t e r Science courses at the uppe r year levels.

1 Introduction and Motivation

To say there has been much discussion of CS] and CS2
in S I G C S E circles is a gross unde r s t a t emen t . To quan-
t i fy this s t a tement , consider t h a t f rom the 78 papers
accepted to S I G C S E 2000, at least 18 of t h e m (23%)
were focussed on CS1 a n d / o r CS2 [12]. The mot iva t -
ing ques t ion under ly ing this area of research seems to
be: " W h a t are the fundamen ta l e l ementa ry CS concepts
t h a t need to be conveyed to novice CS s tudents?"

Addit ional ly , there is a focus in the compu te r science
teaching c o m m u n i t y concern ing teaching special izat ion
courses, such as opera t ing systems, concur ren t p rogram-
ming, etc. T h a t is, these specialized courses expect
s tuden ts to begin the course wi th "enough" under ly ing
c o m p u t e r knowledge to avoid hav ing to review funda-
menta ls to any great length. Moreover, since there are a
wide range of special izat ion courses, the following ques-
t ion seems na tu ra l to ask: " W h a t are the fundamen ta l
pieces of knowledge required for special izat ion courses
and how can this knowledge be expressed succinct ly to
s tuden ts?"

These two quest ions beg the connec t ing quest ion:
" W h a t might glue or lead the f irst-year courses into

Pormission to make digital or hard copies of all or part of this work for
personal or c las sroom use is granted without fee provided that copies are
not m a d e or distributed for profit or commerc ia l advantage and that
copies bear this not ice and the ful l c itation on the first page. To copy
otherwise , or republish, to post on servers or to redistribute to lists,
requires prior specif ic permiss ion and/or a fee.
SIGCSE "02, February 27- March 3, 2002, Covington, Kentucky, USA.
Copyright 2002 ACM 1-58113-473-8/02/0002...$5.00.

the special izat ion courses?" In this paper , we present
an out l ine of such a course, CS 241 [11], t h a t follows
na tu ra l ly f rom CS1 and CS2 and presents a contex t
for specia l izat ion courses in uppe r years. I t should
be no ted t h a t while the specific course CS 241 exists,
this pape r will a t t e m p t to convey the under ly ing
educa t iona l methodologies of CS 241 to be of benefi t
to o ther ins t ruc tors or cur r i cu lum developers.

2 Overview of the Course

The course CS 241, Founda t ions of Sequential P ro -
grams, has been offered for m a n y years at the Univers i ty
of Water loo . The current s t ruc tu re of the course has
crystal l ized (to some degree) dur ing the 2000 academic
year. T h e course is taken by c o m p u t e r science m a j o r
s tudents in their th i rd academic te rm, and enrol lment
ranges be tween 100-400 s tuden ts per term.

The general sequencing of the course is out l ined below:

Assembly language: In this sect ion of the course, we
in t roduce the basic D L X assembly l anguage (as out -
lined by P a t t e r s o n 8z Hennessey [7]), present ing the
basic concepts of the p a r a m e t e r stack, registers, re-
cursive calls and p r o g r a m counter . S tuden t s wri te
several assembly language programs , including pro-
grams t h a t use subrout ines , p rog rams t h a t are recur-
sive, and prograzns t h a t access an a r ray in R A M .

Regular languages: This sect ion covers regular ex-
pressions and finite s t a te machines (in all their forms)
in their re la t ion to scanning. S tuden t s cons t ruc t
m a n y regular expressions for various languages, and
implement a scanner (using b o t h finite s t a te machines
and regular expressions) for a simplified language
(SL). SL is a subset of C or Pasca l (this varies f rom
t e r m to te rm) , which includes elements such as con-
dit ionals, repet i t ion, variables and pointers (no sub-
p rograms , objects or arrays).

Context - f ree languages: T h e mater ia l covered in this
sect ion covers basic g r a m m a r s t ruc tu re , ambiguity,

2 8

LL and L R g r a m m a r s , b o t h wi th in and outs ide the
app l ica t ion of pars ing. S tuden ts cons t ruc t a context -
free g r a m m a r t h a t formal ly defines SL p rograms .

• A t t r i b u t e g r ammars : This sect ion covers the addi-
t ion of c o m p u t a t i o n rules to a given g r a m m a r to gain
"more power" and to do ac tua l t r ans la t ion f rom one
language to another . This sect ion ties back into ~he
Assembly Language sect ion out l ined above by tak ing
a high-level l anguage and d e m o n s t r a t i n g how D L X
code can be genera ted by way of a t t r i b u t e g r a m m a r s .
S tuden ts add a t t r i b u t e c o m p u t a t i o n rules to genera te
D L X machine code equivalent to a given SL p rogram.

• Assemblers , Linkers, Loaders: Th is sect ion delves
deeper into the low-level ins t ruc t ions t h a t occur when
an assembled p r o g r a m is executed. S tuden t s (in some
offerings of the course) i m p l e m e n t an assembler , us-
ing the techniques of scanning, pars ing and a t t r i b u t e
c o m p u t a t i o n presented in the earlier sect ions of the
course.

• Scheme: This sect ion acts as a foil to i l lus t ra te the
basic differences be tween p rocedura l and funct ional
p r o g r a m m i n g languages. S tuden t s wr i te curr ied and
nes ted funct ions to accompl ish a va r ie ty of process ing
tasks, including imp lemen t ing a s ym bo l tab le by way
of a b ina ry dict ionary.

T h e languages used by the s tuden ts in the course are
a home-grown D L X assembler and in terpre ter , J a v a
and Scheme. Using these languages, s tuden t s ex t r ac t
the theore t ica l concepts t augh t in lectures (3 hours pe r
week) to cons t ruc t a compi ler for SL.

Addit ionally, s tuden t s use o ther compi le r cons t ruc t ion
tools, such as J L e x and CUP, which axe out l ined in Ap-
pel [4] and available on-l ine [3].

In the r ema inde r of this paper , we present the ra t iona le
for using this course as a sp r ingboa rd af ter CS1 and CS2
and before s tuden t s enter special ized CS courses.

3 The Need for CS3

In this section, we examine the f u n d a m e n t a l concepts
t h a t s tudents should a t t a i n by the end of CS1 and CS2.
We then m a k e the case t ha t these skills are not ideal
(on their own) for delving into specia l izat ion courses.

We begin by out l in ing the basic a s sumpt ions for objec-
t ives t a u g h t in CS1 and CS2, based on courses cur ren t ly
offered at var ious ins t i tu t ions , as well as the A C M Com-
pu t ing Curr icu la 1991 [1].

3.1 Basic Assumptions About CS1 and CS2

By the end of CS1, s tuden ts will have an unde r s t and -
ing of the following concepts , b o t h on a theore t ica l and

cons t ruc t ive level:

• a lgor i thms and the i r usage in p rob l em solving

• basic p r o g r a m m i n g s t ruc tures , such as condi t ion eval-
ua t ion and repe t i t i on

• bas ic d a t a types (including integers, str ings, and ar-
r ays /vec to r s)

• ob jec t -o r ien ted concepts such as objects , classes, and
inher i tance

T h e above concepts are those covered by mos t CS1
courses (such as those l isted at [5, 6], to ci te two of
many) , and are the c o m m o n chap te r s in i n t roduc to ry
c o m p u t e r texts , such as H o r s t m a n n [8].

By the end of CS2, it is a s sumed t h a t s tuden ts will
have the following knowledge, b o t h f rom an appl ied and
theore t ica l perspect ive :

• more advanced d a t a s t ruc tu res (stacks, queues, t rees)

• ab s t r ac t d a t a types

• recurs ion

• sor t ing (including quicksort and mergesor t)

T h e above concepts are covered in m a n y c o m p u t e r sci-
ence courses, including [9, 2].

3.2 The Case Against Specialization in CS3

Given the above a s sumpt ions a b o u t the educa t iona l out-
comes of CS1 and CS2, we now make the case t h a t
s tuden t s axe not fully p r e p a r e d to specialize into areas
such as sof tware engineering, ope ra t i ng sys tems, haxd-
ware, t heo ry or concur ren t p r o g r a m m i n g i m m e d i a t e l y
following CS2.

The re are th ree pedagogica l reasons for not following
CS2 wi th the specia l iza t ion courses:

1. S p e c i a l i z a t i o n e a r l y m a y c a u s e a l a c k o f s y n -
t h e s i s . We consider this poin t in two cases: in theo-
ret ical courses and in appl ica t ive courses.

In theore t ica l courses (which would, arguably, in-
clude ha rdware and "proper" theory) , the s tuden t
would have no context nor reason to re la te vaxious
theore t ica l cons t ruc t ions , numer ica l representa t ions ,
t r u t h tables, gates and o the r circuits. These concepts
will r ema in de tached f rom the s tuden ts schema un-
less concre te connect ions axe m a d e wi th sub jec t s s tu-
dents axe a l ready famil iar with. After CS2, s tuden ts
m a y only have (at bes t) a vague not ion of how b ina ry
represen ta t ions (in a ha rdware sense) or finite s t a t e

29

machines (in b o t h a ha rdware and theore t ica l sense)
re la te to the c o m p u t a t i o n a l essence of compute r s .

In appl ica t ive courses (including ope ra t i ng sys t ems
and concurrency) , s tuden t s will no t have been ex-
posed to the in te rac t ion be tween the execu t ion of a
(high-level) p r o g r a m and the under ly ing C P U st ruc-
ture . Th i s concept is crucial in order to place the idea
of concur rency and para l le l iza t ion in context , since
concur ren t p r o g r a m m i n g concerns i tself wi th m a n a g -
ing this in terac t ion . In t e r m s of ope ra t i ng s y s t e m
courses, the var ious levels of the OSI mode l (see [10])
b e c o m e clearer in the contex t of d i f ferent ia t ing the
high-level app l ica t ion level f rom the low-level d a t a
level.

2. S t u d e n t s m a y b e i l l - p r e p a r e d in t e r m s o f t h e
size~ c o m p l e x i t y a n d s t r u c t u r e o f p r o g r a m s
t h a t t h e y n e e d t o c o m p r e h e n d a n d c r e a t e . In
general , s tuden t s in CS1 and CS2 courses axe asked
to c rea te pa r t s of la rger p rog rams , or a col lect ion of
smal ler p rog rams . In o ther f i rs t -year courses, s tu-
dents work on a course- long pro jec t , add ing funct ion-
al i ty as the t e r m progresses . A p r ime e x a m p l e of th is
would be a s t ra teg ic g a m e / s i m u l a t i o n where var ious
fea tures are added and improved on as the course
progresses , w i th each new fea ture in t roduc ing a new
concept .

T h e difficulty wi th this pedagogica l mode l is t h a t
i t doe sn ' t scale well when larger p rob l ems need to
be solved. In par t icu la r , compi l a t i on is m o s t easi ly
v iewed as a sequence off in]ovmation processing steps,
which is a f u n d a m e n t a l concep t w h e n deal ing wi th
o p e r a t i n g sys t ems (in t he OSI mode l s t a t ed earl ier) .
As an example f rom a specia l iza t ion course, the p rob-
l em of c rea t ing an o p e r a t i n g s y s t e m is not to figure
out w h a t func t iona l i ty needs to be included, bu t how
to process in fo rma t ion into the desired ou tcome.

To s u m m a r i z e th is point , the spec ia l iza t ion courses
require more p r o b l e m solving tools and techniques
t h a n those t augh t in CS1 and CS2.

3. S t u d e n t s m a y o n l y v i e w t h e c o m p u t e r as a n
a l g o r i t h m e n t r y d e v i c e , a n d n o t v i e w it as a
s y s t e m . Studen t s who comple te CS2 t end to be pro-
ficient p r o g r a m m e r s , and axe usual ly adep t a t t ak ing
a wel l - formed specif icat ion of a p r o b l e m and c rea t ing
an out l ine of how t h e y would solve it a lgori thmical ly .
However , specia l iza t ion courses require a deeper un-
de r s t and ing of the physica l mach ine and its funct ion-
ality, r a t h e r t h a n a s imple view of how to wr i te a
p r o g r a m . S tuden t s who have comple t ed CS2 do not
have this necessary global v iew of the c o m p u t e r sys-
t em.

3.3 The Case Against Depth or Breadth in CS0

An a l t e rna t ive a p p r o a c h (t ha t some readers have sug-
gested) to th is CS3 course could be to add b r e a d t h to
CS0, in the fo rm of p resen t ing a global v iew of the com-
p i la t ion process. Th is a l t e rna t ive idea will be re fu ted in
this section.

CS0 is a course which focuses on t ak ing s tuden t s f rom a
neax-zero level of CS knowledge (bo th in the p r o g r a m -
ming aspec t and in overall c o m p u t e r comfor tab i l i ty) to
a level of basic p r o g r a m m i n g skills and general com-
p u t e r usage ability. F r o m persona l exper ience, this ve ry
s imple goal is not a lways achieved in CS0 courses: to
conceive of add ing m o r e ma te r i a l and goals is unrea-
sonable . Moreover , to expec t s tuden t s to progress f rom
no p r o g r a m m i n g exper ience to a level of p r o g r a m m i n g
knowledge high enough to u n d e r s t a n d how p r o g r a m s
can be used to t r ans l a t e o the r p r o g r a m s into b ina ry
code is asking too m u c h of CS0. T h e CS0 course works
bes t when the basic usage e lements of c o m p u t e r s axe
the focus, not the advanced i m p l e m e n t a t i o n details .

4 T h e Case for CS 241 as CS3

In this sect ion, we m a k e the case for hav ing a course
s imi lar to CS 241 as the s p r i n g b o a r d CS3 course before
s tuden t s take specia l iza t ion courses.

4.1 Looking Back

We now make the case that CS 241 follows in a contin-
uous way from CS2. We examine issues of modularity,

abstraction and data types.

M o d u l a r i t y T h e concep t of m o d u l a r i t y is incorpo-
r a t ed into CS 241 by way of cons t ruc t ing a compi le r in
m o d u l a r c o m p o n e n t s that are sequent ia l ly connec ted to-
gether . T h a t is, s tuden t s first cons t ruc t a scanner , t h e n
a parser , t h e n an a t t r i b u t e - c o m p u t a t i o n tool to finally
o u t p u t a s sembly language. This s t r u c t u r e of p r o g r a m
design expands on the basic m o d u l a r i z a t i o n techniques
of i nc remen ta l des ign by way of in t roduc ing c o m p o n e n t -
based m o d u l a r i z a t i o n wi th increas ingly complex func-
t iona l c o m p o n e n t s which c o n c a t e n a t e t oge the r to pro-
duce one sys tem.

Abstraction The concept of abstraction is extended
upon in CS 241. In particular, CS 241 exposes sev-
eral layers of abstraction that most students didn't even
know existed: the layers between a high-level prograxn-
ming language and the actual CPU. Additionally, the
benefits of abstraction are clearly highlighted, by way
of illustrating that abstracting away the binary repre-
sentation of instructions is a good thing, since for the
most part, programmers do not want to be concerned

with this low level. To put this another way, if there

30

was a s logan for this p roposed CS3 course, it is t h a t we
a t t e m p t to remove the mystery of how programs work.

D a t a T y p e s In CS 241, s tudents app ly their knowl-
edge of s tacks (for assembly language p r o g r a m m i n g and
pars ing) , t rees (for represent ing parse trees), and lists
(for Scheme represen ta t ions of da ta) .

4.2 Looking Forward

In this section, we outl ine how CS 241 leads e legant ly
into the special izat ion courses offered in u p p e r years.
We look at each specia l izat ion course in turn .

Hardware CS 241 leads s tudents down to the ma-
chine language level: t h a t is, af ter compi l ing and assem-
bling, s tuden ts see how a high-level language is equiva-
lent to b ina ry machine code. T h e very na t u r a l quest ion
t h a t follows is to ask "How does the machine use ma-
chine code?" This quest ion is the focus of c o m p u t e i
a rchi tec ture and design courses.

Theory Based on the in t roduc t ion of the prac t ica l
side of finite s t a t e machines and context - f ree g r ammars ,
s tudents should formalize these notions. In par t icu-
lar, learning how to de te rmine if a language is regular
(or not) , context - f ree (or not) provides a clearer under-
s t and of the (relative) power of regular expressions and
context- f ree g r a m m a r s . Thus , the pract ica l in t roduc-
t ion of formal languages in a compi la t ion sense mot i -
vates fu r ther s t u d y in a deeper theore t ica l sense.

C o m p u t e r Graphics and Real T i m e Since graph-
ics and real t ime p r o g r a m m i n g are concerned wi th speed
and efficiency (to a large degree), the connect ion be-
tween high level languages and individual machine in-
s t ruc t ions becomes crucial. In par t icu lar , the abil i ty
to unde r s t and how m a n y C P U clock cycles an ins t ruc-
t ion takes, whe the r it is a high-level, assembly-level or
machine- level inst ruct ion, is a key (if not central) com-
ponen t of b o t h these courses.

Artificial Inte l l igence In CS 241, we i l lus t ra te the
search technique of back t rack ing in the context of t ry-
ing to parse a s t r ing (i.e., de te rmine whe ther a given
word w is in a language defined by some context - f ree
g r a m m a r) . Th is idea of back t rack ing forms the essen-
t ial core of artificial intelligence, in t e rms of searching
"intell igently" as opposed to searching "brutal ly."

S o f t w a r e E n g i n e e r i n g Software engineer ing re-
quires software as its "mater ia l ." Moreover, the useful-
ness of sof tware engineer ing is d i rect ly p ropor t iona l to
the size of the p r o g r a m under discussion. At the end of
CS 241, s tuden ts have a compi ler for a s imple language
as an ar t i fact . A first exercise in a subsequent sof tware

engineer ing course could be: "Change your compi ler to
now work for a modif ied language and o u t p u t CISC as-
sembly code." T h e concepts of documen ta t i on , con-
sistent p r e / p o s t condit ions, and m o d u l a r i t y would be-
come immed ia t e ly obvious to the s tuden t while working
th rough this exercise.

Compi lers and P r o g r a m m i n g Languages CS 241
prepares s tuden ts for compilers and p r o g r a m m i n g la~l-
guages by expos ing t h e m to the essential decisions t h a t
go into cons t ruc t ing a compiler . For instance, s tuden ts
learn how ambigu i ty in a context- f ree g r a m m a r which
specifies a high-level language can result in e x t r e m e l y
different and unpred ic tab le functionali ty.

Addit ional ly, since s tudents are exposed to a func-
t ional p r o g r a m m i n g language, the concept t h a t not all
p r o g r a m m i n g languages need to follow a p rocedura l
p a r a d i g m is emphas ized , opening the door for more "in-
teres t ing" languages like ML, APL, and Prolog.

5 Conclusions and Further Research

In concluding this paper , it should be no ted t h a t this
course outl ine m a y not app ly to every school set t ing.
However, the point of this p a p e r is two-fold: curr icu-
lum changes are easier when shared amongs t schools,
and this shar ing can occur only t h rough reasoned dis-
cussion. In some senses, this p a p e r can be considered
a "first shot over the bow" for opening pos t -CS2, pre-
special ized cur r icu lum discussion. As such, the au thor
very much welcomes views of how o ther ins t i tu t ions
present this mater ia l , or why they choose not to, and
wha t ramif ica t ions it has on curr iculum.

In t e rms of fu r ther research, the au tho r is considering
poll ing u p p e r year s tuden ts to see how their knowledge
gained in CS 241 has been appl ied in u p p e r year courses.
As well, the possibi l i ty of p r e - t e s t i ng /pos t - t e s t i n g s tu-
dents on their knowledge could also be explored.

As a final point , it is wor th not ing t h a t m a n y s tudents
r epor t t h a t at the end of this course "the whole th ing
t ied toge ther" and " p r o g r a m m i n g now makes sense" on
their course evaluat ions. Th is lends more evidence to
the benefi t of this course.

References

[1]

[2]

A C M Cur r i cu lum C o m m i t t e e on C o m p u t e r Sci-
ence. Computing Curricula 1991, Report of
the A CM/IEEE-CS Joint Curriculum Task Force
(1991), A C M Press.

Albrech, D., and Picket t , D. Courseware for
cs1303, 2001. Online. In ternet . Available W W W :
h t t p : / / w w w . c s s e . m o n a s h . e d u , a u / c o u r s e w a r e / c s e l 3 0 3 /

31

[3] Appel, A . W . Modern compiler implementa-
tion, 1998. Online. Internet. Available WWW:
http: / /www.cs.princeton.edu/-appel/modern/java/.

[4] Appel, A. W. Modern Compiler Implementation in
Java. Cambridge University Press, 1998.

[51 Becker, B. W. CS 130 course outline,
2001. Online. Internet. Available WWW:
ht tp: / /www.student .math.uwater loo.ca/-cs130.

[6] Covington, R. Caltech CS2, 1998.
Online. Internet. Available WWW:
ht tp: / /www.ugcs .cal tech.edu/cs2/ lectures /010300/ .

[7] Hennessy, J., and Patterson, D. Computer Archi-
tecture: A Quantitative Approach. Morgan Kauf-
man Publishers, 1990.

[8] Horstmann, C. Computing Concepts With Java Es-
sentials. John Wiley &: Sons Inc., 1999.

[9] Prett i , J. P. CS 134 timetable, 2001.
Online. Internet. Available WWW:
ht tp: / /www.student .math.uwater loo.ca/ -cs134.

[10] Tanenbaum, A. S. Modern Operating Systems.
Prentice-Hall, 1992.

[11] Vasiga, T. M. J. CS 241, 2001.
Online. Internet. Available WWW:
ht tp : / /www.s tudent .math .uwater loo .ca / - cs241.

[12] Walker, H. Letter from the program chair / table of
contents. Proceedings of the Thirty-.first SIGCSE
Technical Symposium on Computer Science Edu-
cation (2000), iv-xix.

32

