What Comes After CS 1 4+ 2: A Deep Breadth Before
Specializing

Troy Vasiga
Department of Computer Science
University of Waterloo
Waterloo, ON N2L 3G1 Canada
tmjvasiga@math.uwaterloo.ca

Abstract

There has been much discussion of CS1 and CS2 in com-
puter science education circles. This paper presents a
proposal for a course subsequent to CS2 that acts as a
“gpringboard” for students diving into more specialized
Computer Science courses at the upper year levels.

1 Introduction and Motivation

To say there has been much discussion of CS1 and CS2
in SIGCSE circles is a gross understatement. To quan-
tify this statement, consider that from the 78 papers
accepted to SIGCSE 2000, at least 18 of them (23%)
were focussed on CS1 and/or CS2 [12]. The motivat-
ing question underlying this area of research seems to
be: “What are the fundamental elementary CS concepts
that need to be conveyed to novice CS students?”

Additionally, there is a focus in the computer science
teaching community concerning teaching specialization
courses, such as operating systems, concurrent program-
ming, etc. That is, these specialized courses expect
students to begin the course with “enough” underlying
computer knowledge to avoid having to review funda-
mentals to any great length. Moreover, since there are a
wide range of specialization courses, the following ques-
tion seems natural to ask: “What are the fundamental
pieces of knowledge required for specialization courses
and how can this knowledge be expressed succinctly to
students?”

These two questions beg the connecting question:
“What might glue or lead the first-year courses into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To capy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGCSE 02, February 27- March 3, 2002, Covington, Kentucky, USA.
Copyright 2002 ACM 1-58113-473-8/02/0002...85.00.

28

the specialization courses?” In this paper, we present
an outline of such a course, CS 241 [11], that follows
naturally from CS1 and CS2 and presents a context
for specialization courses in upper years. It should
be noted that while the specific course CS 241 exists,
this paper will attempt to convey the underlying
educational methodologies of CS 241 to be of benefit
to other instructors or curriculum developers.

2 Overview of the Course

The course CS 241, Foundations of Sequential Pro-
grams, has been offered for many years at the University
of Waterloo. The current structure of the course has
crystallized (to some degree) during the 2000 academic
year. The course is taken by computer science major
students in their third academic term, and enrollment
ranges between 100-400 students per term.

The general sequencing of the course is outlined below:

e Assembly language: In this section of the course, we
introduce the basic DLX assembly language (as out-
lined by Patterson & Hennessey [7]), presenting the
basic concepts of the parameter stack, registers, re-
cursive calls and program counter. Students write
several assembly language programs, including pro-
grams that use subroutines, programs that are recur-
sive, and programs that access an array in RAM.

e Regular languages: This section covers regular ex-
pressions and finite state machines (in all their forms)
in their relation to scanning. Students construct
many regular expressions for various languages, and
implement a scanner (using both finite state machines
and regular expressions) for a simplified language
(SL). SL is a subset of C or Pascal (this varies from
term to term), which includes elements such as con-
ditionals, repetition, variables and pointers (no sub-
programs, objects or arrays).

e Context-free languages: The material covered in this
section covers basic grammar structure, ambiguity,



LL and LR grammars, both within and outside the
application of parsing. Students construct a context-
free grammar that formally defines SL programs.

e Attribute grammars: This section covers the addi-
tion of computation rules to a given grammar to gain
“more power” and to do actual translation from one
language to another. This section ties back into the
Assembly Language section outlined above by taking
a high-level language and demonstrating how DLX
code can be generated by way of attribute grammars.
Students add attribute computation rules to generate
DLX machine code equivalent to a given SL program.

e Assemblers, Linkers, Loaders: This section delves
deeper into the low-level instructions that occur when
an assembled program is executed. Students (in some
offerings of the course) implement an assembler, us-
ing the techniques of scanning, parsing and attribute
computation presented in the earlier sections of the
course.

e Scheme: This section acts as a foil to illustrate the
basic differences between procedural and functional
programming languages. Students write curried and
nested functions to accomplish a variety of processing
tasks, including implementing a symbol table by way
of a binary dictionary.

The languages used by the students in the course are
a home-grown DLX assembler and interpreter, Java
and Scheme. Using these languages, students extract
the theoretical concepts taught in lectures (3 hours per
week) to construct a compiler for SL.

Additionally, students use other compiler construction
tools, such as JLex and CUP, which are outlined in Ap-
pel [4] and available on-line [3].

In the remainder of this paper, we present the rationale
for using this course as a springboard after CS1 and CS2
and before students enter specialized CS courses.

3 The Need for CS3

In this section, we examine the fundamental concepts
that students should attain by the end of CS1 and CS2.
We then make the case that these skills are not ideal
(on their own) for delving into specialization courses.

We begin by outlining the basic assumptions for objec-
tives taught in CS1 and CS2, based on courses currently
offered at various institutions, as well as the ACM Com-
puting Curricula 1991 [1].

3.1 Basic Assumptions About CS1 and CS2

By the end of CS1, students will have an understand-
ing of the following concepts, both on a theoretical and

29

constructive level:

e algorithms and their usage in problem solving

e basic programming structures, such as condition eval-
uation and repetition

e basic data types (including integers, strings, and ar-
rays/vectors)

e object-oriented concepts such as objects, classes, and
inheritance

The above concepts are those covered by most CS1
courses (such as those listed at [5, 6], to cite two of
many), and are the common chapters in introductory
computer texts, such as Horstmann [8].

By the end of CS2, it is assumed that students will
have the following knowledge, both from an applied and
theoretical perspective:

e more advanced data structures (stacks, queues, trees)
e abstract data types
® recursion

o sorting (including quicksort and mergesort)

The above concepts are covered in many computer sci-
ence courses, including [9, 2].

3.2 The Case Against Specialization in CS3

Given the above assumptions about the educational out-
comes of CS1 and CS2, we now make the case that
students are not fully prepared to specialize into areas
such as software engineering, operating systems, hard-
ware, theory or concurrent programming immediately
following CS2.

There are three pedagogical reasons for not following
CS2 with the specialization courses:

1. Specialization early may cause a lack of syn-
thesis. We consider this point in two cases: in theo-
retical courses and in applicative courses.

In theoretical courses (which would, arguably, in-
clude hardware and “proper” theory), the student
would have no context nor reason to relate various
theoretical constructions, numerical representations,
truth tables, gates and other circuits. These concepts
will remain detached from the students schema un-
less concrete connections are made with subjects stu-
dents are already familiar with. After CS2, students
may only have (at best) a vague notion of how binary
representations (in a hardware sense) or finite state



machines (in both a hardware and theoretical sense)
relate to the computational essence of computers.

In applicative courses (including operating systems
and concurrency), students will not have been ex-
posed to the interaction between the execution of a
(high-level) program and the underlying CPU struc-
ture. This concept is crucial in order to place the idea
of concurrency and parallelization in context, since
concurrent programming concerns itself with manag-
ing this interaction. In terms of operating system
courses, the various levels of the OSI model (see [10])
become clearer in the context of differentiating the
high-level application level from the low-level data
level.

. Students may be ill-prepared in terms of the
size, complexity and structure of programs
that they need to comprehend and create. In
general, students in CS1 and CS2 courses are asked
to create parts of larger programs, or a collection of
smaller programs. In other first-year courses, stu-
dents work on a course-long project, adding function-
ality as the term progresses. A prime example of this
would be a strategic game/simulation where various
features are added and improved on as the course
progresses, with each new feature introducing a new
concept.

The difficulty with this pedagogical model is that
it doesn’t scale well when larger problems need to
be solved. In particular, compilation is most easily
viewed as a sequence of information processing steps,
which is a fundamental concept when dealing with
operating systems (in the OSI model stated earlier).
As an example from a specialization course, the prob-
lem of creating an operating system is not to figure
out what functionality needs to be included, but how
to process information into the desired outcome.

To summarize this point, the specialization courses
require more problem solving tools and techniques
than those taught in CS1 and CS2.

. Students may only view the computer as an
algorithm entry device, and not view it as a
system. Students who complete CS2 tend to be pro-
ficient programmers, and are usually adept at taking
a well-formed specification of a problem and creating
an outline of how they would solve it algorithmically.
However, specialization courses require a deeper un-
derstanding of the physical machine and its function-
ality, rather than a simple view of how to write a
program. Students who have completed CS2 do not
have this necessary global view of the computer sys-
tem.

30

3.3 The Case Against Depth or Breadth in CS0

An alternative approach (that some readers have sug-
gested) to this CS3 course could be to add breadth to
CS0, in the form of presenting a global view of the com-
pilation process. This alternative idea will be refuted in
this section.

CS0 is a course which focuses on taking students from a
near-zero level of CS knowledge (both in the program-
ming aspect and in overall computer comfortability) to
a level of basic programming skills and general com-
puter usage ability. From personal experience, this very
simple goal is not always achieved in CSO courses: to
conceive of adding more material and goals is unrea-
sonable. Moreover, to expect students to progress from
no programming experience to a level of programming
knowledge high enough to understand how programs
can be used to translate other programs into binary
code is asking too much of CS0. The CSO course works
best when the basic usage elements of computers are
the focus, not the advanced implementation details.

4 The Case for CS 241 as CS3

In this section, we make the case for having a course
similar to CS 241 as the springboard CS3 course before
students take specialization courses.

4.1 Looking Back

We now make the case that CS 241 follows in a contin-
uous way from CS2. We examine issues of modularity,
abstraction and data types.

Modularity The concept of modularity is incorpo-
rated into CS 241 by way of constructing a compiler in
modular components that are sequentially connected to-
gether. That is, students first construct a scanner, then
a parser, then an attribute-computation tool to finally
output assembly language. This structure of program
design expands on the basic modularization techniques
of incremental design by way of introducing component-
based modularization with increasingly complex func-
tional components which concatenate together to pro-
duce one system.

Abstraction The concept of abstraction is extended
upon in CS 241. In particular, CS 241 exposes sev-
eral layers of abstraction that most students didn’t even
know existed: the layers between a high-level program-
ming language and the actual CPU. Additionally, the
benefits of abstraction are clearly highlighted, by way
of illustrating that abstracting away the binary repre-
sentation of instructions is a good thing, since for the
most part, programmers do not want to be concerned
with this low level. To put this another way, if there



was a slogan for this proposed CS3 course, it is that we
attempt to remove the mystery of how programs work.

Data Types In CS 241, students apply their knowl-
edge of stacks (for assembly language programming and
parsing), trees (for representing parse trees), and lists
(for Scheme representations of data).

4.2 Looking Forward

In this section, we outline how CS 241 leads elegantly
into the specialization courses offered in upper years.
We look at each specialization course in turn.

Hardware CS 241 leads students down to the ma-
chine language level: that is, after compiling and assem-
bling, students see how a high-level language is equiva-
lent. to binary machine code. The very natural question
that follows is to ask “How does the machine use ma-
chine code?” This question is the focus of computer
architecture and design courses.

Theory Based on the introduction of the practical
side of finite state machines and context-free grammars,
students should formalize these notions. In particu-
lar, learning how to determine if a language is regular
(or not), context-free (or not) provides a clearer under-
stand of the (relative) power of regular expressions and
context-free grammars. Thus, the practical introduc-
tion of formal languages in a compilation sense moti-
vates further study in a deeper theoretical sense.

Computer Graphics and Real Time Since graph-
ics and real time programming are concerned with speed
and efficiency (to a large degree), the connection be-
tween high level languages and individual machine in-
structions becomes crucial. In particular, the ability
to understand how many CPU clock cycles an instruc-
tion takes, whether it is a high-level, assembly-level or
machine-level instruction, is a key (if not central) com-
ponent of both these courses.

Artificial Intelligence In CS 241, we illustrate the
search technique of backtracking in the context of try-
ing to parse a string (i.e., determine whether a given
word w is in a language defined by some context-free
grammar). This idea of backtracking forms the essen-
tial core of artificial intelligence, in terms of searching
“intelligently” as opposed to searching “brutally.”

Software Engineering Software engineering re-
quires software as its “material.” Moreover, the useful-
ness of software engineering is directly proportional to
the size of the program under discussion. At the end of
CS 241, students have a compiler for a simple language
as an artifact. A first exercise in a subsequent software

31

engineering course could be: “Change your compiler to
now work for a modified language and output CISC as-
sembly code.” The concepts of documentation, con-
sistent pre/post conditions, and modularity would be-
come immediately obvious to the student while working
through this exercise.

Compilers and Programming Languages CS 241
prepares students for compilers and programming lan-
guages by exposing them to the essential decisions that
go into constructing a compiler. For instance, students
learn how ambiguity in a context-free grammar which
specifies a high-level language can result in extremely
different and unpredictable functionality.

Additionally, since students are exposed to a func-
tional programming language, the concept that not all
programming languages need to follow a procedural
paradigm is emphasized, opening the door for more “in-
teresting” languages like ML, APL, and Prolog.

5 Conclusions and Further Research

In concluding this paper, it should be noted that this
course outline may not apply to every school setting.
However, the point of this paper is two-fold: curricu-
lum changes are easier when shared amongst schools,
and this sharing can occur only through reasoned dis-
cussion. In some senses, this paper can be considered
a “first shot over the bow” for opening post-CS2, pre-
specialized curriculum discussion. As such, the author
very much welcomes views of how other institutions
present this material, or why they choose not to, and
what ramifications it has on curriculum.

In terms of further research, the author is considering
polling upper year students to see how their knowledge
gained in CS 241 has been applied in upper year courses.
As well, the possibility of pre-testing/post-testing stu-
dents on their knowledge could also be explored.

As a final point, it is worth noting that many students
report that at the end of this course “the whole thing
tied together” and “programming now makes sense” on
their course evaluations. This lends more evidence to
the benefit of this course.

References

[1] ACM Curriculum Committee on Computer Sci-
ence. Computing Curricula 1991, Report of
the ACM/IEEFE-CS Joint Curriculum Task Force
(1991), ACM Press.

[2] Albrech, D., and Pickett, D. Courseware for
cs1303, 2001. Online. Internet. Available WWW:

http://www.csse.monash.edu.au/courseware/cse1303/



[3] Appel, A. W. Modern compiler implementa-
tion, 1998. Online. Internet. Available WWW:
http://www.cs.princeton.edu/ " appel/modern/java/.

[4] Appel, A. W. Modern Compiler Implementation in
Java. Cambridge University Press, 1998.

[5] Becker, B. W. CS 130 course outline,
2001. Online. Internet. Available WWW:
http://www.student.math.uwaterloo.ca/ cs130.

[6] Covington, R. Caltech CS2, 1998.
Online. Internet. Available WWW:

http://www.ugcs.caltech.edu/ cs2/lectures/010300/.

[7] Hennessy, J., and Patterson, D. Computer Archi-
tecture: A Quantitative Approach. Morgan Kauf-
man Publishers, 1990.

[8] Horstmann, C. Computing Concepts With Java Es-
sentials. John Wiley & Sons Inc., 1999.

[9] Pretti, J. P. CS 134 timetable, 2001.
Online. Internet. Available WWW:
http://www.student.math.uwaterloo.ca/ cs134.

[10] Tanenbaum, A. S. Modern Operating Systems.
Prentice-Hall, 1992.

[11] Vasiga, T. M. J. CS 241, 2001.
Online. Internet. Available WWW:
http://www.student.math.uwaterloo.ca/ cs241.

[12] Walker, H. Letter from the program chair/table of
contents. Proceedings of the Thirty-first SIGCSE
Technical Symposium on Computer Science Edu-
cation (2000), iv—xix.

32



