3SUM and Related Problems

Timothy Chan
(UIUC)

The 3SUM Problem

e Given sets A, B, C of n real numbers,
decide da € A, b € B, ¢ € C with

a+b=c

e Standard Sol'n 1;:
sort A 4+ B, sort C', merge

—

O(n?logn)

time

The 3SUM Problem

e Standard Sol'n 2:

Preprocessing: sort A & B
Foreachc e C:testifce A+ Bin O(n) time

I
N
‘ \\:L‘\—I— y==c
AN
Bm{ N
A\\
] N

The 3SUM Problem

e Standard Sol'n 2:

Preprocessing: sort A & B
Foreachce C:testifce A+ Bin O(n) time

= O(n?)|/time (better??)

Variants

e monochromatic version: A = B = (C
e integer version

e convolution 3SUM: given sequences A, B, C,
decide Ji, k s.t. A[i] + B[k — i] = C[kK]

e LSUM
(O(n!k/21) time for k odd, O(n*/210gn) time for k even)

Lower Bound Conjecture

e 3SUM requires 2(n?7¢) time??
(or more strongly, 3SUM for integers (in [n2]) requires
Q(n27¢) time??)

e useful for proving conditional polynomial lower bound
for other problems, by reductions from 3SUM. ..

Exs of 3SUM-Hard Problems (started by

Gajentaan—Overmars’93)

e 3COLLINEAR: given n points in 2D, decide 3 3
collinear points

Exs of 3SUM-Hard Problems (started by

Gajentaan—Overmars’93)

e 3COLLINEAR: given n points in 2D, decide 3 3
collinear points

e 3CONCURRENT: given n lines in 2D, decide 9 3
concurrent lines

Exs of 3SUM-Hard Problems (started by

Gajentaan—Overmars’95)

e given n points in 2D, find 3 points defining smallest triangle area

e given n triangles in 2D, decide if union covers [0, 1]2

e given n halfplanes in 2D, find the deepest point

e given n red/blue points in 2D, find smallest # pts to remove s.t. 3
line separating red from blue points

e given n line segment obstacles in 2D and initial/final position of a
rod, decide if motion exists for the rod

e given n points in 3D, find the max Tukey depth

e given 3 polygons in 2D, decide if their common intersection is
empty

Exs of Integer-3SUM-Hard Problems

e zero-weight triangle in an edge-weighted graph: O(n3—9) time?
[Vassilevska—Williams (FOCS’10)]

e enumerate ¢ triangles in a graph: O(¢1/3m1-9) time?
[Patrascu (STOC’10); Kopelowitz—Pettie—Porat (SODA’16)]

e dynamic reachability & dynamic subgraph connectivity:
n°(1) query & update time? [Patrascu (STOC'10)]

e dynamic max matching: similar [Abboud—Vassilevska (FOCS’14);
Kopelowitz—Pettie—Porat (SODA’16)]

e local alignment: O(n2—9) time? [Abboud—Vassilevska—Weimann
(ICALP’14)]

e jumbled string indexing over [¢]: n queries in O(n2—1/(e—1-0))
time? [Amir—C.—Lewenstein—Lewenstein (ICALP’14)]

(all via Integer Convolution 3SUM [Patrascu (STOC’'10)]...)

Lower Bound Results

e Erickson [SODA'95]: 3SUM needs Q2(n?) comparisons
for 3-linear decision trees

(kSUM needs Q(n!*/21) comps for k-linear decision trees)

(Ailon—Chazelle [STOC’'04]: kSUM needs n$2(%) for
(k + O(1))-linear decision trees)

(Ericksen—SeideHFOGS93}: Erickson [SoCG’96]:
3COLLINEAR needs ©2(n?) sidedness tests)

The Surprise. ..

e Gronlund—Pettie [FOCS’14]:

3SUM can be solved in|O(n3/2) comparisons
for 4-linear decision trees

& has an O(n2?/10g**1)) time alg'm. ..

Subsequent Results

e Decision trees

Gronlund—Pettie [FOCS'14] O(n3/2\/logn)
Gold—Sharir'15 O(n3/2)
Kane—Lovett—Moran [STOC'18] O(n1og?n)

e Alg'ms
Gronlund—Pettie [FOCS'14] O*(n?/
O*(n?/
Freund’15/Gold-Sharir15 O*(n?/

0g2/3n) det.
ogn) rand.
ogn) det.

C. [SODA'18] O*(n?/log?n) det.

Rest of Talk

1. Subquadratic Decision-Tree Upper Bounds
2. Slightly Subquadratic Alg'ms

3. Extensions to Other Problems

Fredman’s Trick

a+b < o+
0

a—a < b —b

(Fredman [FOCS’75] used this to prove O(n°/2) decision tree upper
bound for all-pairs shortest paths & (min, 4)-matrix multiplication)

Warm-Up: (min, 4)-Convolution remner-

C.—Demaine—Erickson—Hurtado—lacono—Langerman—Patrascu—Taslakian’06]

e Problem: Given sequences A, B of n real numbers,
compute C[k] = min(Al[i] + B[k — ¢]) for all k
(/

e Preprocessing:

divide A into groups Ay,..., A, 4 0f size d
divide B into groups By, ..., B,, /4 Of size d

sort U(A4;—A4;) U U(B;—Bj)
(J

= O(n/d-d?-logn) = O(dn) comps

(by Fredman’s trick, comparisons internal to each A; + B; are
now free...)

Warm-Up: (min, 4)-Convolution remner-

C.—Demaine—Erickson—Hurtado—lacono—Langerman—Patrascu—Taslakian’06]

e To compute each C|k]:
find min of O(n/d) elements, in O(n/d) comps

Bn/d

\i+—j:}c

Warm-Up: (min, 4)-Convolution remner-

C.—Demaine—Erickson—Hurtado—lacono—Langerman—Patrascu—Taslakian’06]

e To compute each C|k]:
find min of O(n/d) elements, in O(n/d) comps

e total # comps O(dn + n - n/d)

e setd =/n = O(n3/2) comps

Similar: (median, +)-Convolution gremner

C.—Demaine—Erickson—Hurtado—lacono—Langerman—Patrascu—Taslakian’06]

e Problem: Given sequences A, B of n real numbers,
compute C'[k] = median of {A[:] + B[k — i]}ié[k]

Similar: (median,

)'CO nVO|Ut|On [Bremner—

C.—Demaine—Erickson—Hurtado—lacono—Langerman—Patrascu—Taslakian’06]

e To compute each C|k]:

find median in union of O(n/d) sorted lists of size d
IN O((n/d) l0g d) COMPS [Frederickson—Johnson’80s]

e total # comps O(dn + n -n/d)

esetd=/n =

5(n3/2)

comps

Convolution 3SUM [Grenlund—Pettie’14]

e Problem: Given sequences A, B, C' of n real numbers,
decide di, k with C'[k] = Ali] + B[k — 7]

Convolution 3SUM [Grenlund—Pettie’14]

e To search for each C[k]:

search in O(n/d) sorted lists of size d
in O((n/d) log d) comps (by binary searches)

Bn/d

\iJr-j:}s

Convolution 3SUM [Grenlund—Pettie’14]

e To search for each C[k]:

search in O(n/d) sorted lists of size d
in O((n/d) log d) comps (by binary searches)

e total # comps O(dn + n -n/d)

e setd =/n = O(n3/2) comps

o naIIy: 3SUM [Grenlund—Pettie’14]

o firstsort A & B

e rest is basically the same!

Fi naIIy: 3SUM [Grenlund—Pettie’14]

e [0 search foreach c € C:

search in O(n/d) sorted lists of size d?
in O((n/d) logd) comps (by binary searches)

Bn/d

Nnty—c

o naIIy: 3SUM [Granlund—Pettie’14]

e [0 search foreach c € C:

search in O(n/d) sorted lists of size d?
in O((n/d) logd) comps (by binary searches)

e total # comps = O(dn + n-n/d)

esetd=+/n =

5(713/2)

comps

Rest of Talk

1. Subquadratic Decision-Tree Upper Bounds
2. Slightly Subquadratic Alg'ms

3. Extensions to Other Problems

3SUM Alg’m 0

e build decision tree for small input size m

e divide A, B, C' into groups of size m
= O(n/m)? subproblems of size O(m)

e can solve each subproblem in O(m3/2) time

o total time O((n/m)?2 - m3/2 + 25(?”3/2))

e setm~1092/3n = O*(n?/logl/3n) time

3SUM Alg’'m 1 [c:18]

e Key Idea: think geometrically. .. In d dimensions!
(inspired by C. [STOC’07] on (min, 4+)-matrix multiplication)

e map each group A; to a point (A;[1],..., 4;[d])

e map each group B, to O(d*) hyperplanes
{(mlv K 733d) = Rd L Ty BJ[”U] — Lyt + B][U/]}

over u, v, v, v € [d]

(comparisons internal to A; + B; are resolved if we know the
location of A;’s point w.r.t. B;’s hyperplanes...)

Cutting Lemma
[Clarkson—Shor’89, Chazelle—Friedman’90]

e Given N hyperplanes in R?, can cut R? into dO(d)yd
cells s.t. each cell intersects O(N/r) hyperplanes

—~—A Y/
TS ST

P

S VAN

3SUM Alg’'m 1 [c:18]

e apply Cutting Lemmato N = O(d* - n/d) hyperplanes
e for each (7, 5):

e Case 1: the hyperplanes of B; do not intersect A;’s cell

— all other A;’s in the same cell have “same” A; + B;
— can pre-sort one A; + B; per cell per B;

— total time dO(drd . 5
e Case 2: some hyperplane of B; intersects A;’s cell

— #such Bjs is dO(l)n/r per A;
— can pre-sort A; + B; for each such A;, B;

= total time d°Mn/r - n

3SUM Alg’'m 1 [c:18]

e [0 search foreach c € C:

binary-search in O(n/d) sorted lists of size d?

in O((n/d)logd) time

e total time O (d0<d)rd n+ d°WOnjr-n +n n/d)

e setr =d°(1) = é(dO(‘Dn + nz/d) time

e setd ~ logn/loglogn =

O*(n?/logn)

time

3SUM Alg’'m 2 [c:18]

e Key ldea: Fredman’s trick 4 bit packing tricks

e Lemma 1: can do a batch of) internal comparisons, in
O(dn + Q/w) time on w-bit word RAM
(Proof: to compare A;[u] + B;[v] with A;[u] + B;[v'],
compare rank(A;[u] — A;[u']) with rank(B,[v'] — B;[v])...)

e Lemma 2: can do a batch of () internal selection
queries, in O(dn + dQ/w) time on w-bit word RAM

(Proof: simulate parallel alg'm for k-th smallest in A; + B;
with O(polylog d) rounds of O(d) comparisons, by Lemma 1...)

3SUM Alg’'m 2 [c:18]

e [0 search foreach c € C:

binary-search in O(n/d) lists of size d?

can simulate all binary searches with O(log d) calls to
selection oracle from Lemma 2 with Q = O(n - n/d)

o total time O(dn + n-n/d + d-n-(n/d)/w)

esetd=n = O(n32+ n2/w)time

e Setwlogn =

O*(n?/logn)

time again -(

Final 3SUM Alg'm [c:18]

Combine!

= 0*(n?/log?n) time

Rest of Talk

1. Subquadratic Decision-Tree Upper Bounds
2. Slightly Subquadratic Alg'ms

3. Extensions to Other Problems

(median,

similarly:

O*(n?/10g?n)

)-Convolution

time alg'm [C.18]

“Algebraic” 3SUM

e Problem: Given sets A, B, C' of n numbers, &
fixed-degree algebraic function ¢, decide da € A,
be B, ce C with

p(a,b) = c

e Fredman’s trick does not immediately extend!

e Barba—Cardinal-lacono—Langerman—Ooms—Solomon [SoCG’17]:

@“(n12/7)

comparisons for algebraic decision trees

“Algebraic” 3SUM

[Barba—Cardinal-lacono—Langerman—Ooms—Solomon’17]

e New Idea: think geometrically...in 2D!

e map each group B; into O(d?) curves:
{(z,2") : (=, Bj[v]) = o(z', B;[v'])}
over v, v’ € [d]
e map each group A; into O(d?) points:
(AZ [u], Az [u’]) over u, = [d]

(comparisons internal to ¢ (A;, B;) are resolved if we know the
location of A;’'s points w.r.t. B;’s curves...)

Range Searching Lemma
[Agarwal, Chazelle, Matousek,. . .’80s/'90s]

e Given N points and N fixed-degree algebraic curves in
2D, can (implicitly) locate all the points w.r.t. the curves
in O(N4/3) time

Patd
rLs2

“Algebraic” 3SUM

[Barba—Cardinal-lacono—Langerman—Ooms—Solomon’17]

e Preprocessing: apply Range Searching Lemma to
N = O(d? - n/d) points & curves

= O(N*/3) = O(dn)*/3 comps

e Rest: same!

e total # comps O((dn)*/3 4+ n-n/d)

e setd = n?/7 =

e similarly:

O(n12/7) comps

O*(n?/l0g?n)

time alg’'m [C.18]

Algebraic 3SUM in s Dimensions

e Problem: Given sets A, B, C of n points in R%, &
fixed-degree algebraic function ¢, decide da € A,
be B, ce C with

p(a,b,c) =0

e Application: 3COLLINEAR (for s = 2)...

e Range Searching Lemma generalizes, with
O(N2-1/0(s)) comps

e rest is same, except... grouping trick doesn’'t work :-(

Algebraic 3SUM in s Dimensions:
Partial Results

e subquadratic upper bound for algebraic decision trees
& O*(n?/log?n) time alg'm for

— convolution version of algebraic 3SUM in const
dimension s, e.qg., “convolution SCOLLINEAR”

— 3CONCURRENT for 3 sets of disjoint line segments
in 2D

— given 3 polygons in 2D, decide if their common
Intersection is empty

Main Open Questions

e 3COLLINEAR: O(n2~¢) decision tree bound??

e 3SUM: O(n27¢) time??
or better than n2/log? n time?

((min, 4)-convolution has n?/cV!°97 time alg’'m by Williams
[STOC’14] via the polynomial method. ..

but it doesn’t work for (median, +)-convolution)

Integer 3SUM?

e general integer case:
O*(n?/log?n) time by Baran—-Demaine—Pétrascu’05

e easy case, when input is in [n2~¢]:
O(n?7¢) time by FFT

Integer 3SUM?

e clustered integer case, when input can be covered
by n1~¢ intervals of length n:

O(n2—52(€)) time by C.—Lewenstein [STOC'15]

= bounded monotone integer d-dimensional 3SUM in
O(nz_l/(CH'O(l))) time

= jumbled string indexing over [o] in O(n2—1/(e+0(1))) time

= bounded-difference integer (min, 4+)-convolution in
O(n(9+V1T7)/12y = O(n1-86) rand. time

— after preprocessing universe U of size n, can solve 3SUM for
any subset of U in O(n13/7) time

Integer 3SUM?

clustered integer case, when input can be covered
by n1~¢ intervals of length n:

O(n2—52(€)) time by C.—Lewenstein [STOC'15]

(based on Balog—Szemerédi—Gowers (BSG) theorem from
additive combinatorics: for any sets A, B, C' of size N,

if [{(a,b) € Ax B:a+be C} =Q(aN?), then
JA" ¢ A, B’ C B both of size Q(aN) with
A"+ B'| = O((1/a)>N))

