3SUM and Related Problems

Timothy Chan (UIUC)

The 3SUM Problem

• Given sets A, B, C of n real numbers, decide $\exists a \in A, b \in B, c \in C$ with

$$a+b=c$$

Standard Sol'n 1:

sort A + B, sort C, merge

$$\Rightarrow O(n^2 \log n)$$
 time

The 3SUM Problem

Standard Sol'n 2:

Preprocessing: sort A & B

For each $c \in C$: test if $c \in A + B$ in O(n) time

The 3SUM Problem

Standard Sol'n 2:

Preprocessing: sort A & B

For each $c \in C$: test if $c \in A + B$ in O(n) time

 $\Rightarrow |O(n^2)|$ time (better??)

Variants

- monochromatic version: A = B = C
- integer version
- convolution 3SUM: given sequences A, B, C, decide $\exists i, k \text{ s.t. } A[i] + B[k-i] = C[k]$
- kSUM

 $(O(n^{\lceil k/2 \rceil}))$ time for k odd, $O(n^{k/2} \log n)$ time for k even)

Lower Bound Conjecture

- 3SUM requires $\Omega(n^{2-\varepsilon})$ time?? (or more strongly, 3SUM for integers (in $[n^2]$) requires $\Omega(n^{2-\varepsilon})$ time??)
- useful for proving conditional polynomial lower bound for other problems, by reductions from 3SUM...

Exs of 3SUM-Hard Problems (started by

Gajentaan-Overmars'93)

 3COLLINEAR: given n points in 2D, decide ∃ 3 collinear points

Exs of 3SUM-Hard Problems (started by

Gajentaan-Overmars'93)

 3COLLINEAR: given n points in 2D, decide ∃ 3 collinear points

 3CONCURRENT: given n lines in 2D, decide ∃ 3 concurrent lines

Exs of 3SUM-Hard Problems (started by

Gajentaan-Overmars'95)

- given n points in 2D, find 3 points defining smallest triangle area
- given n triangles in 2D, decide if union covers $[0,1]^2$
- given n halfplanes in 2D, find the deepest point
- given n red/blue points in 2D, find smallest # pts to remove s.t. \exists line separating red from blue points
- given n line segment obstacles in 2D and initial/final position of a rod, decide if motion exists for the rod
- given n points in 3D, find the max Tukey depth
- given 3 polygons in 2D, decide if their common intersection is empty

Ī

Exs of Integer-3SUM-Hard Problems

- zero-weight triangle in an edge-weighted graph: $O(n^{3-\delta})$ time? [Vassilevska–Williams (FOCS'10)]
- enumerate t triangles in a graph: $O(t^{1/3}m^{1-\delta})$ time? [Pătraşcu (STOC'10); Kopelowitz-Pettie-Porat (SODA'16)]
- dynamic reachability & dynamic subgraph connectivity: $n^{o(1)}$ query & update time? [Pătraşcu (STOC'10)]
- dynamic max matching: similar [Abboud–Vassilevska (FOCS'14);
 Kopelowitz–Pettie–Porat (SODA'16)]
- local alignment: $O(n^{2-\delta})$ time? [Abboud–Vassilevska–Weimann (ICALP'14)]
- jumbled string indexing over $[\sigma]$: n queries in $O(n^{2-1/(\sigma-1-\delta)})$ time? [Amir–C.–Lewenstein–Lewenstein (ICALP'14)]

Ī

(all via Integer Convolution 3SUM [Pătraşcu (STOC'10)]...)

Lower Bound Results

• Erickson [SODA'95]: 3SUM needs $\Omega(n^2)$ comparisons for 3-linear decision trees

```
(kSUM needs \Omega(n^{\lceil k/2 \rceil}) comps for k-linear decision trees)
(Ailon–Chazelle [STOC'04]: kSUM needs n^{\Omega(k)} for (k + O(1))-linear decision trees)
(Erickson–Seidel [FOCS'93]: Erickson [SoCG'96]: 3COLLINEAR needs \Omega(n^2) sidedness tests)
```

The Surprise...

Grönlund–Pettie [FOCS'14]:

3SUM can be solved in $\left|\widetilde{O}(n^{3/2})\right|$ comparisons for 4-linear decision trees

& has an $O(n^2/\log^{\Omega(1)} n)$ time alg'm...

Subsequent Results

Decision trees

Grönlund–Pettie [FOCS'14] $O(n^{3/2}\sqrt{\log n})$ Gold–Sharir'15 $O(n^{3/2})$ Kane–Lovett–Moran [STOC'18] $O(n\log^2 n)$

Alg'ms

Grönlund–Pettie [FOCS'14]
$$O^*(n^2/\log^{2/3}n)$$
 det. $O^*(n^2/\log n)$ rand. Freund'15/Gold–Sharir'15 $O^*(n^2/\log n)$ det. C. [SODA'18] $O^*(n^2/\log^2 n)$ det.

Rest of Talk

- 1. Subquadratic Decision-Tree Upper Bounds
- 2. Slightly Subquadratic Alg'ms
- 3. Extensions to Other Problems

Fredman's Trick

$$a + b \le a' + b'$$

$$\updownarrow$$

$$a - a' \le b' - b$$

(Fredman [FOCS'75] used this to prove $\widetilde{O}(n^{5/2})$ decision tree upper bound for all-pairs shortest paths & (min, +)-matrix multiplication)

Warm-Up: (min, +)-Convolution [Bremner-

C.-Demaine-Erickson-Hurtado-Iacono-Langerman-Pătraşcu-Taslakian'06]

• Problem: Given sequences A, B of n real numbers, compute $C[k] = \min_{i} (A[i] + B[k-i])$ for all k

Preprocessing:

divide A into groups $A_1, \ldots, A_{n/d}$ of size d divide B into groups $B_1, \ldots, B_{n/d}$ of size d sort $\bigcup_i (A_i - A_i) \cup \bigcup_i (B_j - B_j)$

$$\Rightarrow O(n/d \cdot d^2 \cdot \log n) = \widetilde{O}(dn) \text{ comps}$$

(by Fredman's trick, comparisons internal to each $A_i + B_j$ are now free...)

Warm-Up: (min, +)-Convolution [Bremner-

C.-Demaine-Erickson-Hurtado-Iacono-Langerman-Pătraşcu-Taslakian'06]

• To compute each C[k]:

find min of O(n/d) elements, in O(n/d) comps

Warm-Up: (min, +)-Convolution [Bremner-

C.-Demaine-Erickson-Hurtado-Iacono-Langerman-Pătraşcu-Taslakian'06]

- To compute each C[k]:
 - find min of O(n/d) elements, in O(n/d) comps
- total # comps $\widetilde{O}(dn + n \cdot n/d)$
- set $d = \sqrt{n} \Rightarrow \left| \widetilde{O}(n^{3/2}) \right|$ comps

Similar: (median, +)-Convolution [Bremner-

C.-Demaine-Erickson-Hurtado-Iacono-Langerman-Pătraşcu-Taslakian'06]

• Problem: Given sequences A, B of n real numbers, compute $C[k] = \text{median of } \{A[i] + B[k-i]\}_{i \in [k]}$

Similar: (median, +)-Convolution [Bremner-

C.-Demaine-Erickson-Hurtado-Iacono-Langerman-Pătrașcu-Taslakian'06]

• To compute each C[k]:

find median in union of O(n/d) sorted lists of size d in $O((n/d) \log d)$ comps [Frederickson-Johnson'80s]

- total # comps $\widetilde{O}(dn + n \cdot n/d)$
- set $d = \sqrt{n} \Rightarrow \left| \widetilde{O}(n^{3/2}) \right|$ comps

Convolution 3SUM [Grønlund-Pettie'14]

• Problem: Given sequences A, B, C of n real numbers, decide $\exists i, k$ with C[k] = A[i] + B[k-i]

Convolution 3SUM [Grønlund-Pettie'14]

• To search for each C[k]:

search in O(n/d) sorted lists of size d in $O((n/d) \log d)$ comps (by binary searches)

Convolution 3SUM [Grønlund-Pettie'14]

• To search for each C[k]:

search in O(n/d) sorted lists of size d in $O((n/d) \log d)$ comps (by binary searches)

- total # comps $\widetilde{O}(dn + n \cdot n/d)$
- set $d = \sqrt{n} \Rightarrow \left| \widetilde{O}(n^{3/2}) \right|$ comps

Finally: 3SUM [Grønlund-Pettie'14]

• first sort A & B

rest is basically the same!

Finally: 3SUM [Grønlund-Pettie'14]

• To search for each $c \in C$:

search in O(n/d) sorted lists of size d^2 in $O((n/d) \log d)$ comps (by binary searches)

Finally: 3SUM [Grønlund-Pettie'14]

• To search for each $c \in C$:

search in O(n/d) sorted lists of size d^2 in $O((n/d) \log d)$ comps (by binary searches)

- total # comps = $\widetilde{O}(dn + n \cdot n/d)$
- set $d = \sqrt{n} \Rightarrow \left| \widetilde{O}(n^{3/2}) \right|$ comps

Rest of Talk

1. Subquadratic Decision-Tree Upper Bounds

2. Slightly Subquadratic Alg'ms

3. Extensions to Other Problems

3SUM Alg'm 0

- ullet build decision tree for small input size m
- divide A, B, C into groups of size m $\Rightarrow O(n/m)^2$ subproblems of size O(m)
- can solve each subproblem in $\widetilde{O}(m^{3/2})$ time
- total time $\widetilde{O}((n/m)^2 \cdot m^{3/2} + 2^{\widetilde{O}(m^{3/2})})$
- set $m \approx \log^{2/3} n \Rightarrow \left| O^*(n^2/\log^{1/3} n) \right|$ time

3SUM Alg'm 1 [C.'18]

- Key Idea: think geometrically...in d dimensions!
 (inspired by C. [STOC'07] on (min, +)-matrix multiplication)
- map each group A_i to a point $(A_i[1], \ldots, A_i[d])$
- map each group B_j to $O(d^4)$ hyperplanes

$$\{(x_1,\ldots,x_d)\in\mathbb{R}^d: x_u+B_j[v]=x_{u'}+B_j[v']\}$$

over $u,v,u',v'\in[d]$

(comparisons internal to $A_i + B_j$ are resolved if we know the location of A_i 's point w.r.t. B_j 's hyperplanes...)

Cutting Lemma [Clarkson–Shor'89, Chazelle–Friedman'90]

• Given N hyperplanes in \mathbb{R}^d , can cut \mathbb{R}^d into $d^{O(d)}r^d$ cells s.t. each cell intersects O(N/r) hyperplanes

3SUM Alg'm 1 [C.'18]

- apply Cutting Lemma to $N = O(d^4 \cdot n/d)$ hyperplanes
- for each (i, j):
- Case 1: the hyperplanes of B_j do not intersect A_i 's cell
 - all other A_i 's in the same cell have "same" $A_i + B_j$
 - can pre-sort one $A_i + B_j$ per cell per B_j
 - \Rightarrow total time $d^{O(d)}r^d \cdot n$
- Case 2: some hyperplane of B_j intersects A_i 's cell
 - # such B_j 's is $d^{O(1)}n/r$ per A_i
 - can pre-sort $A_i + B_j$ for each such A_i, B_j
 - \Rightarrow total time $d^{O(1)}n/r \cdot n$

3SUM Alg'm 1 [C.'18]

• To search for each $c \in C$:

binary-search in O(n/d) sorted lists of size d^2 in $O((n/d) \log d)$ time

- \bullet total time $\widetilde{O}\left(d^{O(d)}r^d\cdot n \ + \ d^{O(1)}n/r\cdot n \ + \ n\cdot n/d\right)$
- set $r = d^{\Theta(1)} \Rightarrow \widetilde{O}(d^{O(d)}n + n^2/d)$ time
- set $d \approx \log n / \log \log n \Rightarrow \left| O^*(n^2 / \log n) \right|$ time

3SUM Alg'm 2 [C.'18]

- Key Idea: Fredman's trick + bit packing tricks
- Lemma 1: can do a batch of Q internal comparisons, in $\widetilde{O}(dn+Q/w)$ time on w-bit word RAM

```
(Proof: to compare A_i[u] + B_j[v] with A_i[u'] + B_j[v'], compare rank(A_i[u] - A_i[u']) with rank(B_j[v'] - B_j[v])...)
```

• Lemma 2: can do a batch of Q internal selection queries, in $\widetilde{O}(dn+dQ/w)$ time on w-bit word RAM

```
(Proof: simulate parallel alg'm for k-th smallest in A_i + B_j with O(\text{polylog } d) rounds of O(d) comparisons, by Lemma 1...)
```

3SUM Alg'm 2 [C.'18]

• To search for each $c \in C$:

binary-search in O(n/d) lists of size d^2 can simulate all binary searches with $O(\log d)$ calls to selection oracle from Lemma 2 with $Q = O(n \cdot n/d)$

- total time $\widetilde{O}(dn + n \cdot n/d + d \cdot n \cdot (n/d)/w)$
- set $d = \sqrt{n} \implies \widetilde{O}(n^{3/2} + n^2/w)$ time
- set $w \approx \log n \Rightarrow \left|O^*(n^2/\log n)\right|$ time again :-(

Final 3SUM Alg'm [C.'18]

Combine!

$$\Rightarrow |O^*(n^2/\log^2 n)|$$
 time

Rest of Talk

- 1. Subquadratic Decision-Tree Upper Bounds
- 2. Slightly Subquadratic Alg'ms
- 3. Extensions to Other Problems

(median, +)-Convolution

similarly: $O^*(n^2/\log^2 n)$ time alg'm [C.'18]

"Algebraic" 3SUM

• Problem: Given sets A, B, C of n numbers, & fixed-degree algebraic function φ , decide $\exists a \in A$, $b \in B, c \in C$ with

$$\varphi(a,b)=c$$

- Fredman's trick does not immediately extend!
- Barba–Cardinal–lacono–Langerman–Ooms–Solomon [SoCG'17]: $\widetilde{O}(n^{12/7})$ comparisons for algebraic decision trees

"Algebraic" 3SUM

[Barba-Cardinal-lacono-Langerman-Ooms-Solomon'17]

- New Idea: think geometrically...in 2D!
- map each group B_j into $O(d^2)$ curves:

$$\{(x,x'): \varphi(x,B_j[v]) = \varphi(x',B_j[v'])\}$$
 over $v,v' \in [d]$

• map each group A_i into $O(d^2)$ points:

$$(A_i[u], A_i[u'])$$
 over $u, u' \in [d]$

(comparisons internal to $\varphi(A_i, B_j)$ are resolved if we know the location of A_i 's points w.r.t. B_j 's curves...)

Range Searching Lemma [Agarwal, Chazelle, Matoušek,...'80s/'90s]

Given N points and N fixed-degree algebraic curves in 2D, can (implicitly) locate all the points w.r.t. the curves in O(N^{4/3}) time

"Algebraic" 3SUM

[Barba-Cardinal-lacono-Langerman-Ooms-Solomon'17]

- Preprocessing: apply Range Searching Lemma to $N = O(d^2 \cdot n/d)$ points & curves $\Rightarrow \widetilde{O}(N^{4/3}) = \widetilde{O}(dn)^{4/3}$ comps
- Rest: same!
- total # comps $\widetilde{O}((dn)^{4/3} + n \cdot n/d)$
- set $d = n^{2/7} \Rightarrow \left| \widetilde{O}(n^{12/7}) \right|$ comps
- similarly: $O^*(n^2/\log^2 n)$ time alg'm [C.'18]

Algebraic 3SUM in s Dimensions

• Problem: Given sets A, B, C of n points in \mathbb{R}^s , & fixed-degree algebraic function φ , decide $\exists a \in A$, $b \in B, c \in C$ with

$$\varphi(a,b,c)=0$$

- Application: 3COLLINEAR (for s=2)...
- Range Searching Lemma generalizes, with $O(N^{2-1/O(s)})$ comps
- rest is same, except... grouping trick doesn't work :-(

Algebraic 3SUM in s Dimensions: Partial Results

- - convolution version of algebraic 3SUM in const dimension s, e.g., "convolution 3COLLINEAR"
 - 3CONCURRENT for 3 sets of disjoint line segments in 2D
 - given 3 polygons in 2D, decide if their common intersection is empty

Main Open Questions

- 3COLLINEAR: $O(n^{2-\varepsilon})$ decision tree bound??
- 3SUM: $O(n^{2-\varepsilon})$ time?? or better than $n^2/\log^2 n$ time?

((min, +)-convolution has $n^2/c^{\sqrt{\log n}}$ time alg'm by Williams [STOC'14] via the polynomial method...

but it doesn't work for (median, +)-convolution)

Integer 3SUM?

- general integer case:
 - $O^*(n^2/\log^2 n)$ time by Baran–Demaine–Pătraşcu'05
- easy case, when input is in $[n^{2-\varepsilon}]$:
 - $O(n^{2-\varepsilon})$ time by FFT

Integer 3SUM?

- clustered integer case, when input can be covered by $n^{1-\varepsilon}$ intervals of length n:
 - $O(n^{2-\Omega(\varepsilon)})$ time by C.–Lewenstein [STOC'15]
 - \Rightarrow bounded monotone integer d-dimensional 3SUM in $O(n^{2-1/(d+O(1))})$ time
 - \Rightarrow jumbled string indexing over $[\sigma]$ in $O(n^{2-1/(\sigma+O(1))})$ time
 - \Rightarrow bounded-difference integer (min, +)-convolution in $\widetilde{O}(n^{(9+\sqrt{177})/12}) = O(n^{1.86})$ rand. time
 - after preprocessing universe U of size n, can solve 3SUM for any subset of U in $\widetilde{O}(n^{13/7})$ time

Integer 3SUM?

• clustered integer case, when input can be covered by $n^{1-\varepsilon}$ intervals of length n:

 $O(n^{2-\Omega(\varepsilon)})$ time by C.–Lewenstein [STOC'15]

(based on Balog–Szemerédi–Gowers (BSG) theorem from additive combinatorics: for any sets A, B, C of size N,

if
$$|\{(a,b) \in A \times B : a+b \in C\}| = \Omega(\alpha N^2)$$
, then $\exists A' \subset A, \ B' \subset B$ both of size $\Omega(\alpha N)$ with $|A'+B'| = O((1/\alpha)^5 N)$