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A WALK-ON-BOUNDARY FOR PROJECTION
For Eq. 16 and Eq. 17, we defined the normal directions as pointing
outward from the fluid domain to describe both interior and exterior
problems with a single pair of equations, whereas the previous work
[Sabelfeld and Simonov 1994; Sugimoto et al. 2023] had two separate
pairs of equations for interior and exterior problems. Hence, our
equations for exterior problems differ from Sabelfeld and Simonov
[1994] and Sugimoto et al. [2023] in their signs.

Monte Carlo Estimation. Based on Eq. 16 and Eq. 17, we use a
walk-on-boundary Monte Carlo estimator [Sabelfeld and Simonov
1994; Sugimoto et al. 2023]. Note that Eq. 17 contains the unknown
density function 𝜇 itself on the left-hand side of the equation and in
one of the integrands on the right-hand side, making it a recursive
integral equation similar to the rendering equation [Kajiya 1986]
used in path tracing for light transport simulation rather than a
simple non-recursive one as in Section 2.3.1. Following Sugimoto
et al. [2023], we truncate the recursion after 𝑀 steps and multi-
ply the contribution of the longest path by 0.5 to design a biased
estimator.

We can consider various sampling strategies to estimate the solu-
tion to the truncated recursive integral equation with Monte Carlo
methods. Following Sugimoto et al. [2023], we use a forward estima-
tor to solve this in our implementation: to sample a path consisting
of multiple boundary points, we randomly sample a boundary point
first, take a random walk on randomly sampled boundary points,
and finally connect them to each individual evaluation point. In the
below, for 𝑃𝑈 (x0), we use uniform sampling to sample a point x0
on the solid boundary 𝜕Ω. Then, for 𝑃𝑅 (x𝑚+1 |x𝑚), we uniformly
randomly sample a direction from a unit hemisphere for a line that
goes through the point x𝑚 and uniformly randomly sample one
of the intersection points between the line and the solid boundary
𝜕Ω to sample the next point x𝑚+1. Recursively applying this sam-
pling strategy lets us sample a series of points x1, x2, ..., x𝑀+1 to
form a path, given previous points in the path. We use this strategy
because the PDF associated with this specific forward sampling
strategy is known to be proportional to the integral kernel 𝜕𝐺

𝜕nx we
have in Eq. 17.

Compared to the simplest formulation for the Laplace equa-
tion [Sugimoto et al. 2023], we have some additional non-recursive
terms in Eq. 16 and Eq. 17 as a result of the transformations we
discussed in the main paper, and we need to consider how to sample
such terms, too. We choose to sample the non-recursive contribu-
tions on 𝜕Ω using the forward estimator as well for the purpose of
importance sampling while estimating the other terms similarly to
Section 2.3.1. To do so, we first define two estimators for length𝑚
contributions, ⟨𝜇1𝑚 (x)⟩ and ⟨𝜇2𝑚 (x)⟩, recursively, based on Eq. 17:

we define the base case for length 1 contributions as

⟨𝜇11 (x1)⟩ =
2 𝜕𝐺
𝜕nx (x1, x0)
𝑃𝑅 (x1 |x0)

n(x0) · {u3 (x0) − u3 (x1)} , (20)

⟨𝜇21 (x0)⟩ = 2n(x0) · {−⟨𝐸𝑉 (x0)⟩ − ⟨𝐸𝐴 (x0)⟩ + u3 (x0) − u𝑠 (x0)} ,
(21)

where ⟨𝜇11 (x1)⟩ corresponds to the non-recursive contribution from
the first integral in Eq. 17 and ⟨𝜇12 (x0)⟩corresponds to the rest of
the non-recursive contributions in Eq. 17. Then, we define the
contributions from longer paths as

⟨𝜇1𝑚+1 (x𝑚+1)⟩ =
−2 𝜕𝐺

𝜕nx (x𝑚+1, x𝑚)
𝑃𝑅 (x𝑚+1 |x𝑚)

⟨𝜇1𝑚 (x𝑚)⟩, (22)

⟨𝜇2𝑚+1 (x𝑚)⟩ =
−2 𝜕𝐺

𝜕nx (x𝑚, x𝑚−1)
𝑃𝑅 (x𝑚 |x𝑚−1)

⟨𝜇2𝑚 (x𝑚−1)⟩. (23)

Note in particular, when we use the above-mentioned uniform line
intersection sampling for 𝑃𝑅 (y|x),

2 𝜕𝐺
𝜕nx (x, y)
𝑃𝑅 (x|y)

= 𝜅 (y, x) · sgn(n(x) · (x − y)), (24)

where 𝜅 (y, x) is the number of intersection points that the line
that goes through the two points has, excluding point y, and sgn
is the sign function. Then, based on Eq. 16, we can estimate the
pressure gradient by taking 𝑁𝑃 sample paths in addition to the
terms in Eq. 12:
⟨∇x𝑝 (x)⟩

= ⟨𝐸𝑉 (x)⟩ + ⟨𝐸𝐴 (x)⟩

+ 1
𝑁𝑃

𝑁𝑃∑︁
𝑘=1

[
−
∇x𝐺 (x, x𝑘0 )
2𝑃𝑈 (x𝑘0 )

n(x𝑘0 ) ·
{
u3 (x𝑘0 ) − u3 (x)

}
+
∇x𝐺 (x, x𝑘𝑀+1)

2𝑃𝑈 (x𝑘0 )
⟨𝜇1𝑀 (x

𝑘
𝑀+1)⟩ +

∇x𝐺 (x, x𝑘𝑀 )
2𝑃𝑈 (x𝑘0 )

⟨𝜇2𝑀 (x
𝑘
𝑀 )⟩

+
𝑀−1∑︁
𝑚=1

∇x𝐺 (x, x𝑘𝑚+1)
𝑃𝑈 (x𝑘0 )

⟨𝜇1𝑚 (x𝑘𝑚+1⟩ +
∇x𝐺 (x, x𝑘𝑚)
𝑃𝑈 (x𝑘0 )

⟨𝜇2𝑚 (x𝑘𝑚)⟩
]
.

(25)
On the right-hand side, the first line estimates the last two integrals
in Eq. 16, the second line estimates the non-recursive terms in the
first integral, the third line estimates the longest path contributions,
and the last line estimates the shorter path contributions. Note
that while we do not explicitly indicate so, the contributions from
paths of any length ⟨𝜇1𝑚 (x𝑘𝑚+1)⟩ and ⟨𝜇

2
𝑚 (x𝑘𝑚)⟩ implicitly depend

on the sampled boundary point x𝑘0 due to the sampling strategy we
employ.

To use the estimator Eq. 25, the most naive approach would
be to generate sample paths for each individual evaluation point,
which has a high computational cost. Instead, we use a boundary
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value caching strategy similar to the virtual point light method in
rendering [Keller 1997]. We first compute the contributions of 𝑁𝑃

subpaths up to the point before we connect them to the evaluation
points and cache them at𝑀 + 1 boundary points per path. We then
connect all of them to all evaluation points. This significantly in-
creases the effective number of sample paths per evaluation point
without increasing the computational cost too much while introduc-
ing a correlation of estimates between evaluation points. Even this
correlation can be preferable for our application because it guar-
antees that the contributions from these paths changes smoothly
across evaluation points.

Sugimoto et al. [2023, Figure 9] apply a similar caching tech-
nique to their Neumann problem walk-on-boundary solver based
on the same single-layer boundary integral formulation as well,
but they use a backward estimator, which works only with a less
efficient resampled importance sampling strategy. In contrast, our
method can utilize a forward estimator with more efficient line
intersection importance sampling. This is at the cost of increasing
storage per cache point by a small constant multiplication factor
and increasing computation per evaluation point when we sum up
the contributions from all cache points.

Similar to Section 2.3.1, for the estimation of volume integrals
⟨𝐸𝑉 (x)⟩ in Eq. 21 and Eq. 25, we use the importance sampling
strategy so PDF 𝑃𝑉 is proportional to 1/𝑟 (𝑑−1) , and let S(x, y) = 0
for all y outside the simulation domain. Additionally, we need to
set S(x, y) = 0 for all y inside of solid obstacles, too. We perform
this insidedness test by casting a ray from point y in a random
direction and taking a sum of its intersection signs. This strategy
can be considered a Monte Carlo estimator for the generalized
winding number [Jacobson et al. 2013]. We use uniform sampling
for ⟨𝐸𝐴 (x)⟩.

For all 2D examples in the paper except Fig. 7, we use 𝑁𝑉 =

𝑁𝐴 = 5 · 105 for direct contributions to each evaluation point. For
indirect (path) contributions, we use 𝑁𝑃 = 5 · 105 paths with path
length 4. For each path, the volume and area term sample counts
for the pseudo boundary are 𝑁𝑉 = 𝑁𝐴 = 10.

B WALK-ON-BOUNDARY FOR DIFFUSION
To get scalar diffusion equations from Eq. 18, we first absorb the
viscosity coefficient𝜈 into the variable to definew(x, 𝑠) = 𝜈u(x, 𝑠/𝜈)
and redefine the range of time 𝑠 accordingly:

𝜕w(x, 𝑠)
𝜕𝑠

= ∇2w(x, 𝑠) for x ∈ Ω, 𝑠 ∈ (0, 𝜈Δ𝑡)

w(x, 𝑠) = w∗ (x, 𝑠) = u(x, 𝑠/𝜈) for x ∈ 𝜕Ω, 𝑠 ∈ (0, 𝜈Δ𝑡), and
w(x, 0) = w∗ (x, 0) = u(x, 0) for x ∈ Ω,

(26)
where the asterisk in w∗ indicates that it is a given function. This
is still a vector-valued equation, but because we only need to deal
with simple Dirichlet boundary conditions, we can solve the vector
diffusion equation Eq. 26 component-wise. Thus, we describe the
scalar diffusion equation solver for one scalar component of w,𝑤
below.

We will summarize the diffusion walk-on-boundary solver from
the book by Sabelfeld and Simonov [1994, Chapter 4] here, focusing
on its use in our context. For more general cases not described
here, such as Neumann problems and nonhomogeneous problems,

readers should refer to the book. The idea of the diffusion walk-on-
boundarymethod is very similar to the one for the Poisson equation:
we convert the partial differential equation into an integral equation
and solve it using a ray-tracing-style solver. However, with the
additional time dependency, we need to additionally consider the
time variation in the diffusion equation and take walks in the space-
time domain. Note that this solver does not discretize the time
domain within each time step, unlike most traditional methods that
discretize the time with a finite difference.

First, we define the fundamental solution for the diffusion equa-
tion Eq. 26, also known as the heat kernel,

𝑍 (x, 𝑠; y, 𝜏) = Θ(𝑡 ′) (4𝜋𝑡 ′)−𝑑/2𝑒−𝑟
2/4𝑡 ′ , (27)

where 𝑡 ′ = 𝑠 − 𝜏 and Θ(·) is the Heaviside step function.
Using the fundamental solution, we can write the solution to the

diffusion equation in the form of the double layer potential and an
additional initial condition term for x ∈ Ω and 𝑠 ∈ [0, 𝜈Δ𝑡]:

𝑤 (x, 𝑠) = −
∫ 𝑠

0

∫
𝜕Ω

𝜕𝑍

𝜕ny
(x, 𝑠; y, 𝜏)𝜙 (y, 𝜏) dA(y) d𝜏

+
∫
Ω
𝑍 (x, 𝑠; y, 0)𝑤∗ (x, 0) dV(y),

(28)

where 𝜙 (·, ·) is an unknown density function defined for x ∈ 𝜕Ω
and 𝑠 ∈ [0, 𝜈Δ𝑡]. We can also derive a recursive boundary integral
equation for 𝜙 (·, ·) by taking the limit x→ 𝜕Ω in Eq. 28:

𝜙 (x, 𝑠) =
∫ 𝑠

0

∫
𝜕Ω

2
𝜕𝑍

𝜕ny
(x, 𝑠; y, 𝜏)𝜙 (y, 𝜏) dA(y) d𝜏

+ 2𝑤∗ (x, 𝑠) − 2
∫
Ω
𝑍 (x, 𝑠; y, 0)𝑤∗ (x, 0) dV(y).

(29)

Monte Carlo Estimation. We design a Monte Carlo estimator
based on Eq. 28 and Eq. 29. First, we define an estimator for the
initial condition term with 𝑁𝐼 samples using PDF 𝑃𝐼 as

⟨𝐸𝐼 (x, 𝑠)⟩ =
1
𝑁𝐼

𝑁𝐼∑︁
𝑖=1

Z(x, 𝑠; y𝑖 , 0)
𝑃𝐼 (y𝑖 |x, 𝑠)

𝑤∗ (y𝑖 , 0) . (30)

Using this estimator, we can define the estimator for Eq. 28 with
𝑁𝐷 path samples using PDF 𝑃𝐷 as

⟨𝑤 (x, 𝑠)⟩ = ⟨𝐸𝐼 (x, 𝑠)⟩+
1
𝑁𝐷

𝑁𝐷∑︁
𝑗=1
−

𝜕𝑍
𝜕ny (x, 𝑠; y

𝑗 , 𝜏 𝑗 )

𝑃𝐷 (y𝑗 , 𝜏 𝑗 |x, 𝑠)
⟨𝜙 (y𝑗 , 𝜏 𝑗 )⟩ (31)

and the one for Eq. 29 with 1 sample with PDF 𝑃𝐸 as

⟨𝜙 (x, 𝑠)⟩ = 2
𝜕𝑍
𝜕ny (x, 𝑠; y, 𝜏)
𝑃𝐸 (y, 𝜏 |x, 𝑠)

⟨𝜙 (y, 𝜏)⟩ + 2𝑤∗ (x, 𝑠) − 2⟨𝐸𝐼 (x, 𝑠)⟩,
(32)

which is a recursive estimator: ⟨𝜙 (y, 𝜏)⟩ included on the right-hand
side should be estimated recursively. We use a backward estimator
and start generating paths for this recursive estimator from each
evaluation point (x, 𝜈Δ𝑡) toward time 0. Note that 𝑃𝐷 and 𝑃𝐸 only
need to sample points with time 𝜏 < 𝑠 because the integral kernel
𝜕𝑍
𝜕ny is zero for 𝜏 ≥ 𝑠 . Intuitively, this is because the solution to the
heat equation depends only on previous times. Using this property,
we sample points in the space-time domain so that times for the
sampled sequence of points strictly decrease. We terminate the
recursion when the sampled time 𝜏 is negative because the original
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integral domain does not contain the negative part. While the walk-
on-boundary method for the Poisson equation is biased, the walk-
on-boundary method for the diffusion equation gives an unbiased
solution estimate.

As for the specific sampling strategy, for the initial condition
sampling 𝑃𝐼 (y𝑖 |x, 𝑠), we sample the points by y𝑖 ← x + √︁𝑡𝛾𝑑/2𝜔 ,
where 𝛾𝑑/2 is a sample drawn from the Gamma distribution with
shape parameter 𝑑/2 and scale parameter 1, and 𝜔 is a uniformly
random direction sampled on a unit sphere. With this sampling
strategy, we get

Z(x, 𝑠; y𝑖 , 0)
𝑃𝐼 (y𝑖 |x, 𝑠)

= 1. (33)

Similar to Section 2.3.2, we set Z(x, 𝑠; y𝑖 , 0) = 0 for all y inside of
solid obstacles in Eq. 30.

For 𝑃𝐷 (y, 𝜏 |x, 𝑠) and 𝑃𝐸 (y, 𝜏 |x, 𝑠), we sample y using the uniform
line intersection sampling as in Section 2.3.2 and sample time 𝜏 ,
given 𝑡 , by 𝜏 ← 𝑠 − ∥y−x∥4𝛾𝑑/2 to get

𝜕𝑍
𝜕ny (x, 𝑠; y, 𝜏)
𝑃𝐷 (y, 𝜏 |x, 𝑠)

= −𝜅 (x, y) · sgn(n(y) · (y − x)), and

2
𝜕𝑍
𝜕ny (x, 𝑠; y, 𝜏)
𝑃𝐸 (y, 𝜏 |x, 𝑠)

= −𝜅 (x, y) · sgn(n(y) · (y − x)) .

(34)

In the above, the left-hand side scaling factors of the two expressions
differ by 2 because the PDF 𝑃𝐷 and 𝑃𝐸 differ even though we use
the same strategy: point x for 𝑃𝐷 lies within the domain, whereas
point x for 𝑃𝐸 lies on a boundary.

To draw samples from the Gamma distribution, we use
𝛾1 ← − ln(𝛼) for 2D, where 𝛼 is a uniformly random sample in
the range (0, 1), and 𝛾3/2 ← 𝛾1 + 𝜉2/2 for 3D, where 𝜉 is a standard
normal sample.

For problems without boundaries, we drop the second term in
Eq. 31, and the remaining first term estimates the convolution of
the input field and a Gaussian function.

In our implementation, we use 𝑁𝐼 = 5 · 105 initial conditions
samples at each evaluation point, with 𝑁𝐷 = 5 · 105 paths with
𝑁𝐼 = 10 initial condition samples per bounce. Unlike the walk-
on-boundary method for the projection step, we do not share the
subpaths among evaluation points as we found that the diffusion
walk-on-boundary is typically cheaper, and there was not much
need to improve its efficiency relative to the projection.
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