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Abstract
We propose an extension of the path integral formulation amenable to the expression of volumetric light transport with photon
beam estimates. Our main contribution is a generalization of Hachisuka et al.’s extended path space formulation [HPJ12] to
light transport in participating media. Our formulation supports various point- and beam-based volumetric density estimators,
unifying them with path integration in the spirit of the work by Křivánek et al. [KGH∗14]. One unique and useful property of our
formulation is that it recasts beam-based density estimation as Monte Carlo path vertex sampling in a higher-dimensional space,
rather than beam merging in a lower-dimensional space, which enables a practical algorithm for beam estimators with 3D-blur
kernels. We thus establish a complementary theoretical foundation for the development of rendering algorithms using points,
beams, and paths in participating media.

1. Introduction

Light transport simulation in computer graphics is built atop a recur-
sive integral equation that describes the steady state distribution of
radiance at every point in an input virtual scene. This recursive equa-
tion can be transformed into a conceptually simpler integral over
light transport paths, with vertices lying on objects’ surfaces [Vea97]
or in volumetric participating media [PKK00]. This path integral
formulation allows expressing many different Monte Carlo rende-
ring algorithms under a unified theoretical framework and, in turn,
combining them using multiple importance sampling [Vea97].

While the path integral formulation precisely describes algorithms
based on Monte Carlo path integration—such as path tracing [Kaj86]
and bidirectional path tracing [LW93, VG94]—this formulation is
known to be incompatible with algorithms based on photon density
estimation [Jen96]. Georgiev et al. [GKDS12] and Hachisuka et
al. [HPJ12] concurrently proposed unified formulations for these
two classes of algorithms for the case of surface light transport.

Georgiev et al. kept the original path integral formulation, and
interpreted photon density estimation as a conceptual merging of
subpath vertices, called vertex merging. This approach corresponds
to a contraction of the path space—a vertex on a light subpath is
merged with a nearby vertex on an eye subpath, making full light
transport paths in photon density estimation have the same number
of vertices as regular light transport paths.

In contrast, Hachisuka et al. proposed an extended path integral
formulation that handles photon density estimation paths as discon-
nected segments, without merging. This approach corresponds to an
expansion of the original path space since disconnected segments

have more vertices than regular light transport paths. More recently,
Křivánek et al. [KGH∗14] applied the concept of vertex merging to
render volumetric scattering by combining photon point- and beam-
based density estimators with path integration methods [JNSJ11].
An extended path integral formulation for volumetric light transport,
however, has not been available.

We address this theoretical gap and propose an extended path
integral formulation for light transport in scattering participating
media. Our formulation builds atop Hachisuka et al.’s [HPJ12] idea
of disconnected path segments. Similarly to its surface counter-
part [HPJ12], our formulation can precisely express photon density
estimation as a path integral in an extended (volumetric) path space.
This formulation allows us to express beam-based density estimation
as Monte Carlo vertex sampling in the extended path space.

The focus of this paper is to establish a theoretical foundation,
rather than introducing a new rendering algorithm. In fact, for the
lowest-dimensional blur kernels, our formulation can be realized
with an implementation that is equivalent to the existing merging
formulation [KGH∗14], and similarly allows combination of path
integration and photon density estimation. Our formulation, howe-
ver, explains how beam estimators can be leveraged with higher-
dimensional blur kernels in the extended path space. Křivánek et
al. [KGH∗14] noted that such higher-dimensional blurs can be map-
ped to their formulation using Monte Carlo integration over auxiliary
variables for additional dimensions, but they left the details of this
exploration to future work. Our formulation explains how this addi-
tional integration appears naturally in an extended volumetric path
space, which also leads to a practical algorithm for beam estima-
tors with 3D-blur kernels, based on classic Monte Carlo integration.
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Figure 1: Regular path for length k. Vertices are fully connected
from the sensor to the light sources.

Higher-dimensional blur kernels can be more convenient than the
lowest-dimensional ones, e.g. for removing the singularities in beam
estimators and for consistently using the same 3D blurred path
throughput across all the estimators with points, beams, and paths.

2. Path Integral Formulation for Volumes

This section briefly reviews the path integral framework. For the
sake of brevity, but without loss of generality, we focus on the case
where all path vertices are in volumes (i.e. no surface-volume light
transport). Readers familiar with this concept can jump to Section 3
where we derive and discuss our extension.

The path integral formulation of light transport expresses a pixel
measurement as a multidimensional integral [Vea97, PKK00]:

I j =
∫

Ω

f j(x)dµ(x), (1)

where j is the pixel index, f j is a measurement contribution function,
x is a light transport path, and µ is the measure of the space of all
possible paths of all lengths Ω.

Paths. A path x of length k∈ [1,∞] is a sequence of vertices xi ∈V :

x = x0x1 . . .xk, (2)

where vertex x0 is on a light source and xk is on the eye sensor, and
V is the three-dimensional Euclidean space (see Figure 1).

Path space. Let Ωk represent the space of length-k paths. The full
path space Ω is the union of the sets of paths of all possible lengths:

Ω =
∞⋃

k=1

Ωk. (3)

Path measure. The differential measure dµk of a length-k path is
the product of the standard differential volume measures dV of all
its k+1 vertices:

dµk(x) = dV (x0)dV (x1) · · ·dV (xk), (4)

which leads to

µk =V ×·· ·×V︸ ︷︷ ︸
k+ 1 times

=Vk+1. (5)

The measure µ on the path space Ω is the sum of the measures of
the paths of each length:

µ(D) =
∞
∑
k=1

µk(D∩Ωk), (6)

where D⊆Ω.

Measurement contribution function. The path measurement con-
tribution function f j for volumes is defined as:

f j(x) = G(x)ρ(x), (7)

where

G(x) =
k−1

∏
i=0

G(xi↔ xi+1)T (xi↔ xi+1), ρ(x) =
k

∏
i=0

ρ(xi), (8)

and

ρ(xi) =


Le(x0→ x1) if i = 0,
W j(xk−1→ xk) if i = k,
σs(xi)ρp(xi−1→ xi,xi→ xi+1) otherwise.

(9)

The geometry term G(xi↔ xi+1) includes the visibility between xi
and xi+1, T (xi ↔ xi+1) is the transmittance between xi and xi+1,
σs(xi) is the scattering coefficient at xi, and ρp(xi−1 → xi,xi →
xi+1) is the medium phase function. Le and W j are the emission
and importance distribution functions at the light source and the eye
sensor, respectively.

Path probability density. A Monte Carlo estimator for I j (Eq. 1)
with a random path X sampled with density p(X) has the form

I j =
∫

Ω

f j(x)
p(x)

p(x)dµ(x̄) = E

[
f j(X)

p(X)

]
≈ 1

N

N

∑
i=1

f j(xi)

p(xi)
. (10)

Obtaining an actual numerical estimate of I j requires sampling N
random paths xi over Ω and deriving their corresponding probability
density p(xi). Since µ is a product volume measure, the pdf of a
path x can be expressed as the joint density of its vertices:

p(x) = dP
dµ

(x) = p(x0, . . . ,xk). (11)

Most sampling techniques construct paths bidirectionally and their
joint density has the form

p(x0, . . . ,xk) =

(
p(x0)

s−1

∏
i=1

p(xi|xi−1)

)(
p(xk)

s+t−2

∏
i=s

p(xi|xi+1)

)
, (12)

where the first grouped terms correspond to the probability density
of sequentially sampling s vertices from the light source (light sub-
paths), and the second grouped terms correspond to the probability
density of sampling t vertices from the eye (eye subpaths).

3. Path Space Extension for Volumes

We now extend the path integral formulation to include photon
density estimation with points and beams [JNSJ11]. We first present
a general formulation that is capable of expressing all the possible
algorithms. The next section shows how this formulation describes
each existing algorithm including the beam estimators. Similarly to
the surface case [HPJ12], we define an extended path space Ω

′ and
a corresponding extended measurement contribution function f ′j .

While the unified framework of Křivánek et al. [KGH∗14] also
addresses the same goal, there is a distinct difference between the
two formulations: we increase the dimensionality of the path space
in order to include photon density estimation, whereas Křivánek et
al. reduce the dimensionality of photon density estimation so that it
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Figure 2: Extended path of length k. Unlike regular paths, extended
paths can be disconnected at every (x′i ,xi). Each pair of vertices
(xi,x′i+1) forms the i-th disconnected segment.

fits within the original path space. Both formulations are amenable
to Monte Carlo integral estimation and this difference is analogous
to the difference between the two surface-based unification met-
hods [GKDS12, HPJ12].

Our extended path integral formulation has the same general
structure as the one in Equation 1:

I′j =
∫

Ω′
f ′j(x
′)dµ′(x′), (13)

where I′j as an integral of an extended measurement contribution
function f ′j over an extended path space Ω

′ with measure µ′, all de-
fined below. A Monte Carlo estimator for I′ with a random extended
path X′ ∼ p′(X) has the form

I′j =
∫

Ω′

f ′j(x
′)

p′(x′)
p′(x′)dµ′(x′) = E

[
f ′j(X

′
)

p′(X′)

]
. (14)

Paths. Using vertices xi ∈ V , an extended path x′ of length k is

x′ = x0x′1x1x′2 . . .x
′
k−1xk−1x′k. (15)

Compared to the original path definition in Equation 2, a length-k
extended path has 2k vertices, rather than k+ 1 vertices. Another
difference is that an extended path x′ is a “disconnected” light
transport path, where the locations of disconnection are between
every x′i and xi. The vertices (xi,x′i+1) essentially represent the start
and endpoints of the i-th disconnected segment. Figure 2 illustrates
this idea. While it is also possible to duplicate vertices at the sensor
and light source to have 2(k+1) vertices, we intentionally avoid this
to make the view of paths as disconnected segments clear, omitting
isolated duplicated vertices at the sensor and a light source.

Path space. The set Ω
′
k of extended paths of length k becomes a

union of the original set Ωk and k−1 additional vertices:

Ω
′
k = Ωk ∪Vk−1. (16)

The full extended space Ω
′ is then naturally defined as

Ω
′ =

∞⋃
k=1

Ω
′
k. (17)

Path measure. A measure µ′k on an extended path of length k is a
product measure as before, but with 2k vertices:

dµ′k(x
′) = dV (x0)dV (x′1)dV (x1) · · ·dV (x′k)

µ′k =V ×·· ·×V︸ ︷︷ ︸
2k times

=V2k

µ′(D) =
∞
∑
k=1

µ′k(D∩Ω
′
k).

(18)

Measurement contribution function. We now define the exten-
ded measurement contribution function based on the integral formu-
lation of density estimation [Sil86] at each intermediate vertex:

f ′j(x
′) = G(x′)ρ(x′)K(x′) (19)

where

G(x′) =
k−1

∏
i=0

G(xi↔ x′i+1)T (xi↔ x′i+1) ρ(x′) =
k

∏
i=0

ρ(xi) (20)

and

ρ(xi) =


Le(x0→ x′1) if i = 0,

W ( j)
e (xk−1→ x′k) if i = k,

σs(xi)ρp(xi−1→ x′i ,xi→ x′i+1) otherwise.

(21)

The key idea that enables this formulation for beams is that the
path blurring kernel K is a product of kernels Ki that each considers
four neighboring vertices, rather than two vertices as in the surface
case [HPJ12]. That is, each Ki takes two disconnected segments
(xi−1,x′i) and (xi,x′i+1) as input:

K(x′) =
k−1

∏
i=1

Ki(xi−1,x
′
i ,xi,x′i+1), (22)

where we have two segments (xi−1,x′i) and (xi,x′i+1) as the input.
Similarly to the surface case [HPJ12], using Dirac deltas for all
kernels makes the extended formulation identical to the regular
formulation. We provide detailed definitions of the blurring kernel
K for various existing density estimators in Section 4.

Path probability density. The probability density p(x′) of an ex-
tended path x′ is defined similarly as before:

p(x′) = dP
dµ′

(x′) = p(x0, . . . ,x
′
k). (23)

Regular path sampling does not specify how to relate two vertices
x′i ,xi ∈ x′ at each disconnection of an extended path. We thus need
to redefine path sampling to generate extended paths as we elaborate
in the next section.

4. Reformulation of Existing Techniques

We show how the extended path integral formulation can express
different kinds of volumetric scattering estimators, including Monte
Carlo path integration as well as photon density estimation using
points and beams. This formulation allows us to use the exact same
measurement contribution function for bidirectional path tracing,
volumetric photon mapping, the beam-point estimator with 3D blur,
and the beam-beam estimator with 3D blur [JNSJ11]. The only
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Figure 3: Simplified configuration for an extended path of length
k. The disconnection is only at (x′q,xq) and subpaths are connected
until this point.

difference among those estimators is then in their corresponding
probability densities.We also show that the beam-point estimator
with 2D blur and the beam-beam estimator with 1D blur can be
formulated via blurring kernels with Dirac delta functions. These
delta functions cancel out with corresponding delta functions in the
probability densities for these techniques.

Note that our formulation suggests the possibility of estimators
with multiple disconnections for a light transport path. While this
generalization can lead to the development of such novel estimators,
all the existing estimators consider at most one disconnection, which
corresponds to a location where density estimation is performed.
Therefore, in the following, we consider only this special case with
one disconnection at x′q,xq as in Figure 3:

x′ = x0 . . .xq−1x′qxqxq+1 . . .xk. (24)

For the sake of brevity, we define a ≡ xq−1, b′ ≡ x′q, b ≡ xq, and
c≡ xq+1, so that we can use

x′ = x0 . . .ab′bc . . .xk. (25)

in the following derivations. This special case of a single discon-
nection corresponds to a blurring kernel K whose sub-kernels Ki are
all Dirac deltas at xi, except for Kq. As a consequence, we can sim-
plify x′ by omitting the coinciding vertices. Figure 4 summarizes the
configurations and notation used in the following. Since the vertices
Ξ ≡ x0, . . . ,a,c, . . . ,xk are commonly given in all the techniques,
we focus on the (conditional) probability density of p(b′,b|Ξ) given
those vertices in the following.

4.1. Extended Bidirectional Path Tracing

Since the regular paths constructed by the sampling techniques in
bidirectional path tracing do not have an extra vertex b′, we consider
a perturbation of b using some probability density p(b′|b):

p(b′,b|Ξ) = p(b′|b)p(b|Ξ). (26)

This algorithm is essentially bidirectional path tracing in the exten-
ded path space (Fig. 4b). The kernel in this case simplifies to

K(a,b′,b,c) = K(b′|b). (27)

It reduces to regular bidirectional path tracing if we use p(b′|b) =
K(b′|b) = δ(‖b′−b‖). Note that p(b′|b) = δ(‖b′−b‖) means that
we deterministically set b′ = b. This formulation is analogous to the
surface case [HPJ12]; the difference is that the kernel is volumetric.

4.2. Volume Photon Mapping (Point-Point 3D)

The probability density of an extended path in this technique is
simply a product of two probability densities:

p(b′,b|Ξ) = p(b′|Ξ)p(b|Ξ). (28)

The kernel remains exactly the same as in extended bidirectional
path tracing. Under this formulation, there is no fundamental diffe-
rence between extended bidirectional path tracing and volumetric
photon mapping, except for probability densities. Specifically, bi-
directional path tracing samples b′ by perturbing (possibly with
a delta distribution) the end vertex of the eye path b. Here, b′ is
sampled by extending the subpath from a (Fig. 4c).

4.3. Beam-Point 3D

We can express beams in the extended path integral formulation
by sampling b′ within the support of the kernel (Fig. 4d). For this
technique, we have exactly the same measurement contribution
function as extended bidirectional path tracing and volumetric pho-
ton mapping. The only difference is that we sample the vertex b′

with the following specific pdf:

p(b′,b|Ξ) = p(ωa|a)G(a,b′)k(ta|a,ωa)p(b|Ξ), (29)

where ωa is the direction from a to b′ and ta is the distance from
a to b′ along this direction. The pdf k(ta|a,ωa) is non-zero only
within the support of K(b′|b). One simple form is k(ta|a,ωa) =
1/(t+a − t−a ) where [t−a , t+a ] is the intersection interval of the ray
and the kernel support. We can see that, under our formulation, this
technique is no longer fundamentally different from Point-Point
3D—only the distance sampling ta is different, which in Point-Point
3D is proportional to the medium transmittance.

4.4. Beam-Beam 3D

Under our formulation, the Beam-Beam 3D estimator is also not
fundamentally different from Beam-Point 3D, and measurement
contribution function remains the same. The only difference is the
distance sampling, this time for both ta and tc (Fig. 4e):

p(b′,b|Ξ) = p(ωa|a)G(a,b′)k(ta|a,ωa)

p(ωc|c)G(b,c)k(tc|c,ωc),
(30)

where ωc is the direction from c to b and tc is the distance from
c to b along this direction. Similarly to Beam-Point 3D, the pdfs
k(ta|a,ωa) and k(tc|c,ωc) are non-zero only within the support of
K(b′|b). For example, we can simply use uniform distributions
k(ta|a,ωa) = 1/(t+a − t−a ) and k(tc|c,ωc) = 1/(t+c − t−c ) as the in-
tersecting intervals of the support of the kernel.

Point-Point 3D typically uses importance sampling of the trans-
mittance terms for those distances. Our formulation shows that
Beam-Beam 3D samples distances such that b′ and b are inside the
kernel. The original formulation [JNSJ11] relies on analytical inte-
gration over the kernel support, which is a special case of achieving
perfect importance sampling of distances ta and tc according to the
path contributions within the kernel support.
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a) Input configuration

c) Point-Point 3D

f) Beam-Point 2D

b) Extended vertex connection d) Beam-Point 3D

g) Beam-Beam 2D h) Beam-Beam 1D

e) Beam-Beam 3D

Figure 4: Configurations and notation used to explain the existing estimators. We skip Point-Beam 3D, Point-Beam 2D, and the alternative
Beam-Beam 2D in this paper since they are trivially defined from the other estimators based on the reciprocity in our formulation. We followed
the same style and notation used for the merging formulation [KGH∗14].

4.5. Beam-Point 2D

In this estimator, the kernel support becomes a disc rather than a sp-
here (Fig. 4f). The original formulation [JNSJ11] simply introduced
it as a 2D blurring kernel, but in order to express this disc kernel
consistently in the extended path space, we flatten the 3D kernel by
multiplying with a delta function:

K(a,b′,b,c) = K2D(b
′|b)δ(ta−db⊥). (31)

In this technique, the distance ta is deterministically given, since
it is given as the distance from a to the projection of b onto the
ray (a,ωa) which we denote as db⊥. Deterministic sampling is
expressed as a Dirac delta pdf, which results in

p(b′,b|Ξ) = p(ωa|a)G(a,b′)δ(ta−db⊥)p(b|Ξ) (32)

The delta function in the pdf cancels out the delta function in the
measurement contribution function.

4.6. Beam-Beam 2D

Under our formulation, this technique is very similar to Beam-Point
2D. The only difference is that tc is sampled from a pdf that is non-
zero only if K2D(b′|b) is non-zero (Fig. 4g). In Beam-Point 2D, this
pdf is often given by importance sampling of the transmittance term
along ωc. Beam-Beam 2D instead importance samples the support
of the kernel K2D(b′|b):

p(b′,b|Ξ) = p(ωa|a)G(a,b′)δ(ta−db⊥)

p(ωc|c)G(b,c)k(tc|c,ωc).
(33)

The pdf k(tc|c,ωc) can, for example, be a uniform distribution
k(tc|c,ωc) = 1/(t+a − t−a ) where [t−a , t+a ] again is the intersection
interval of the ray (a,ωa) and the kernel support. The measurement
contribution function remains the same as Beam-Point 2D and the
delta function still cancels out.

4.7. Beam-Beam 1D

In this technique, distances along both rays are deterministically
given by the closest points on the rays (Fig. 4h). We denote them as
da and dc, which results in the kernel

K(a,b′,b,c) = K1D(b
′|b)δ(ta−da)δ(tc−dc). (34)

The probability density function contains two delta functions for
distance sampling along rays:

p(b′,b|Ξ) = p(ωa|a)G(a,b′)δ(ta−da)

p(ωc|c)G(b,c)δ(tc−dc).
(35)

Again, those delta functions cancel out as long as we use this specific
technique for sampling. Note that the singularity [JNSJ11] appears
due to the normalization factor of K1D, not due to the pdf.

5. Discussion

5.1. Merging vs Perturbation

Our extended path space formulation and the merging formula-
tion [KGH∗14] have complementary properties regarding how they
model actual implementations of the estimators. This difference
appears as discrepancy between the theory and the implementation
for each formulation.

Since the merging formulation uses the regular path integral, it
precisely models path integration based methods such as bidirecti-
onal path tracing. In order to model photon density estimation in
the same path space, Křivánek et al. [KGH∗14] exclude the photon
from the path by interpreting it as a Russian roulette variable. This
approach thus, in fact, formulates an unbiased form of photon den-
sity estimation. Regular photon density estimation does not exactly
implement this unbiased formulation, which appears as an approxi-
mation in the Russian roulette probability in the implementation of
the merging formulation.

In contrast, our extended path formulation exactly models photon

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.



Hachisuka et al. / Extended Path Integral Formulation for Volumetric Transport

density estimation including beams by explicitly modifying the path
integral to include a blurring kernel. However, to model path inte-
gration methods, we need to use biased analogs for the original path
integral formulation. Virtual perturbation [HPJ12] “approximates”
those biased analogs by existing unbiased path integration methods.
For instance, we do not perform vertex perturbation in extended
bidirectional path tracing, but approximate it by regular bidirectional
path tracing with virtual perturbation.

Those approximations in the two formulations are introduced for
the sake of using existing algorithms. If we implement unbiased
photon density estimation or extended bidirectional path tracing
as-is, the theory and the implementation match exactly under both
formulations. Our claim in this paper is that the extended path for-
mulation explains photon density estimation better than the merging
formulation, thus making blur kernels more natural to consider.

5.2. Connections to the Photon Beam Theories

Beam×Beam 3D. Jarosz et al. [JNSJ11] mentioned that this parti-
cular estimator is intractable, since their formulation uses the analyti-
cal solution of the measurement contribution function marginalized
over two distance PDFs. Our formulation, however, points out that
we can simply use Monte Carlo integration instead of analytically
solving the marginalization. This allows us to avoid singularities
present in the 1D blur for beams.

Beam×Point 2D. For a constant kernel, our formulation results in
the same solution to the one by Jarosz et al. Our formulation also
reveals that this technique as well as Beam×Beam 1D cannot be
theoretically combined with other estimators with 3D blur under
MIS, since the measurement contribution functions are all different.
The delta functions in the measurement contribution function of 2D
or 1D blur only cancel out with the pdf when using the sampling
techniques corresponding to these lower-dimensional kernels.

Short beams. Beams in photon density estimation have two varia-
tions; short beams and long beams. The above formulation models
long beams without any additional operation. We can also trivially
model short beams as rejection sampling according to the trans-
mittance term. In addition to importance sampling the distance t
according to the corresponding kernel as we explained above, short
beams essentially performs the additional Russian roulette of this
sampled distance with the probability exp(−σt t). This cancels out
the transmittance term since it is also exactly exp(−σt t) at the dis-
tance t. Jarosz et al. [JNT∗11] showed in Appendix E of their paper
that this process is equivalent to rejection sampling of the sampled
distance t according to the transmittance.

6. Conclusion

We proposed an extended path integral formulation for volumetric
transport with beam density estimators, unifying Monte Carlo path
integration and photon density estimation, much like current mer-
ging formulations. Similar to surface transport counterparts, our
extended formulation introduces additional vertices into light trans-
port paths in order to treat sets of disconnected transport segments
as light transport paths. Photon density estimators (including beam

variants) naturally reside in our extended path space without any
further modification, whereas Monte Carlo path integral estimates
must additionally consider vertex perturbations. This result mirrors
existing unified formulations, where Monte Carlo path integral es-
timates are more naturally expressed, but the inclusion of photon
density estimators requires an additional Russian roulette process.

Our formulation is unique in that it recasts beam estimators as sim-
ple Monte Carlo vertex sampling processes. This formulation leads
to a more practical implementation of photon beam estimators with
3D blur kernels. We believe that our formulation complements the
growing foundation for a unified Monte Carlo path integration and
photon density estimation framework for volumetric light transport.
For instance, we expect that the ability to recast beam estimators
as vertex sampling processes is immediately useful when analyzing
(and improving upon) generalizations of conventional point-to-point
photon density estimators to beam estimators.
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