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A Derivations of Path Space Extension

A.1 Original Path Integral Formulation

We first summarize the path integral formulation by Veach [Veach
1998]. Using the path integral formulation, light transport simula-
tion can be expressed as:

Ij =

∫
Ω

fj(x̄)dµ(x̄), (1)

where j is an index to the pixel (or measurement), fj is the mea-
surement contribution function, µ is a measure of paths, and Ω is
the set of transport paths of all lengths.

We evaluate this integral using Monte Carlo integration with a ran-
dom path X̄ with the probability density p(X̄) by:

E

[
fj(X̄)

p(X̄)

]
=

∫
Ω

fj(x̄)

p(x̄)
p(x̄)dµ(x̄) = Ij . (2)

Each term is defined as follows.

Path: Given a set of vertices on surfaces xi ∈ M for each i, a
path x̄ of length k is defined in the form

x̄ = x0x1 . . . xk, (3)

where 1 < k <∞. By convention, x0 is at a light source.

Space: Let Ωk represent the paths of length k, then the path
space Ω is defined as

Ω =

∞⋃
k=1

Ωk. (4)

Ω thus represents the set of paths of all lengths.

Measure: A measure µk on a path of length k is a product mea-
sure of the standard area measure A at all the k vertices as follows:

dµk(x̄) = dA(x0)dA(x1) · · · dA(xk), (5)

which can also be written as

µk = A× · · · × A︸ ︷︷ ︸
k + 1 times

= Ak+1. (6)

The measure µ on the space Ω is the sum of the measures of the
paths of each length:

µ(D) =
∞∑
k=1

µk(D ∩ Ωk), (7)

where D ⊂ Ωk is a set of paths.

Measurement Contribution Function: The measurement con-
tribution function fj can be derived from the three-point form of
the rendering equation and the measurement equation:

L(y → x) = Le(y → x)+∫
M
L(z → y)fs(z → y → x)G(z ↔ y)dA(z), (8)

Ij =

∫
M2

W
(j)
e (x→ e)L(x→ e)G(x↔ e)dA(x)dA(e). (9)

To define the measurement contribution function, we recursively
expand the above equation:

Ij =

∞∑
i=1

∫
Mk+1

Le(x0 → x1)G(x0 ↔ x1)

·
k−1∏
p=1

fs(xp−1 → xp → xp+1)G(xp ↔ xp+1)

·W (j)
e (xk−1 → xk)dA(x0) · · · dA(xk) =∫

M2
Le(x0 → x1)G(x0 ↔ x1)W

(j)
e (x0 → x1)dA(x0)dA(x1)

+

∫
M3

Le(x0 → x1)G(x0 ↔ x1)fs(x0 → x1 → x2)

·G(x1 ↔ x2)W
(j)
e (x1 → x2)dA(x0)dA(x1)dA(x2)

+ · · · . (10)

As noted by Veach, fj is defined by extracting the term from the
recursive expansion of the above equation. For example, given a
path x̄ = x0x1x2, we have

fj(x̄) = Le(x0 → x1)G(x0 ↔ x1)fs(x0 → x1 → x2)

·G(x1 ↔ x2)W
(j)
e (x1 → x2) (11)

Probability Density: To evaluate the path integral formulation
using Monte Carlo integration, we need to define the probability
density p(x̄) of a path x̄. Since µ is a product of the area measure,
we have

p(x̄) =
dP

dµ
(x̄) =

dP

dµ
(x0 . . . xk) =

k∏
i=0

dP

dA
(xi) (12)

where each dP
dA

(xi) can be computed either directly or by using
the relationship dP

dA
(xi) = dP

dσ
(ωo)

dσ(ωo)
dA(xi)

if we sample a vertex x′

from x in the direction ωo = x̂′ − x with local path sampling.

A.2 Path Space Extension

We extend the original path integral formulation to include density
estimation. Similar to the original path integral formulation, we
formulate the above integral as an integral over our extended path
space Ω′ with the extended measurement contribution function f ′j :

I
′
j =

∫
Ω′
f
′
j(x̄
′
)dµ
′
(x̄
′
), (13)

and we want to evaluate the integral using Monte Carlo integration
with random paths X̄ ′ the probability density p′(X̄) by:

E

[
f ′j(X̄

′)

p′(X̄′)

]
=

∫
Ω′

f ′j(x̄
′)

p′(x̄′)
p
′
(x̄
′
)dµ
′
(x̄
′
) = I

′
j . (14)

In the following, we use symbols with primes for our extended
definition.



Path: Using vertices xi, x′i ∈ M, an extended path x̄′ of length
k is defined in the form

x̄
′

= x0x1x
′
1x2 . . . xk−1x

′
k−1xk, (15)

where 1 < k < ∞. The difference is that an extended path has
an additional vertex x′i at each intermediate vertex xi. An extended
path is “disconnected” in the sense of light transport path, where
the location of disconnection can happen between xi, x′i ∈ x̄′ for
each i except for i = 0 and i = k.

Space: We define Ω′k as the space of the paths of length k and
the entire path space Ω′ is defined as

Ω
′

=
∞⋃
k=1

Ω
′
k. (16)

Since each extended path x̄′ ∈ Ω′k contains k − 1 additional ver-
tices x′i ∈ M compared to the original path, we have an extended
path space as

Ω
′
k = Ωk ∪Mk−1

. (17)

Measure: Similar to the original formulation, a measure µ′k on a
path of length k is a product measure of the standard area measure
A at all the vertices:

dµ
′
k(x̄) = dA(x0)dA(x1)dA(x

′
1) · · · dA(xk)

µ
′
k = A× · · · × A︸ ︷︷ ︸

2k times

= A2k

µ
′
(D) =

∞∑
k=1

µ
′
k(D ∩ Ω

′
k).

(18)

Based on this definition, we can see that a measure in our extended
space has extended to

µ
′
k = µk × Ak−1. (19)

Measurement Contribution Function: We can derive the ex-
tended measurement contribution function based on the integral
formulation of density estimation [Silverman 1986] at each inter-
mediate vertex;

L(y → x) = Le(y → x)+∫
M

(∫
M
L(z → w)K(w, y)G(z ↔ w)dA(w)

)
fs(z → y → x)dA(z)

= Le(y → x)+∫
M2

L(z → w)K(w, y)fs(z → y → x)G(z ↔ w)dA(w)dA(z) (20)

Ij =

∫
M2

W
(j)
e (x→ e)L(x→ e)G(x↔ e)dA(x)dA(e), (21)

where K(w, y) is a kernel function for density estimation.

The difference from the original light transport equation is that den-
sity estimation adds a convolution of the incoming radiance distri-
bution by K(w, y) as

∫
M L(z → w)G(z ↔ w)K(w, y)dA(w).

The measurement equation stays the same. The path is discon-
nected at w, y in the sense of light transport path.

Similar to the original path integral formulation, we recursively ex-
pand the above equation as

I
′
j =

∞∑
i=1

∫
M2k

Le(x0 → x1)G(x0 ↔ x1)

·
k−1∏
p=1

K(xp, x
′
p)fs(xp−1 → x

′
p → xp+1)G(x

′
p ↔ xp+1)

·W (j)
e (xk−1 → xk)dA(x0)dA(x1)dA(x

′
1) · · · dA(xk) =∫

M2
Le(x0 → x1)G(x0 ↔ x1)W

(j)
e (x0 → x1)dA(x0)dA(x1)

+

∫
M4

Le(x0 → x1)G(x0 ↔ x1)K(x1, x
′
1)fs(x0 → x

′
1 → x2)

·G(x
′
1 ↔ x2)W

(j)
e (x

′
1 → x2)dA(x0)dA(x1)dA(x

′
1)dA(x2)

+ · · · . (22)

f ′j is defined by extracting the term from the recursive expansion of
the above equation. For example, given a path x̄′ = x0x1x

′
1x2, we

have

f
′
j(x̄
′
) = Le(x0 → x1)G(x0 ↔ x1)K(x1, x

′
1)

· fs(x0 → x
′
1 → x2)G(x

′
1 ↔ x2)W

(j)
e (x

′
1 → x2) (23)

As we describe below, we perform density estimation or vertex
perturbation at x1, x

′
1 to generate this path.

Probability Density: The probability density p(x̄′) of an ex-
tended path x̄′ is defined with respect to a product of the area mea-
sure;

p(x̄) =
dP

dµ
(x̄) =

dP

dµ
(x0 . . . xk) =

k∏
i=0

dP

dA
(xi, x

′
i). (24)

The important difference is that local path sampling does not define
how to relate two disconnected vertices xi, x′i ∈ x̄ in an extended
path.

Depending on how we generate an extended path, we have two
cases. For the sake of brevity, we assume that there is only one
disconnection at xq, x′q ∈ x̄ in the path in the following. This is
true in our application in this paper.

The first case is that xq and x′q are generated by independent sta-
tistical processes. An example is that we generate a light path that
ends at xq and an eye path that ends at x′q by independent local path
sampling, as in standard photon density estimation. In this case, the
probability density of the entire extended path is simply a product
of two probability densities:

p(x̄
′
) =

q−1∏
i=0

dP

dA
(xi) ·

dP

dA
(xq, x

′
q)

k∏
i=q+1

dP

dA
(xi)

=

q∏
i=0

dP

dA
(xi) ·

dP

dA
(x
′
q)

k∏
i=q+1

dP

dA
(xi). (25)

This equation defines the probability density of a path in photon
density estimation. Note that there is no influence due to the den-
sity estimation kernel. The density estimation kernel affects the
measurement contribution function instead.

The second case is that both xq and x′q are generated by the same
statistical process. Traditional local path sampling does not specify
how to generate x′q from xq (or xq from x′q). We thus introduce a
vertex perturbation as we described in the paper - x′q is generated



by perturbing xq . Assuming a circular support with the radius r for
perturbation, this is formalized as:

p(x̄
′
) =

q−1∏
i=0

dP

dA
(xi) ·

dP

dA
(xq, x

′
q)

k∏
i=q+1

dP

dA
(xi)

=

q∏
i=0

dP

dA
(xi) ·

dP

dA
(x
′
q|xq) ·

k∏
i=q+1

dP

dA
(xi)

=

q∏
i=0

dP

dA
(xi) ·

1

πr2
·

k∏
i=q+1

dP

dA
(xi).

(26)

By comparing with the original path integral formulation, we see
that this case has an extra factor of 1

πr2
:

p(x̄
′
) =

1

πr2

q∏
i=0

dP

dA
(xi)

k∏
i=q+1

dP

dA
(xi) =

1

πr2
p(x̄), (27)

which is the reason why we need to multiply 1
πr2

in the probability
density of an extended Monte Carlo path integration.

Reduction to Other Formulations: Our extended path integral
formulation reduces to other existing formulations by changing the
kernel function. For example, by definingK(w, y) = δ(||w− y||),
we obtain the original path integral formulation. We can think of
regular Monte Carlo path integration as performing vertex perturba-
tion using the delta function at all the vertices. All the factors due
to the delta function then cancel out exactly, leaving the original
ratio of the measurement contribution function and the probability
density.

In this paper, we handle a special case

K(xi, x
′
i) =

{
1
πr2

for ||xi − x′i|| < r

0 otherwise,
(28)

where we perform density estimation or vertex perturbation only
at xi, x′i and K(w, y) = δ(||w − y||) otherwise.

One possible generalization is to consider non-delta kernel func-
tions at all the vertices, which corresponds to performing multiple
density estimation or vertex perturbation. Since our focus in this
paper is to combine density estimation and Monte Carlo path inte-
gration, this generalization is left as future work.

For non-delta kernels, a solution to the extended path integral for-
mulation is different from the solution to the original path integral
formulation. Therefore, our estimate is biased when we compared
to the original solution. However, for the limit of delta kernels, we
have

L(y → x) = Le(y → x)+∫
M

(∫
M
L(z → w)δ(w, y)G(z ↔ w)dA(w)

)
fs(z → y → x)dA(z)

= Le(y → x)+∫
M
L(z → y)fs(z → y → x)G(z ↔ y)dA(z) (29)

which is equal to the original light transport equation. Progressive
density estimation achieves this condition with an infinite number
of samples, thus our estimate is consistent.

B Bias-Aware Multiple Importance Sampling

B.1 Problem Settings

In order to take bias into account in multiple importance sampling,
we consider a biased estimator as an unbiased estimator of a biased

solution. This makes it possible to characterize bias as a result of
modifications to an original integrand. We denote such modifica-
tions by the ith sampling technique as bi(x). Following the same
notation as Veach’s, the jth sample from the ith technique has the
following contribution:

Fi,j =
wi(Xi,j)(f(Xi,j) + bi(Xi,j))

pi(Xi,j)
, (30)

where wi(Xi,j) is the weight function, f(Xi,j) is the integrand,
bi(Xi,j) is the modifications to the original integrand that intro-
duces bias, and pi(Xi,j) is the probability density function. The
expected (and potentially biased) value from the ith technique is
then given by

µi = E[Fi,j ] =

∫
Ω

wi(x)(f(x) + bi(x))dµ(x). (31)

Note that bi(Xi,j) is not bias itself, but rather the contribution to
the bias from the sample Xi,j . We can describe bias from the ith
technique as the difference between the biased solution (i.e. µi) and
the correct solution;

B[Fi,j ] = E[Fi,j ]−
∫

Ω

wi(x)f(x)dµ(x) =

∫
Ω

wi(x)bi(x)dµ(x). (32)

Our goal is to find a weighting strategy which has expected error
that is not arbitrarily far away from the truly optimal weighting
strategy. This is also what the original balance heuristic achieves.
Our contribution is a derivation that shows necessary modifications
for the original balance heuristic to keep this optimality in combi-
nation with a biased technique.

The goal of the derivation of the original balance heuristic is to
minimize variance of the solution. This is because the error of un-
biased Monte Carlo techniques is solely characterized by variance.
However, in our setting, we also need to take bias into account.
We therefore minimize the squared error based on bias-variance
decomposition:

E[(F − µ̂)2] = V [F ] +B[F ]2, (33)

where µ̂ is the correct solution, V [F ] is variance, and B[F ] is bias.
Minimizing squared error including bias in general, however, is a
very challenging task. This is because bias is a systematic error that
happens because of various reasons, and it is often difficult to define
general characteristics of bias in order to perform any theoretical
analysis on quantities including bias. We therefore make a couple
of assumptions that are often reasonable in rendering.

First, we only consider the case where we have one nth biased tech-
nique in addition to other n − 1 unbiased techniques. This can
be true in our method if we restrict ourselves to consider only one
photon density estimation technique. Second, we assume that the
contribution to bias from each sample is constant. This is also rea-
sonable in photon density estimation as we only consider neighbor-
ing photons which tend to cause similar error within each radiance
estimate. We can thus set bi(x) = 0 for i 6= n and bn(x) = bn
for i = n. Notice that we are overloading the notation of bn for
readability. We can then expand E[(F − µ̂)2] as follows:

E[(F − µ̂)
2
] = V

 n∑
i=1

1

ni

ni∑
j=1

Fi,j

+ B

 n∑
i=1

1

ni

ni∑
j=1

Fi,j

2

=

∫
Ω

(
n−1∑
i=1

w2
i (x)f2(x)

nipi(x)
+
w2
n(x)(f(x) + bn)2

nnpn(x)

)
dµ(x)

+

(∫
Ω

wn(x)bndµ(x)

)2

−
n∑
i=1

1

ni
µ

2
i , (34)



In the following derivations, we will show how to minimize the
sum of the first two terms. The last term

∑n
i=1

1
ni
µ2
i has the same

bound as the original derivation by Veach thus the last term is inde-
pendent from weighting functions.

B.2 Minimizing Squared Error

Even after we made some simplifying assumptions, Equation (34)
is still difficult to minimize with respect to wi, since bias intro-
duced the integral term

(∫
Ω
wn(x)bndµ(x)

)2. In order to yield the
optimal wi including this term, it seems that we need to solve an
integral equation which is often intractable. However, we can show
that minimizing a point-wise expression,

n−1∑
i=1

w2
i (x)

nipi(x)
+
w2
n(x)(1 + rn(x))2

nnpn(x)
+Ar2

n(x)w2
n(x) (35)

indeed suffices to minimize the full expression of D[F ] in Equa-
tion (34), where we defined rn(x) = bn

f(x)
and A =

∫
Ω

dµ(x) for
readability.

We first start by trying to find an alternative expression for(∫
Ω
wn(x)bndµ(x)

)2. In order to obtain such an expression, we
use the Cauchy-Schwarz inequality and consider the bound of this
term; (∫

Ω

wn(x)bndµ(x)

)2

≤ A
∫

Ω

w2
n(x)b2ndµ(x). (36)

Minimizing the bound in general does not minimize the original
term since the bound might not have the same extrema as the orig-
inal function. In our case, however, the bound and the function
happen to have extrema at exactly the same points since

∂

∂wn

(∫
Ω

wn(x)bndµ(x)

)2

= A
∂

∂wn

∫
Ω

w2
n(x)b2ndµ(x).

(37)
Note that this is possible because of our assumptions on bias. Since
the latter is the upper bound of the function, minimizing the bound
also minimizes the function given the fact that they have extrema at
the same points.

Furthermore, since the sums of two functions f(x) + g(x) and
f(x) + h(x) have the same extrema if dg

dx
= dh

dx
, minimizing

∫
Ω

(
n−1∑
i=1

w2
i (x)f2(x)

nipi(x)
+
w2
n(x)(f(x) + bn)2

nnpn(x)
+ Aw

2
n(x)b

2
n

)
dµ(x)

(38)

is equivalent to minimizing the corresponding sums in Equa-
tion (34). We can yield Equation 35 by dividing the integrand of
this equation by f2(x).

B.3 Bias-Aware Balance Heuristic

Using the method of Lagrange multipliers, the minimum value of
Equation 35 is attained when all n+ 1 partial derivatives (n deriva-
tives for wi and one for λ) of the expression

n−1∑
i=1

w2
i

nipi
+
w2
n(1 + rn)2

nnpn
+Ar2

nw
2
n + λ

(
n∑
i=1

wi − 1

)
(39)

are zero. Note that we dropped the notation (x) similar to the
Veach’s derivation since this is a point-wise minimization of the
function.

The solution to this equation yields

ŵi(~x) =
nip
′
i(~x)∑M

k=1 nkp
′
k(~x)

, (40)

where

p′i(~x) =

{
pi(~x) (i 6= n)

pn(~x) 1
(1+rn)2+nnpn(~x)Ar2n

(i = n),
(41)

A is a constant, and rn is the relative magnitude of the contribu-
tion of the bias to the sampled value. Here the nth technique is
biased. Note that if there is no bias rn = 0, we obtain p′i = pi and
Equation 40 turns into the original balance heuristic. Note also that
taking an infinite number of samples limN →∞ turns the weight
for a biased method into zero, which makes the combined estimate
converge to the correct solution even if rn 6= 0.

Using this bias-aware balance heuristic as a combination strategy,
the resulting estimator F̂B satisfies the following inequality:

Error[F̂B ]2 − Error[F ]2 ≤
(

1

mini ni
− 1∑

i ni

)
µ2. (42)

Notice the difference from the optimality claim of the original bal-
ance heuristic. This inequality is defined with the operator Error
that returns error which includes both bias and variance. Similar
to “variance gap”, we call the left hand side as “error gap”, which
is the difference of errors between the provably good combination
and any other combination.

Unfortunately, we cannot use this provably good strategy in prac-
tice. In order to use this strategy, one would have to evaluate the
magnitude of bias relative to the sampled value, ri. Even if we
had a method to estimate ri, the provably good weighting strat-
egy would require the additional ability of estimating ri of samples
which were not even sampled by a biased technique.

We propose one practical solution to this problem, which is to use
the original balance heuristic in combination with progressive pho-
ton mapping [Hachisuka et al. 2008]. Since bias in progressive pho-
ton mapping is guaranteed to converge to zero [Knaus and Zwicker
2011] as we add more samples, the difference between the origi-
nal balance heuristic and the bias-aware balance heuristic (Equa-
tion 40) are expected to converge to zero at an infinite number of
samples. The challenge however is that we still would like to pur-
sue a provably good combination with any number of samples. In
the following subsections, we describe a condition on this approach
that keeps the resulting combination provably good.

C Error Gap of the Balance Heuristic

In order to analyze the influence of bias, we first look at the con-
sequence of using the original balance heuristic by ignoring bias in
biased estimators. In any biased estimator, error is characterized by
the following bias-variance decomposition:

Error[F ]2 = Var[F ] + Bias[F ]2. (43)

We then look at the error gap (not the variance gap) of the original
balance heuristic

Error[F̂ ]2 − Error[F ]2

= Var[F̂ ] + Bias[F̂ ]2 −Var[F ]− Bias[F ]2

= Var[F̂ ]−Var[F ] + Bias[F̂ ]2 − Bias[F ]2. (44)



We thus obtain

Error[F̂ ]2 − Error[F ]2

≤
(

1

mini ni
− 1∑

i ni

)
µ2 + Bias[F̂ ]2 − Bias[F ]2

≤
(

1

mini ni
− 1∑

i ni

)
µ2 + Bias[F̂ ]2. (45)

Therefore, the error gap of the original balance heuristic under the
presence of biased estimator is bounded by the original bound plus
the additional term due to bias. Comparing this inequality and the
inequality in Equation 42, using the original balance heuristic can
be further away from the truly optimal (unknown) combination than
the bias-aware balance heuristic by the additional term Bias[F̂ ]2.
This result shows that, depending on how bias changes according
to the number of samples, the balance heuristic can be arbitrary
away from a provably good strategy under the presence of a biased
estimator.
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Figure 1: Error gaps due to different α values. The graph plots
RMS errors of the rendered images of the torus scene with different
values for the alpha parameter. RMS errors are normalized such
that the graph shows the difference in convergence rates. As pre-
dicted by our theoretical analysis, α = 2/3 gives us the fastest
convergence rate.

D Condition for a Provably Good Strategy

As we mentioned earlier, we use progressive photon density esti-
mation [Hachisuka et al. 2008] with the hope that the original bal-
ance heuristic is still close to the provably good combination of the
bias-aware balance heuristic. We show that setting the alpha pa-
rameter of progressive photon density estimation to 2/3 can indeed
achieve such a combination with the original balance heuristic in
the Veach’s sense [1995].

Knaus and Zwicker [2011] showed that the asymptotic convergence
rates of bias and variance in progressive density estimation are

Var = O

(
1

nα

)
Bias = O

(
1

n1−α

)
, (46)

where α is the parameter that controls the reduction rate of the ra-
dius in progressive density estimation. Substituting this result into
Equation 45 yields

Error[F̂ ]2 − Error[F ]2 ≤
(

1

nαn
− 1∑

i ni

)
µ2 +

C

n
2(1−α)
n

,

(47)

where C is a constant. We used mini ni = nαn by considering the
fact that the variance of progressive photon mapping converges at
the rate of O

(
1
nα

)
. We take the effect of slower convergence rate

into account by replacing nn by nαn . Note that this does not affect
the derivation of the bias-aware balance heuristic since the deriva-
tions do not try to achieve the optimal distribution of the number of
samples.

Our goal is to find conditions such that(
1

nαn
− 1∑

i ni

)
µ2 +

C

n
2(1−α)
n

≈
(

1

nαn
− 1∑

i ni

)
µ2 (48)

for large enough N =
∑
i ni. Note that the right hand side also

uses the equation mini ni = nαn since we are now combining pro-
gressive photon density estimation and Monte Carlo path integra-
tion.

Now, consider the difference between the convergence rates of the
bounds of the error gap in the original balance heuristic and the
bias-aware balance heuristic:(

1

nαn
− 1∑

i ni

)
µ2 +

C

n
2(1−α)
n

∈ O
(

1

nαn

)
+O

(
1

n
2(1−α)
n

)
(

1

nαn
− 1∑

i ni

)
µ2 ∈ O

(
1

nαn

)
. (49)

The difference in convergence rates of the two bounds is minimized
at α = 2/3, which is the solution for α = 2(1−α). In other words,
using α = 2/3 makes sure that the bound of the error gap from any
other combination strategies reduces with the convergence rate of
the bias-aware balance heuristic. The resulting error gap is

Error[F̂ ]2 − Error[F ]2 ≤
(

1

nαn
− 1∑

i ni

)
µ2 +

C

n
2(1−α)
n

≤ (C + 1)

(
1

nαn
− 1∑

i ni

)
µ2 (50)

Note that any other values of the alpha parameter makes the bound
arbitrary away from above with given N . Figure 1 shows the re-
sults of a numerical experiment that confirms our theory. We have
found that using the alpha value other than 2/3 results in slower
convergence rates. The condition α = 2/3 is not only theoretically
critical, but also practically important.
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