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Figure 1: Equal-time comparison of rendered images of a bathroom scene with realistic lighting fixtures. This scene includes both glossy
reflections and complex caustics due to lighting fixtures which are common in interior design. Existing light transport simulation methods
including Monte Carlo path integration and photon density estimation cannot efficiently render scenes with such lighting phenomena. Our new
framework for light transport simulation automatically combines Monte Carlo path integration and photon density estimation by extending
the sampling space of light transport paths, and produces a significantly more accurate solution in the same rendering time.

Abstract

We present a new sampling space for light transport paths that
makes it possible to describe Monte Carlo path integration and pho-
ton density estimation in the same framework. A key contribution
of our paper is the introduction of vertex perturbations, which ex-
tends the space of paths with loosely coupled connections. The
new framework enables the computation of path probabilities in the
same space under the same measure, which allows us to use mul-
tiple importance sampling to combine Monte Carlo path integra-
tion and photon density estimation. The resulting algorithm, uni-
fied path sampling, can robustly render complex combinations and
glossy surfaces and caustics that are problematic for existing light
transport simulation methods.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;
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1 Introduction

Efficiently simulating light transport under general scene configu-
rations is a difficult task. Currently, the most successful approaches
are based on Monte Carlo path integration and photon density es-
timation. Both approaches solve the rendering equation introduced
by Kajiya [1986]. Unfortunately, neither Monte Carlo path integra-
tion nor photon density estimation can simulate all types of light
transport efficiently. For example, Monte Carlo path integration
has problems with specular-diffuse-specular (SDS) transport, while
photon density estimation techniques can suffer in the presence of
highly glossy materials.

Recently, Hachisuka and Jensen [2009] introduced stochastic pro-
gressive photon mapping. They combined photon density estima-
tion and distributed ray tracing [Cook et al. 1984] to solve the ren-
dering equation in general scenes. This algorithm can handle both
SDS paths and glossy reflections efficiently, however, the algorithm
uses a manual classification of surface materials into either “glossy”
or “diffuse”. This binary classification can lead to inefficient sam-
pling in some scenes such as glossy surfaces lit by a directional
light source.

A key challenge in combining density estimation and Monte Carlo
path integration is the lack of a shared theoretical foundation for
both approaches. It is well known that both approaches solve the
rendering equation. However, while Monte Carlo path integration
has a solid theoretical foundation with the path integral formula-
tion [Veach 1998], photon density estimation has not been formu-
lated under the same foundation. This difference in their theoretical
formulations limits the ability to analyze both methods in the same
framework.

In this paper, we propose a novel path sampling framework for light
transport. The key contribution is a new extension of the path space



using vertex perturbations, which can describe both density estima-
tion and Monte Carlo path integration techniques under the same
unified framework. The insight behind the use of vertex perturba-
tions is that density estimation can be seen as adding a loosely cou-
pled connection to Monte Carlo path integration. Likewise, Monte
Carlo path integration can be extended to density estimation by in-
troducing a similar loosely coupled connection, rather than the tra-
ditional explicit connection between two path vertices.

This new path sampling framework provides a unified formulation
for both photon density estimation and Monte Carlo path integra-
tion. Our framework thus allows us to evaluate path probabilities
in the same space under the same measure, which makes it possible
to use multiple importance sampling [Veach and Guibas 1995] to
combine these two approaches. We call this combination unified
path sampling.

Although one could attempt the use of multiple importance sam-
pling without extending the path space, this attempt would result
in a combination that is not scale invariant due to the lack of a
proper measure as we will elaborate. This lack of measure is one
of the key reasons why Monte Carlo path integration and photon
density estimation are usually implemented as separate rendering
frameworks. Our unified path sampling algorithm overcomes this
limitation. Figure 1 demonstrates how the resulting algorithm can
efficiently render both caustics and glossy reflections.

2 Theory

In the following, we first briefly summarize the formulation of mul-
tiple importance sampling. We then formally describe the differ-
ences between Monte Carlo path integration and photon density es-
timation which have prevented us to combine these two methods
using multiple importance sampling. Finally, to resolve these dif-
ferences, we introduce the path space extension that expresses the
two techniques under a unified definition. Figure 2 illustrates the
core idea. Table 1 summarizes the notations used throughout the
paper.

Multiple importance sampling [Veach and Guibas 1995] is a pow-
erful tool that enables combining multiple Monte Carlo integration
techniques with different probability density functions in order to
solve an integral. Given an integral I of the function f

I =

∫
Ω

f(x)dµ(x) (1)

over some domain Ω and a measure µ, multiple importance sam-
pling combines Nt different techniques to generate samples in this
same domain Ω.

To build an estimator for the given integral, multiple importance
sampling weights contributions of individual samples from differ-
ent techniques, where each i-th technique has a different probability
density function pi(~x) and approximates different parts of the inte-
grand f better than the others.

To be precise, if the i-th technique is used to generate ni samples
{Xi,k : i = 1, . . . , Nt, k = 1, . . . , ni}, multiple importance sam-
pling gives us the unbiased estimator of I as

I = E

[
Nt∑
i=1

1

ni

ni∑
k=1

wi(Xi,k)
f(Xi,k)

pi(Xi,k)

]
, (2)

as long as
∑Nt

i=1 wi(~x) = 1 and wi(~x) = 0 whenever pi(~x) = 0.
In other words, multiple importance sampling will give us a correct
estimator of the integral as long as weights sum to one and each
estimator is valid.

Efficient weighting strategies such as the balance and power heuris-
tics [Veach and Guibas 1995] compute the weights by evaluat-
ing probability densities associated with different sampling tech-
niques at the same sample. Monte Carlo path integration fully
adopted such efficient weighting strategies in bidirectional path
tracings [Lafortune and Willems 1993; Veach and Guibas 1995].
On the other hand, photon density estimation and its progressive
variants [Jensen 1996; Hachisuka et al. 2008; Knaus and Zwicker
2011] typically do not use multiple importance sampling, and rely
on a simpler heuristic such as caustics/non-caustics classification.

Only recently Vorba and Křivánek [2011] showed how multiple im-
portance sampling can be used to combine different photon den-
sity estimation techniques. However, this combination is still lim-
ited within photon density estimation techniques themselves. Some
other partial combinations of photon density estimation and bidirec-
tional path tracing have been proposed, and they demonstrated more
robust alternatives than using one of the algorithms alone [Bekaert
et al. 2003; Tokuyoshi 2009; Hachisuka and Jensen 2009].

Our focus in this paper is to provide a mathematical framework that
unifies these two algorithms using multiple importance sampling.
In order to do so, we seek for the common space where we can
compare probability densities of generating paths under two dif-
ferent algorithms. We then use these probability densities to find
weights for multiple importance sampling and construct the com-
bined estimator.

Notation Description

yi ith vertex generated from the light source
zi ith vertex generated from the eye
K density estimation kernel
M path length
pmc probability density in MC integration
pde probability density in density estimation
pups probability density in unified path space
CL

s throughput of the light path with s vertices
CE

t throughput of the eye path with t vertices

Table 1: Descriptions of the notations used in the paper.

2.1 Path Integration and Density Estimation

Path Integration: According to the path integral formula-
tion [Veach 1998], light transport simulation can be expressed as

Ij =

∫
Ω

fj(x̄)dµ(x̄), (3)

where j is an index to the pixel, fj is the measurement contribution
function, and µ is a measure of paths. Ω in this setting is the set of
transport paths of all lengths. For formal definitions, please refer to
Appendix A.1 in the supplemental document.

Bidirectional path tracing [Lafortune and Willems 1993; Veach
and Guibas 1995] solves this integral via Monte Carlo integration.
Given a path of length M , bidirectional path tracing considers all
the possible techniques to sample a path by joining two subpaths
with s vertices from the light source and t vertices from the eye,
such that s+ t− 1 = M .

Let us focus on a single technique (s, t), where we have a light
subpath ȳs = y1 . . . ys and an eye subpath z̄t = zt . . . z1. By
convention, y1 is at the light source and z1 is at the eye, thus the
complete path is x̄s,t = ȳsz̄t = y1 . . . yszt . . . z1. The overall



(b) Corresponding path in density estimation(a) A path in MC path integration (c) Corresponding path in our extended space
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Figure 2: Path space extension for unifying Monte Carlo path integration and photon density estimation. A path sampled in Monte Carlo
path integration corresponds to one of the infinitely many possible paths in photon density estimation. The probability density of the path in
(a) is not in the same space as the corresponding path in (b). We propose to use an extended path space of Monte Carlo path integration by
considering a random perturbation of the last connecting light vertex within the neighborhood of the originally sampled vertex as in (c). With
this extension, both Monte Carlo path integration and photon density estimation cover exactly the same path space.

throughput of this path is

Cmc∗
s,t (x̄s,t) = fj(x̄s,t)

= CL
s (ȳs)

· f(ys−1 → ys → zt)G(ys, zt)f(ys → zt → zt−1)

· CE
t (z̄t)

(4)

with

CL
s (ȳs) = Le(y1 → y2)G(y1, y2)

∏s−1
p=1 fs(yp−1 → yp → yp+1)G(yp, yp+1)

CE
t (z̄t) = W j

e (z1 → z2)G(z1, z2)
∏t−1

p=1 fs(zp−1 → zp → zp+1)G(zp, zp+1).

The geometry termG includes the visibility term similar to the def-
inition by Veach an Guibas [1995] and the special cases of s = 0, 1
and t = 0, 1 are also similarly defined.

Assuming that the light path sampling procedure and the eye path
sampling procedure are statistically independent, local path sam-
pling methods, the probability density of the whole path is the prod-
uct of the subpath probability densities:

p
mc
s,t(x̄s,t) =

(
p(y1)

s−1∏
i=1

p(yi+1|yi)
)(

p(z1)

t−1∏
i=1

p(zi+1|zi)
)
. (5)

We can combine samples from different techniques by weighting
their contributions using multiple importance sampling:

Ij = E

[
∞∑

M=1

M+1∑
s=0

ws,t(x̄s,t)
Cmc∗

s,t (x̄s,t)

pmc
s,t(x̄s,t)

]
, (6)

where we defined t = M+1−s for simplifying the notation. Note
that we take one sample from each estimator by setting ni = 1 in
Equation 2 as in the original formulation by Veach and Guibas.

Density Estimation: Solutions to density estimation methods
like photon mapping can also be expressed as solutions of an inte-
gral [Silverman 1986]. We can thus express light transport simula-
tion using photon density estimation as:

I ′j =

∫
Ω′
f ′j(x̄)dµ(x̄) = Ij +Bj , (7)

where f ′j is the extended measurement contribution function that in-
cludes the influence of photon density estimation and Ω′ is also the
extended path space. Bj is bias associated with density estimation
(refer to Appendix A.2 in the supplemental document for details).

To build a path of length M with density estimation at the last
eye vertex zt, we need to have a light subpath with s + 1 =
M + 2 − t vertices ȳs+1 = y1 . . . ys+1, and an eye subpath
z̄t = zt . . . z1. The complete path is given as x̄s+1,t = ȳs+1z̄t =

y1 . . . ys+1zt . . . z1. The subpaths are combined via density esti-
mation using ys+1 and zt, instead of establishing an explicit con-
nection between ys+1 and zt. The overall throughput of this path is

Cde∗
s+1,t(x̄s+1,t) = f ′j(x̄s+1,t)

= CL
s+1(ȳs+1)

·K(ys+1, zt)f(ys → ys+1, zt → zt−1)

· CE
t (z̄t)

(8)

where K is the density estimation kernel, and the light and eye
subpath contributions are defined as Equation 4. The definition of
the probability density is the same as before1:

p
de
s+1,t(x̄s+1,t) =

(
p(y1)

s∏
i=1

p(yi+1|yi)
)(

p(z1)

t−1∏
i=1

p(zi+1|zi)
)
.

(9)
There are three major differences from bidirectional path tracing:

1. To build a path of length M , we need M + 2 vertices rather
than M + 1.

2. The visibility and geometry terms at the connecting edge are
replaced by the density estimation kernel (compare Equa-
tion 4 and Equation 8).

3. Density estimation adds a certain amount of bias, which de-
pends on the density estimation kernel.

Despite these differences, if we focus only on photon density
estimation techniques, it is possible to apply multiple impor-
tance sampling. For example, stochastic progressive photon map-
ping [Hachisuka and Jensen 2009] combines different techniques
based on a binary classification of glossy/non-glossy surfaces. Such
a classification corresponds to having a binary weight for each tech-
nique in multiple importance sampling. Vorba and Křivánek [2011]
provide more detailed definitions on how multiple importance sam-
pling can be used to combine photon density estimation samples.
Therefore, we can still use multiple importance sampling as:

I ′j = E

[
∞∑

M=1

M+2∑
s=0

ws,t(x̄s,t)
Cde∗

s,t (x̄s,t)

pde
s,t(x̄s,t)

]
, (10)

where we have t = M + 2− s.

The more interesting question we have set out to solve is whether
photon density estimation and Monte Carlo path integration can be
similarly combined. Our goal thus is to enable multiple importance
sampling in this combination.

1Note that while the visibility and geometric terms have been substituted
by the density estimation kernel in the path contribution, the kernel affects
only the integrand, not the probability with which the subpaths (and hence
the complete paths) are sampled. Even if range queries can be used to effi-
ciently find the subpaths with non-zero contributions, this does not alter the
way the paths are stochastically sampled in the first place.



2.2 Path Space Extension

We recognized that the main problem for combining photon density
estimation and Monte Carlo path integration is that path samples of
a given lengthM live in spaces of different dimensionality. The rea-
son is that they use different number of vertices to construct a path
of the same length. As we show in Appendix A.2 in the supplemen-
tal document, we can describe this difference by the difference in
measures of their path spaces. For Monte Carlo path integration, the
path space has a product measure proportional to AM+1, whereas
for photon density estimation the corresponding path space which
accounts for the same light transport phenomena has a measure pro-
portional to AM+2.

We resolve this difference by extending the path space of Monte
Carlo path integration by means of a vertex perturbation. Given a
path of length M , obtained by the bidirectional sampling technique
(s, t), we add a new vertex ys+1 generated by a random perturba-
tion of the vertex zt with the probability density equal to the density
estimation kernel K. For example, if the density estimation kernel
is K = π−1r−2 with the support r, then we randomly sample the
disc with the radius r around zt to generate ys+1 (Figure 2). This
perturbation kernel should be the same as the density estimation
kernel in order to consider the same set of paths in all the tech-
niques.

A new extended light subpath is ȳ′s = ȳsys+1 = y1 . . . ysys+1 and
an eye subpath is z̄t = zt . . . z1. The extended complete path is
x̄ = ȳ′sz̄t = y1 . . . ysys+1zt . . . z1, which is in the same form as
the path in photon density estimation. Figure 2 illustrates this idea.

Given this path space extension, the overall throughput of such a
path becomes exactly analogous to that of density estimation (Equa-
tion 8):

Cups∗
s,t (x̄) = f ′j(x̄)

= CL
s+1(ȳ′)

·K(ys+1, zt)f(ys → ys+1, zt → zt−1)

· CE
t (z̄),

(11)

and the probability density follows the same definition as Equa-
tion 9:

p
ups
s,t(x̄) = p(y1)

s−1∏
i=1

p(yi+1|yi)·p(ys+1|ys)·p(z1)

t−1∏
i=1

p(zi+1|zi), (12)

where we defined p(ys+1|ys) = K(ys+1, zt) (i.e., the probability
density function used to generate the random perturbation). We in-
tentionally left out the term p(ys+1|ys) from the product, since we
can describe both Monte Carlo path integration and photon density
estimation by properly defining p(ys+1|ys) (e.g., vertex perturba-
tion of zt to obtain ys+1, or local path sampling of ys+1 from ys).

The combined estimator is defined as:

I ′j = E

[
1∑

u=0

∞∑
M=1

M+2∑
s=0

ws,t,u(x̄s,t,u)
Cups∗

s,t (x̄s,t,u)

pups
s,t(x̄s,t,u)

]
, (13)

where we have t = M + 2 − s. We defined u = 0 to identify
samples generated by path integration with a vertex perturbation
from zt to ys;

x̄s,t,0 = ȳ′s−1z̄t = ȳs−1ysz̄t = ȳsz̄t., (14)

while we defined u = 1 to identify samples generated by photon
density estimation;

x̄s,t,1 = ȳsz̄t. (15)

3 Unified Path Sampling

Using our framework, both (extended) bidirectional path tracing
and photon density estimation sample paths of length M in the
same space with the measure AM+2. For a given kernel K, we
can hence solve the rendering equation using both techniques with
a standard multiple importance sampling weighting strategy such
as the balance heuristic [Veach 1998].

In order to utilize multiple importance sampling, given a sampled
complete path, we need to evaluate the probability densities under
all the other techniques by which the same path could have been
sampled. In our framework, this process involves evaluating prob-
ability densities under both path integral techniques and density es-
timation techniques, regardless how the path was actually sampled.
Equation 12 handles the differences in these two sets of techniques
by the term p(ys+1|ys).

In the following, we explain several practical considerations that
make our framework more useful.

Efficient Reuse of Paths: Instead of sampling a single light
subpath and a single eye subpath at a time, we can sample two fam-
ilies of N light and eye subpaths {ȳi}i=1,...,N and {z̄j}j=1,...,N

and reuse them to generate samples from all techniques. This op-
timization is in a spirit similar to the subpath reuse in the original
formulation of bidirectional path tracing [Veach and Guibas 1994].

For each vertex of each eye subpath z̄j , we evaluate all bidirectional
path tracing connections with a single light path ȳj , and all density
estimation connections with all the N light subpaths {ȳi}i=1,...,N .

We choose this approach since finding all the density estimation
connections with non-zero contributions can be done in sublinear
time using efficient range queries. On the other hand, finding such
bidirectional connections involves shooting expensive shadow rays
and takes O(N) at least. While this change does not affect esti-
mators, it must be reflected in the calculation of the multiple impor-
tance sampling weights by multiplying byN the probability density
of photon density estimation.

Consistent Estimation: Since our estimator is biased, in order
to obtain a consistent estimator, we shrink the support of kernel
K over time as in the spirit of progressive photon density estima-
tion [2008]. For simplicity, we employ the probabilistic formulation
of Knaus and Zwicker [2011] in this step. Note however that our
path space extension is not necessarily tied to the use of a progres-
sive scheme.

One minor issue is that, due to the presence of bias, the optimal-
ity of the balance heuristic does not apply to our framework. The
derivations by Veach [1998] assume that error of the estimator is
solely characterized by variance. However, since the error in bi-
ased estimators is characterized by both bias and variance, having
bounded variance does not necessarily mean that a combined esti-
mator has bounded error2.

In the supplementary document, we show a detailed analysis of the
problem and provide derivations on how bias in photon density es-
timation affects this combination. The end result is simple: in order
to build a consistent estimator with the same asymptotic behavior
as the optimal combination, we should set the alpha parameter for
the radius reduction of progressive density estimation [Hachisuka
et al. 2008] to 2

3
. We use this alpha value to generate all the results

in this paper.

2Bias we consider in this paper is bias due to density estimation, not bias
dues to uncovered sampling domain.



Virtual Perturbations: Once we set to solve the original light
transport equation by using a consistent estimator, we can also ap-
proximate the contribution of an extended bidirectional path by not
actually performing the perturbations to generate paths (i.e., setting
ys+1 = zzt ).

This extra step significantly simplifies the implementation since
generating a new vertex such that it will be consistent with photon
density is challenging in practice. For example, we need to sample
a point on the surface within the support of the same kernel, which
is a 3D kernel project on a potentially complicated surface. Virtual
perturbations avoid this complication under some assumptions as
follows.

Assuming locally uniform radiance distribution as in existing pho-
ton density estimation methods [Jensen 1996; Hachisuka et al.
2008; Knaus and Zwicker 2011] and and a constant kernel K =
π−1r−2, we can prove that the contribution of an extended path in
Monte Carlo path integration is approximately equal to that of the
original Monte Carlo integration.

First, from the definition of the contribution and the probability den-
sity in our extended path space, we have

Cups∗
s+1,t(x̄s+1,t,0)

pups
s+1,t(x̄s+1,t,0)

=
CL

s+1(ȳ′s+1)K(ys+1, zt)f(ys → zt → zt−1)CE
t (z̄t)

p(y1)
∏s−1

i=1 p(yi+1|yi)p(ys+1|ys)p(z1)
∏t−1

i=1 p(zi+1|zi)
.

(16)

Second, since we defined p(ys+1|ys) = K(ys+1, zt),

=
CL

s+1(ȳ′s+1)(((((K(ys+1, zt)f(ys → zt → zt−1)CE
t (z̄t)

p(y1)
∏s−1

i=1 p(yi+1|yi)(((((K(ys+1, zt)p(z1)
∏t−1

i=1 p(zi+1|zi)

=
CL

s+1(ȳ′s+1)f(ys → zt → zt−1)CE
t (z̄t)

p(y1)
∏s−1

i=1 p(yi+1|yi)p(z1)
∏t−1

i=1 p(zi+1|zi)
.

(17)

Finally, we expand the last term in the product in CL
s+1(ȳ′). We

then use the facts that we added a new vertex ys+1 by a random
perturbation of the vertex zt and these vertices are interchangeable
if the radiance distribution is locally uniform around zt;

=
CL

s (ȳs)fs(ys−1 → ys → ys+1)G(ys, ys+1)f(ys → zt → zt−1)CE
t (z̄t)

p(y1)
∏s−1

i=1 p(yi+1|yi)p(z1)
∏t−1

i=1 p(zi+1|zi)

=
CL

s (ȳs)fs(ys−1 → ys → zt)G(ys, zt)f(ys → zt → zt−1)CE
t (z̄t)

p(y1)
∏s−1

i=1 p(yi+1|yi)p(z1)
∏t−1

i=1 p(zi+1|zi)

=
Cmc∗

s,t (x̄s,t)

pmc
s,t(x̄s,t)

. (18)

Therefore, the extended Monte Carlo path integration returns the
same contribution as the original Monte Carlo path integration if
we use p(ys+1|ys) = K(ys+1, zt) and the radiance distribution
is locally constant around zt. Note that our path space extension
defines exactly the same contribution and the probability density
for density estimation.

Even though virtual perturbations are approximations, as long as
vertex perturbation is considered in the weights computation (which
in turn uses the probability densities), the resulting estimator re-
mains both consistent and scale invariant.

Evaluation of Probability Densities: Given a path of length
M , we have the following four cases which we evaluate probability
densities under different techniques:

1. The path has M + 1 vertices via path integration, and we
evaluate a probability density under extended path integration.

We make the corresponding bidirectional connection, add a
vertex with vertex perturbation, and evaluate the probability
density in our unified definition.

2. The path has M + 1 vertices via path integration, and we
evaluate a probability density for under density estimation.

We first add a vertex with vertex perturbation at the location
of density estimation, and evaluate the probability density in
our unified definition.

3. The path has M + 2 vertices via density estimation, and we
evaluate a probability density under extended path integration.

4. The path has M + 2 vertices via density estimation, and we
evaluate a probability density under density estimation.

In these two cases, we consider the corresponding path with
extended path integration. Since the corresponding path has
M + 1, the rest is the same as the case 1 (= case 3) and the
case 2 (= case 4).

Invalid Sampling Techniques: Given a path length M and the
kernel K, Equation 13 defines M + 3 techniques for both extended
path integration and density estimation. However, not all tech-
niques are valid. For the following invalid techniques, we simply
set their probability densities and the corresponding weight to zero:

• s = 0 or t = 0 for density estimation, since density estima-
tion needs at least one vertex for each subpath.

• t = 0 for extended path integration, since vertex perturbation
needs at least one vertex for an eye subpath.

We thus haveM+2 valid techniques for path integration andM+1
valid techniques for density estimation.

4 Implementation

Figure 3 shows pseudocode of our implementation. We imple-
mented paths reuse by sampling and storing the sets of eye and light
subpaths into the EyePaths and LightPaths buffers. The number of
samples N in each set of subpaths is set to be equal to the number
of pixels in the image NumPixels. Our theory does not require us to
do so, however, we have found that this number of subpaths makes
the implementation compatible with a typical implementation of
bidirectional path tracing as we describe later.

The sampling procedures GENEYEPATH() and GENLIGHTPATH()
are exactly the same as the ones for bidirectional path tracing. We
then build a photon map over all the light vertices by BUILDPM()
for efficient range queries. In our implementation, we used a spa-
tial grid as an acceleration data structure, but it is possible to use
different data structures such as a kD-tree.

procedure RENDERING(Scene,Camera, Image,N itr)
for all Pixels(i, j)

do
{

EyePaths(i, j)← GENEYEPATH(Scene,Camera, i, j)
LightPaths(i, j)← GENLIGHTPATH(Scene)

BUILDPM(LightPaths)
DERadius← CALCRADIUS(α,N itr)
for all Pixels(i, j)

do COMBINEPATHS(EyePaths, LightPaths, i, j)

procedure COMBINEPATHS(EyePaths, LightPaths, i, j)
Ceye ← CONNECTEYE(EyePaths(i, j), LightPaths(i, j))
CONNECTLT(LightImage, EyePaths(i, j).V[0], LightPaths(i, j))
Cde ← CONNECTDE(EyePaths(i, j), LightPaths)
EyeImage(i, j)← EyeImage(i, j) + Ceye + Cde/NumPixels

Figure 3: Pseudocode for our framework.
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pling techniques for Monte Carlo path integration connect each eye
subpath with one light subpath (center), whereas sampling tech-
niques for photon density estimation connect each subpath with
all the light subpaths (right). Contributions of complete paths are
weighted according to a multiple importance sampling strategy.
L1, L2, L3 and E1, E2, E3 are labels of the paths.

4.1 Subpath Connections

We have three connection procedures that need to be implemented
separately. Each procedure generates samples from a different sam-
pling technique by reusing sampled sets of subpaths in EyePaths
and LightPaths. Figure 4 illustrates our connection procedures for
paths of length two.

Bidirectional path tracing techniques with t 6= 1:
CONNECTEYE() connects the given eye path using at least two
vertices and the light path by tracing shadow rays between vertices.

This is the same procedure as bidirectional path tracing, except that
the weight computation is extended to include photon density esti-
mation. We also optimized this part by not performing vertex per-
turbation in the sampling procedure.

Bidirectional path tracing techniques with t = 1:
CONNECTLT() connects the first eye vertex and all the vertices in
the light path via shadow rays.

This procedure is separated CONNECTEYE() since it accumulates
contributions to a separate image buffer (LightImage). This sep-
aration is also used as the light tracing part of bidirectional path
tracing [Veach 1998].

Photon density estimation techniques:
CONNECTDE() connects the given eye path and all the light paths
by range queries. This procedure performs a range query at each
eye vertex, not just only at the end of the eye path.

The contribution is divided by NumPixels, which is necessary for
correctly taking into account the fact that we attempt to connect all
the NumPixels light subpaths to each eye subpath. We also need
to take this factor into account in the weight computation as we
describe below.

4.2 Weight Computation

Figure 5 shows the computation of weights for each complete path.
Each connection procedure internally calls BALANCEHEURISTIC()
in order to properly weight the contribution of each sample. Inside
this procedure, we call the evaluation procedure of the probability
density function based on the definition in Section 2 and the strategy
described in Section 3.

The boolean value given to PDF UPS is true if we are consider-
ing the probability density function for extended path integration.
This boolean value is used for switching how to handle the term
p(ys+1|ys) as we described in Section 2.2. NumPixels is multi-
plied to the probability density function of photon density estima-
tion in order to properly account for the difference in the number of
samples between bidirectional connections and density estimation
connections.

procedure BALANCEHEURISTIC(Path, NE , NL)

PDF Sum← 0

for s← 0 to Length(Path) + 2

do



t← Length(Path) + 2− s
PDF MC← PDF UPS(Path, s, t, true )

PDF DE← PDF UPS(Path, s, t, false ) ∗ NumPixels
if (t = NE & s = NL) PDF Path← PDF MC
if (t = NE & (s+ 1) = NL) PDF Path← PDF DE
PDF Sum← PDF Sum + PDF MC + PDF DE

return (PDF Path/PDF Sum)

Figure 5: Pseudocode for weight computation.

4.3 Compatibilities with Other Rendering Methods

Our framework subsumes implementations of multiple render-
ing methods. If one would like to use bidirectional path trac-
ing, we just need to disable the connection by density estimation
(CONNECTDE()) and also disable the corresponding probability
density evaluation inside BALANCEHEURISTIC(). Likewise, our
framework can be converted into (bidirectional) path tracing, light
tracing, (progressive) photon mapping, and stochastic progressive
photon mapping just by limiting a set of sampling techniques.

5 Results
We implemented bidirectional path tracing (BPT) [Veach and
Guibas 1995], progressive photon mapping (PPM) [Hachisuka et al.
2008], stochastic progressive photon mapping (SPPM) [Hachisuka
and Jensen 2009], and our unified path sampling (UPS) using the
same rendering system. We will release an example implementa-
tion of our framework.

Our theoretical framework supports different radius per pixel, how-
ever, we chose to use a global radius for all the photon density es-
timation for simplicity and picked the initial radius by hand. The
reference solution to Figure 8 was rendered by BPT and others were
rendered by SPPM with manual classifications of specular/non-
specular materials for glossy reflections.

We ran all the experiments on an Intel Core i7-2600 at 3.40 GHz
with a single thread. The resolution of the images are either
512 × 512 or 640 × 480. We left the images intentionally uncon-
verged to ease comparisons of computation errors. Table 2 sum-
marizes the total average number of samples per pixel in our test
cases. Overall, we have found that unified path sampling can take
more samples than bidirectional path tracing by counting a com-
plete path as one sample (e.g., a single BPT sample will result in
multiple complete samples). This is because connections via pho-



ton density estimation are computationally less costly than connec-
tions via local path sampling in our implementation.

Figure 1 highlights the advantage of our method in a realistic il-
lumination setting for interior design. We have modeled realistic
lighting fixtures with emitters and reflectors. The dominant illumi-
nation is due to caustics as is the case in many lighting fixtures of
the real world. Bidirectional path tracing, which is labeled as Monte
Carlo path integration, is efficient at computing some contributions
from glossy reflections, yet indirectly visible caustics exhibit sig-
nificant amount of noise (e.g., caustics seen through water in the
bathtub). Progressive photon mapping, which is labeled as photon
density estimation, handles such caustics and reflections of caus-
tics robustly, but a sharp BRDF lobe of the highly glossy material
becomes a source of noise. Our unified framework combines the
strength of each method under a single framework without any user
intervention, and produces a more accurate solution in the same
rendering time.

The graph in Figure 6 shows the convergence of the RMS (Root
Mean Square) errors of the same scene with different methods. This
graph uses the equal number of samples. This comparison is in
favor of bidirectional path tracing in our implementation since Ta-
ble 2 concludes that bidirectional path tracing is the most computa-
tionally costly method per sample. Even under such a comparison,
the graph confirms that our method provides an order of magnitude
more accurate solution than both methods for the same number of
samples.

Figure 7 compares all of the rendering methods in our tests for an-
other scene using the same rendering time. This scene also fea-
tures highly glossy reflections, which are difficult to capture effi-
ciently with photon density estimation, and indirectly visible caus-
tics, which are difficult to capture efficiently with Monte Carlo
path integration. This comparison includes SPPM that already
demonstrated efficient rendering of glossy reflections by tracing one
bounce ray from a visible point through each pixel [Hachisuka and
Jensen 2009]. One issue of this approach is that whether we trace
such rays or not is based on a heuristic classification of diffuse/non-
diffuse materials. Our unified path sampling framework avoids in-
troducing such a heuristic and combines all the possible techniques
with a provably good strategy. Note also that diffuse direct illumi-
nation is significantly less noisy with our unified path sampling.

Figure 8 shows another equal-time comparison with bidirectional
path tracing for a scene that has only diffuse materials. This scene
does not feature any light transport that is particularly challenging
for bidirectional path tracing. Even in such a scene configuration,
our unified path sampling is still comparable to bidirectional path
tracing since our framework subsumes bidirectional path tracing.

We emphasize that photon density estimation is important in many
real-world scenarios. Figure 9 highlights such a case, where we
have two light sources; a blue diffuse area light source, and a yel-
low diffuse area light source enclosed by a metal tube and a lens.
The only difference between these two light sources is whether they
are modeled after a realistic lighting fixture or a bare emitter. The
blue light source directly illuminates the scene, while the yellow
light source illuminates the scene via caustics just like many light-
ing fixtures in the real world. Our unified path sampling algorithm
puts higher weight for Monte Carlo path integration techniques for
illumination from the blue light source and photon density estima-
tion techniques for illumination from the yellow light source.

Figure 10 visualizes relative contributions from each set of sam-
pling techniques. Note that density estimation has relatively large
contribution in this scene configuration. This is a provably good
combination predicted by our theory, and photon density estima-
tion indeed captures a significant portion of overall illumination.

Figure 11 shows sequences of rendered images of a simple scene
where we have a Cornell box with a glossy box and a glass box
with a small diffuse area light source. Despite its relatively sim-
ple configuration, bidirectional path tracing and progressive photon
mapping already show their inefficiency at capturing certain light
paths. The result shows the advantage of our unified framework
even in this simple scene. Since our method captures all the fea-
tures equally well, it is also possible to quickly identify overall il-
lumination in the scene only after a few samples.

Scene BPT PPM SPPM UPS Time [min]
Bathroom 1396 9494 5313 2085 240
Buddha 38 205 112 72 10

Conference 120 799 475 237 30
Cornell 264 1838 679 484 32
Torus 448 2438 1508 738 60

Treasures 367 1386 1184 618 120

Table 2: Statistics of our experiments. The numbers in the column
of each method (BPT: Bidirectional Path Tracing, PPM: Progres-
sive Photon Mapping, SPPM: Stochastic Progressive Photon Map-
ping, and UPS: Unified Path Sampling) show the average numbers
of samples per pixel. The average numbers of samples per pixel
per minute over our test cases are 5.33 (BPT), 32.51 (PPM), 17.41
(SPPM), and 9.71 (UPS).
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Figure 6: RMS errors of the bathroom scene using the same aver-
age number of samples per pixel. We used equal number of samples
as a comparison in this graph, favoring bidirectional path tracing
as each sample of bidirectional path tracing takes more computa-
tion time in our implementation.

6 Discussion

A number of researchers have explored applications of multiple im-
portance sampling in the context of regular (not progressive) pho-
ton mapping. Bekaert et al. proposed a combination of the regu-
lar photon density estimation using multiple importance sampling
in the context of their modified photon density estimator [2003].
Due to their connection kernel formulation, their framework can-
not handle caustics from specular materials; our method efficiently
handles those. Vorba and Křivánek [2011] described how multiple
importance sampling can be used to combine only photon density
estimation techniques. Unlike their approach, our method does not
limit the combinations only to photon density estimation, but pro-
vides full combinations of Monte Carlo path integration and photon
density estimation.

One concurrent work is vertex merging by Georgiev et al. [2011]
which is an extension of SPPM based on multiple importance sam-
pling. In the follow up work, Georgiev et al. [2012] reformulated
BPT and (S)PPM as two families of sampling techniques via vertex



BPT PPM SPPM UPS
0.05003 0.05934 0.03324 0.02285RMSE
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Figure 7: Scene features high geometric complexity and illumination complexity. The scene has glass plates and coins and a crown with
glossy metal illuminated by a small diffuse light source. The image on the left is rendered by our framework (UPS). The close-ups show parts
of the images rendered by various methods using the same rendering time (120 min). Bidirectional path tracing (BPT) cannot efficiently
render caustics seeing through glass, while glossy reflections are relatively less noisy. Progressive photon mapping (PPM) captures such
indirectly visible caustics, but produces noisy results for glossy reflections. Stochastic progressive photon mapping (SPPM) captures all the
illumination features reasonably well, but direct illumination is relatively noisy. Our framework (UPS) takes the best of all three approaches
and captures all the illumination features efficiently.

Bidirectional path tracing Unified path sampling
RMS Error: 0.02152 RMS Error: 0.02255

Figure 8: Conference room with diffuse surfaces and a large dif-
fuse light sources. For this type of scenes, our method (unified path
sampling) performs almost as well as bidirectional path tracing
since the contribution of Monte Carlo path integration automati-
cally dominates the final image.

connections by shadow rays and vertex merging. This reformula-
tion in fact results in the same algorithm as ours. One can think of
their formulation as an alternative to our unified path space exten-
sion which uses vertex merging as a mean of contraction of the path
space. Our theoretical contributions however are not exactly over-
lapping. In terms of theoretical contributions, we focus on analysis
of MIS for a general combination of unbiased estimators and (not
necessarily progressive) biased estimators, whereas their analysis
provides more details on the asymptotic behavior of the combina-
tion of BPT and (S)PPM.

6.1 Limitations

The form of combinations that we explored in this paper is a
weighted sum of different sampling techniques. However, this form
is not the only way to combine different sampling techniques, and
it is possible that we have a more efficient form of combinations.
For example, it may be possible to develop an entirely new sam-

MC Path Integration Density Estimation

Figure 10: Visualization of weight for each set of sampling tech-
niques in Figure 9. The images show the ratio of summed weights
of all the paths from each set.

pling technique based on our extended formulation. Although the
results demonstrate that our combined technique works better than
using one of the techniques alone, we certainly do not claim that our
combination of path integration and density estimation is optimal.

We also emphasize that our goal in this paper is not improving ef-
ficiency of each individual sampling technique, but finding a better
combination by introducing a new set of sampling techniques. This
separation also means that our algorithm can still be inefficient if
neither Monte Carlo path integration nor photon density estimation
performs well for a given path. The rendered images within the red
boxes in Figure 7 indeed reveal one such example. Glossy reflec-
tions of caustics due to the glass plate on the coins are noisy in all
the images including the image with our method. Such paths of
light are fundamentally difficult to sample efficiently even with our
unified framework. One potential solution is to investigate incor-
porating advanced sampling methods such as Markov Chain Monte
Carlo sampling [Veach and Guibas 1997; Hachisuka and Jensen
2011; Jakob and Marschner 2012] into our framework.
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Figure 9: Weighted contribution of Monte Carlo path integration and photon density estimation within our unified path sampling framework.
The scene has a Buddha statue with glossy reflections, and two small light sources with different colors (blue and yellow) where the yellow
one is enclosed by a metal tube and a lens. The images show computed illumination due to Monte Carlo path integration (left, equivalent
to techniques used in bidirectional path tracing), photon density estimation (center, equivalent to techniques used in progressive photon
mapping), and the combined result (right). Each approach covers a different component of illumination based on our unified definition of
probability density functions of paths.

We would also like to point out that implementing our framework
can be challenging as it subsumes both bidirectional path tracing
and photon density estimation. This means that the engineering
effort of implementing our framework is at least equivalent to the
engineering effort of implementing those two approaches in total.
Likewise, an efficient parallel implementation of our framework
might be challenging since this was at least the case for bidirec-
tional path tracing [van Antwerpen 2011].

7 Conclusion

We have presented a new sampling framework for light transport al-
gorithms that combines unbiased Monte Carlo path integration and
photon density estimation based on multiple importance sampling.
The key idea is to extend the space of Monte Carlo path integra-
tion by introducing perturbation of path vertices. This extension
provides a unified view of the sampling spaces, and serves as a the-
oretical foundation for the application of multiple importance sam-
pling to this combination of two different light transport simulation
approaches. We have demonstrated the improved robustness and
efficiency of the resulting algorithm in comparison to bidirectional
path tracing and progressive photon mapping.

We believe that our unified path sampling framework will find many
practical applications for photorealistic image synthesis, and also
lead to further development of robust light transport simulation
methods to handle all kinds of illumination. Future work includes
a combination with advanced sampling techniques such as Markov
chain Monte Carlo sampling.
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