
Secrets of Parthenon Renderer

Toshiya Hachisuka	
!

The University of Tokyo

Disclaimer

Not all of my observations are fully validated by scientific
experiments, though they are based on my experience.	

!

Take them with a grain of salt!

Many images are removed from the original slides due to copyrights.

15 years ago...

GPUs in 2002 ⇒ 2017

• More complex operations (64 inst. ⇒ 64K inst.)	

• Faster computation (30G FLOPS ⇒ 3T FLOPS)

What is “Parthenon Renderer”?

• CPU/GPU combined offline rendering system	

• Released in 2002 (= the rise of the GPGPU era)	

• Publicly and commercially available back then

What is “Parthenon Renderer”?

Pentium4 2.7 GHz & Radeon 9700 Pro

What is “Parthenon Renderer”?

Why now?

!

!

• Examples of how techniques become (non) obsolete	

• High-ends in 2002 are low-ends in 2017	

• Hopefully useful to predict the future

System Overview

How Parthenon Works

!

!

• Photon mapping + Final Gathering	

• Mapping computation to rasterization units	

• Asynchronous computation with CPU and GPU

How Parthenon Works

!

!

• Photon mapping + Final Gathering	

• Mapping computation to rasterization units	

• Asynchronous computation with CPU and GPU

Photon Mapping

Photon Mapping

Photon Mapping

Photon Mapping

Photon Mapping

Photon Mapping + Final Gathering

• “Clean” the rough solution

Photon Mapping Photon Mapping + FG

Photon Mapping + Final Gathering

Photon Mapping + Final Gathering

Photon Mapping + Final Gathering

Observations

!

• Algorithmic complexity	

• Computation cost

Observations - Complexity

!

• Final gathering is a simple process	

• Sample rays over the hemisphere  

• Photon mapping is a complex process	

• Sampling light sources and BRDFs, kNN search

Observations - Cost

• Photon mapping is cheap, but final gathering is not

Scene 1

Scene 2

Scene 3

Number of Rays

0 32000000 64000000 96000000 128000000 160000000

Photon Mapping Ray Tracing Final Gathering

Main Idea

!

• CPU (in 2002)	

• Good at complex tasks but slow	

!

• GPU (in 2002)	

• Good at simple tasks but fast

Main Idea

!

• CPU (in 2002)	

• Photon mapping and ray tracing	

!

• GPU (in 2002)	

• Final gathering

Does this make sense today?

• GPU ray tracing is practical today	

• Should be able to do everything on GPU today	

• Only if you have a good GPU

Solution for Low-end GPUs

• Not everyone has high-end GPUs	

• GeForce GTX 580 ≈ 1.5T FLOPS 	

• GeForce GT 520 ≈ 150G FLOPS

Solution for Low-end GPUs

• Not everyone has high-end GPUs	

• Radeon 9800 XT ≈ 50G FLOPS (in 2002)	

• GeForce GT 520 ≈ 150G FLOPS

Solution for Low-end GPUs

• Some rough estimates	

• 100M rays/sec on GPU  
10M rays/sec on a single CPU core	

• 1.5T FLOPS (10x faster than a single CPU core)  
150G FLOPS (as fast as a single CPU core)

Solution for Low-end GPUs

Low-end GPUs in 2017  
≈  

High-end GPUs in 2002  
≈	

Single core of CPUs in 2017

How Parthenon Works

!

!

• Photon mapping + Final Gathering	

• Mapping computation to rasterization units	

• Asynchronous computation with CPU and GPU

Precomputation

• Store the result of photon mapping into a mesh	

• Similar to light maps computation	

• Directional info encoded by SH coefficients

Grouping by Position

Grouping by Position

Grouping by Position

Grouping by Position

Grouping by Position

Grouping by Position

• Map the FG process on rendering cube maps

Grouping by Position

• Map the FG process on rendering cube maps

Face 2

Face 1 Face 3

Grouping by Position

!

• Too many rasterizations of the scene	

• Number of final gathering points  
= Number of pixels  
= Number of rasterization passes 
= O(1M)	

!

• Recent research use this with many approximations

Grouping by Direction

Grouping by Direction

Grouping by Direction

!

!

• Ray bundle [Szirmay-Kalos and Purgathofer 1998]	

• Can be mapped into a parallel projection

Parallel  
Projection

Parallel  
Projection

Parallel  
Projection

Grouping by Direction

• Significantly fewer rasterizations of the scene	

• Number of final gathering directions 
= Number of final gathering samples  
= Number of rasterization passes 
= O(100) << O(1M)	

!

• More details in GPU Gems 2

Performance in 2002

Grouping by Position

Grouping by Direction

CPU ray tracing

GPU ray tracing

Number of Samples per second [K samples / sec]

0 1750 3500 5250 7000

Performance in 2017

Grouping by Position

Grouping by Direction

CPU ray tracing

GPU ray tracing

Number of Samples per second [M samples / sec]

0 30 60 90 120

Performance in 2017

Grouping by Position

Grouping by Direction

CPU ray tracing

GPU ray tracing

Number of Samples per second [M samples / sec]

0 30 60 90 120

With Approximations

Optimized

Static Scenes

Does this make sense today?

Grouping by Position

Grouping by Direction

CPU ray tracing

GPU ray tracing

Number of Samples per second [M samples / sec]

0 30 60 90 120

How Parthenon Works

!

!

• Photon mapping + Final Gathering	

• Mapping computation to rasterization units	

• Asynchronous computation with CPU and GPU

Main Idea

!

• CPU	

• Photon mapping and ray tracing	

!

• GPU	

• Final gathering

Main Idea

!

• CPU	

• Photon mapping and ray tracing	

!

• GPU	

• Final gathering

Do both at the same time

Asynchronous Computation

CPU

GPU

Asynchronous Computation

CPU

GPU

Photon Mapping

Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing

Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing

FG

Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing

FGFG

Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing

FG FG FG FG FGFG

Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing

FG FG FG FG FG

Sync

FG

Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing Ray tracing

FG FG FG FG FG

Sync

FG FG FG FGFG

Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing Ray tracing

FG FG FG FG FG

Sync

FG FG FG FGFG

Sync

Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing Ray tracing

FG FG FG FG FG

Sync

FG FG FG FGFG

Sync

Ray tracing

FGFG

Does this make sense today?

!

• Final gathering typically needs far more samples	

• 40 FG samples ≈ 1 RT sample (in 2002)

Does this make sense today?

!

• Final gathering typically needs far more samples	

• 40 FG samples ≈ 1 RT sample (in 2002)	

• 400 FG samples ≈ 1 RT sample (in 2017)

Photon Mapping Ray tracing Ray tracingSync

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

F
G

Some Other Details

• Utilizes shadow mapping units	

• Direct illumination and 1st photon trace	

• Fake caustics 

• Über shader (i.e., single shader handles all materials)	

• No choice in 2002	

• Still compromised choice today for some systems

Closing Remarks

In retrospect ...

• Testing for many GPUs was painful	

• Parthenon runs on both Radeon and GeForce	

• Only solution for testing is to actually run	

• Checking specs do not help in the end, you know  

• Still true today	

• Worse in my opinion since GPUs are everywhere

In retrospect ...

• Heterogeneous computation was painful	

• Power balance of CPU and GPU has changed a lot	

• Managing duplicated codes for CPU and GPU 

• Maybe still true today	

• OpenCL can be a solution if it works as designed

In retrospect ...

• Going to the right direction of GPU rendering	

• but too early - users were not ready	

• and too immature - technology was not there	

!

• Still somewhat true today, but much better	

• People recognized well what GPUs can do	

• Virtually anything on CPUs can be done on GPUs

Summary

• Parthenon Renderer	

• One of the first GPU rendering systems	

• Many choices are out-of-date, but not all of them	

• Some remarks	

• Heterogeneous computing might not be a good idea	

• Supporting different GPUs can still be painful	

• Old techniques for high-ends can be  
useful and practical for low-ends now

