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Disclaimer

Not all of my observations are fully validated by scientific 
experiments, though they are based on my experience.	

!

Take them with a grain of salt!

Many images are removed from the original slides due to copyrights.



15 years ago...



GPUs in 2002 ⇒ 2017

• More complex operations (64 inst.  ⇒ 64K inst.)	

• Faster computation (30G FLOPS ⇒ 3T FLOPS)



What is “Parthenon Renderer”?

• CPU/GPU combined offline rendering system	

• Released in 2002 (= the rise of the GPGPU era)	

• Publicly and commercially available back then



What is “Parthenon Renderer”?

Pentium4 2.7 GHz & Radeon 9700 Pro



What is “Parthenon Renderer”?



Why now?

!

!

• Examples of how techniques become (non) obsolete	

• High-ends in 2002 are low-ends in 2017	

• Hopefully useful to predict the future



System Overview



How Parthenon Works

!

!

• Photon mapping + Final Gathering	

• Mapping computation to rasterization units	

• Asynchronous computation with CPU and GPU
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Photon Mapping



Photon Mapping



Photon Mapping



Photon Mapping



Photon Mapping



Photon Mapping + Final Gathering

• “Clean” the rough solution

Photon Mapping Photon Mapping + FG



Photon Mapping + Final Gathering



Photon Mapping + Final Gathering



Photon Mapping + Final Gathering



Observations

!

• Algorithmic complexity	

• Computation cost



Observations - Complexity

!

• Final gathering is a simple process	

• Sample rays over the hemisphere  

• Photon mapping is a complex process	

• Sampling light sources and BRDFs, kNN search



Observations - Cost

• Photon mapping is cheap,  but final gathering is not

Scene 1

Scene 2

Scene 3

Number of Rays

0 32000000 64000000 96000000 128000000 160000000

Photon Mapping Ray Tracing Final Gathering



Main Idea

!

• CPU (in 2002)	

• Good at complex tasks but slow	

!

• GPU (in 2002)	

• Good at simple tasks but fast



Main Idea

!

• CPU (in 2002)	

• Photon mapping and ray tracing	

!

• GPU (in 2002)	

• Final gathering



Does this make sense today?

• GPU ray tracing is practical today	

• Should be able to do everything on GPU today	

• Only if you have a good GPU



Solution for Low-end GPUs

• Not everyone has high-end GPUs	

• GeForce GTX 580 ≈ 1.5T FLOPS 	

• GeForce GT 520 ≈ 150G FLOPS



Solution for Low-end GPUs

• Not everyone has high-end GPUs	

• Radeon 9800 XT ≈ 50G FLOPS (in 2002)	

• GeForce GT 520 ≈ 150G FLOPS



Solution for Low-end GPUs

• Some rough estimates	

• 100M rays/sec on GPU  
10M rays/sec on a single CPU core	

• 1.5T FLOPS (10x faster than a single CPU core)  
150G FLOPS (as fast as a single CPU core)



Solution for Low-end GPUs

Low-end GPUs in 2017  
≈  

High-end GPUs in 2002  
≈	

Single core of CPUs in 2017 



How Parthenon Works

!

!

• Photon mapping + Final Gathering	

• Mapping computation to rasterization units	

• Asynchronous computation with CPU and GPU



Precomputation

• Store the result of photon mapping into a mesh	

• Similar to light maps computation	

• Directional info encoded by SH coefficients







Grouping by Position



Grouping by Position



Grouping by Position



Grouping by Position



Grouping by Position



Grouping by Position

• Map the FG process on rendering cube maps



Grouping by Position

• Map the FG process on rendering cube maps

Face 2

Face 1 Face 3



Grouping by Position

!

• Too many rasterizations of the scene	

• Number of final gathering points  
= Number of pixels  
= Number of rasterization passes 
= O(1M)	

!

• Recent research use this with many approximations





Grouping by Direction



Grouping by Direction



Grouping by Direction

!

!

• Ray bundle [Szirmay-Kalos and Purgathofer 1998]	

• Can be mapped into a parallel projection







Parallel  
Projection



Parallel  
Projection



Parallel  
Projection



Grouping by Direction

• Significantly fewer rasterizations of the scene	

• Number of final gathering directions 
= Number of final gathering samples  
= Number of rasterization passes 
= O(100) << O(1M)	

!

• More details in GPU Gems 2



Performance in 2002

Grouping by Position

Grouping by Direction

CPU ray tracing

GPU ray tracing

Number of Samples per second [K samples / sec]

0 1750 3500 5250 7000



Performance in 2017

Grouping by Position

Grouping by Direction

CPU ray tracing

GPU ray tracing

Number of Samples per second [M samples / sec]

0 30 60 90 120



Performance in 2017

Grouping by Position

Grouping by Direction

CPU ray tracing

GPU ray tracing

Number of Samples per second [M samples / sec]

0 30 60 90 120

With Approximations

Optimized

Static Scenes



Does this make sense today?

Grouping by Position

Grouping by Direction

CPU ray tracing

GPU ray tracing

Number of Samples per second [M samples / sec]

0 30 60 90 120



How Parthenon Works

!

!

• Photon mapping + Final Gathering	

• Mapping computation to rasterization units	

• Asynchronous computation with CPU and GPU



Main Idea
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• CPU	

• Photon mapping and ray tracing	

!

• GPU	

• Final gathering



Main Idea
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• CPU	

• Photon mapping and ray tracing	

!

• GPU	

• Final gathering

Do both at the same time



Asynchronous Computation

CPU

GPU



Asynchronous Computation

CPU

GPU

Photon Mapping
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Asynchronous Computation
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Asynchronous Computation

CPU

GPU

Photon Mapping Ray tracing Ray tracing

FG FG FG FG FG

Sync

FG FG FG FGFG

Sync

Ray tracing

FGFG



Does this make sense today?

!

• Final gathering typically needs far more samples	

• 40 FG samples ≈ 1 RT sample (in 2002)



Does this make sense today?

!

• Final gathering typically needs far more samples	

• 40 FG samples ≈ 1 RT sample (in 2002)	

• 400 FG samples ≈ 1 RT sample (in 2017)

Photon Mapping Ray tracing Ray tracingSync
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Some Other Details

• Utilizes shadow mapping units	

• Direct illumination and 1st photon trace	

• Fake caustics 

• Über shader (i.e., single shader handles all materials)	

• No choice in 2002	

• Still compromised choice today for some systems



Closing Remarks



In retrospect ...

• Testing for many GPUs was painful	

• Parthenon runs on both Radeon and GeForce	

• Only solution for testing is to actually run	

• Checking specs do not help in the end, you know  

• Still true today	

• Worse in my opinion since GPUs are everywhere



In retrospect ...

• Heterogeneous computation was painful	

• Power balance of CPU and GPU has changed a lot	

• Managing duplicated codes for CPU and GPU 

• Maybe still true today	

• OpenCL can be a solution if it works as designed



In retrospect ...

• Going to the right direction of GPU rendering	

• but too early - users were not ready	

• and too immature - technology was not there	

!

• Still somewhat true today, but much better	

• People recognized well what GPUs can do	

• Virtually anything on CPUs can be done on GPUs



Summary

• Parthenon Renderer	

• One of the first GPU rendering systems	

• Many choices are out-of-date, but not all of them	

• Some remarks	

• Heterogeneous computing might not be a good idea	

• Supporting different GPUs can still be painful	

• Old techniques for high-ends can be  
useful and practical for low-ends now


