
Implementing a practical
rendering system using GLSL

Toshiya Hachisuka 

University of Tokyo

Tokyo Demo Fest 2015

Aim of this seminar
2

Sharing my experience of writing a practical  
rendering system on a GPU only with GLSL

Approx. 100M photon paths in 1 min @ GeForce GTX 680

Disclaimer

Not all of my comments in this seminar  
are fully validated by scientific experiments. 

 
Take them with a grain of salt!

3

Why GLSL?
• Cross-platform (both OS and GPU)

• Battle-tested

• Easy to write

• Automatic support for multiple GPUs

4

Why GLSL?
• Cross-platform (both OS and GPU)

• Battle-tested

• Easy to write

• Automatic support for multiple GPUs

• Fun

5

Key features
• Bounding volume hierarchy (BVH)

• Efficient ray tracing of lots of objects

• Triangles only

• Stochastic progressive photon mapping (SPPM)

• Physically accurate global illumination

• Textures and basic materials

6

Bounding volume hierarchy
• In a practical system, we have lots of triangles

• Data structure to avoid touching every triangle

7

Bounding volume hierarchy
• In a practical system, we have lots of triangles

• Data structure to avoid touching every triangle

8

Bounding volume hierarchy
• In a practical system, we have lots of triangles

• Data structure to avoid touching every triangle

9

Bounding volume hierarchy
• In a practical system, we have lots of triangles

• Data structure to avoid touching every triangle

10

Bounding volume hierarchy
• In a practical system, we have lots of triangles

• Data structure to avoid touching every triangle

11

Stochastic PPM
• Global illumination algorithm developed by myself

• Consists of three steps

• Photon tracing

• Eye ray tracing

• Density estimation

12

"Stochastic Progressive Photon Mapping” T. Hachisuka and H. W. Jensen
ACM Transactions on Graphics (SIGGRAPH Asia 2009)

Stochastic PPM
13

light source

film

Stochastic PPM
14

Stochastic PPM
15

Photon tracing

Stochastic PPM
16

Stochastic PPM
17

Eye ray tracing

Stochastic PPM
18

Stochastic PPM
19

Density estimation

20

Build BVH Photon tracing Density estimationEye ray tracing

CPU GPU

Design principles
• Make all the tasks in rendering to

• Have a high degree of parallelism

• Have a uniform workload distribution

• Use no local memory 
 
… so that they run efficiently on GPUs

• I did not aim for a “production-quality” system

21

Bounding Volume Hierarchy

Challenges
!

• Standard BVH traversal uses stack

• Stack is implemented via local memory on GPUs

• Contradicts with the design principles!

23

Challenges
!

• Standard BVH traversal uses stack

• Stack is implemented via local memory on GPUs

• Contradicts with the design principles!

24

We want stackless traversal!

Why stackless?
• Modern GPUs can do stack-based traversal [Aila 09]

• Straightforward to implement

• Efficient (due to dynamic traversal order)

25

Why bother implementing stackless traversal?

Why stackless?
 Size of local memory can limit the parallelism  

• Modern GPUs have around 32kB local memory

• Stack-based traversal consumes around 512 B  
 
 32kB / 512 B = 64 rays in parallel

26

Threaded BVH
• Precompute “hit” and “miss” links

• Also known as skip pointers [Smits 98]  

• Allows stackless traversal

• Order of traversal of child nodes is fixed

27

Threaded BVH
28

0

1 4

2 3 5 6

Threaded BVH
29

0

1 4

2 3 5 6

Hit links

Threaded BVH
30

0

1 4

2 3 5 6

Miss links

Terminal

Threaded BVH
31

0

1 4

2 3 5 6

Threaded BVH
32

0

1 4

2 3 5 6

Terminal

Threaded BVH
33

0

1 4

2 3 5 6

Terminal

Don’t need to store the original tree!

Hit and miss links
• Hit links

• Always the next node in the array

• Miss links

• Internal, left: sibling node

• Internal, right: parent’s sibling node (until it exists)

• Leaf: same as hit links

34

Traversal
• Extremely simple! (no stack, no bitwise ops.)

35

node = root;	
while (node != null) {	
	 if (intersect(node.bonding, ray)) {	
	 	 if (node.leaf) {	
	 	 	 hit_point = intersect(node.triangles, ray);	
	 	 }	
	 	 node = node.hit;	
	 } else {	
	 	 node = node.miss;	
	 }	
}

Challenges
• Traversal order is fixed

• Want to visit the closest node first

36

Challenges
• Traversal order is fixed

• Want to visit the closest node first

37

Challenges
• Traversal order is fixed

• Want to visit the closest node first

38

Challenges
• Traversal order is fixed

• Want to visit the closest node first

39

Challenges
• Traversal order is fixed

• Want to visit the closest node first

40

Challenges
• Traversal order is fixed

• Want to visit the closest node first

41

Challenges
• Traversal order is fixed

• Want to visit the closest node first

42

Multiple-threaded BVH (MTBVH)

• Prepare threaded BVHs for six major directions

• +X -X +Y -Y +Z -Z

• Need to add only “hit” and “miss” links

• Bounding boxes data is shared

• Classify ray directions via 1x1 cube maps

• Unpublished novel idea as far as I know :->

43

+X
44

0

1 4

2 3 5 6

+X
45

0

1 4

2 3 5 6

X = 6.0 X = 2.5

+X
46

0

4 1

5 6 2 3

X = 2.5 X = 6.0

+X
47

0

4 1

5 6 2 3

Terminal

48

0 1 42 3 5 6

Terminal

49

0 1 42 3 5 6

Terminal

0 41 5 62 3

Terminal

50

0 1 42 3 5 6

Terminal

0 41 5 62 3

Terminal

… six different directions

51

0 1 42 3 5 6

Terminal

0 41 5 62 3

Terminal

… six different directions

Data layout
• Put all six sets of hit and miss links into one texture

52

+X -X

+Y -Y

+Z -Z

AABB data

Data layout
• Threading (vec4 × 1)

• vec4(hit.uv, miss.uv)	

• Store -1.0 to indicate the terminal

• AABB (vec4 × 2)

• vec4(min.xyz, triangle.u), vec4(max.xyz, triangle.v)	

• Store -1.0 for w to indicate internal nodes

53

MTBVH traversal
• Still extremely simple (only one change)!

54

node = cubemap(root_tex, ray.direction);	
while (node != null) {	
	 if (intersect(node.bonding, ray)) {	
	 	 if (node.leaf) {	
	 	 	 hit_point = intersect(node.triangles, ray);	
	 	 }	
	 	 node = node.hit;	
	 } else {	
	 	 node = node.miss;	
	 }	
}

Ray-triangle intersection
• There are many different approaches  

• Best algorithm for CPUs is not the best for GPUs

• Different computation/data transfer ratio  
and cost of conditional branches

• Some “optimisation” can backfire!

• Modified Möller-Trumbore algorithm works well

55

Ray-triangle intersection
56

vec3 p0 = V0;	
vec3 e0 = V1 - V0;	
vec3 e1 = V2 - V0;	
vec3 pv = cross(ray.direction, e1);	
float det = dot(e0, pv);	
vec3 tv = ray.origin - p0;	
vec3 qv = cross(tv, e0);	
!
vec4 uvt;	
uvt.x = dot(tv, pv);	
uvt.y = dot(ray.direction, qv);	
uvt.z = dot(e1, qv);	
uvt.xyz = uvt.xyz / det;	
uvt.w = 1.0 - uvt.x - uvt.y;	
if (all(greaterThanEqual(uvt, vec4(0.0))) && (uvt.z < hit.a)) {	
	 hit = vec4(triangle_id.uv, material_id, uvt.z);	
}

Packing vertex data
• Each vertex is packed into two vec4 data

• Normal can be reconstructed via sign(z)

• Material id is redundantly copied three times

57

vec4_0 position.x position.y position.z texcoord.u

vec4_1 normal.x normal.y sign(normal.z)
* material_id texcoord.v

M rays/sec @ GeForce GT 630

0

30

60

90

Bunny Fairy Sponza

Aila 09
TBVH
MTBVH

Performance
58

Performance
• 2.5 ~ 3.0 times faster than threaded BVH

• Roughly 0.5 of highly optimized SVBH traversal kernel
for NVIDIA GPUs [Aila 09]

• Not too bad for cross-platform code in my opinion

• Threading (x 6 times) is very fast

• Can use SBVH with this algorithm as well

• Potentially fill the rest of the performance gap

59

Memory overhead
• Original threaded BVH

• Triangle: 8 floats × 3 vertex

• Bounding box: 4 floats × 2 (min & max)

• Hit/miss links: 4 floats

• Total: 36 floats

60

Memory overhead
• Multiple-threaded BVH

• Triangle: 8 floats × 3 vertex

• Bounding box: 4 floats × 2 (min & max)

• Hit/miss links: 4 floats × 6 directions

• Total: 56 floats

61

Memory overhead
• Multiple-threaded BVH

• Triangle: 8 floats × 3 vertex

• Bounding box: 4 floats × 2 (min & max)

• Hit/miss links: 4 floats × 6 directions

• Total: 56 floats

62

(only) 1.5 times of the original

Other stackless traversals
• There are many different approaches

• Bitwise operation [Barringer13, Afra13…]

• Restarting [Foley05, Laine10, Hapala11…]

• Multiple-threaded BVH seems faster in my tests

• Traversal algorithm is extremely simple

• 1.5 times memory overhead is acceptable IMHO

63

Dynamic scenes
!

• Threaded BVH can be constructed entirely on GPUs

• Just like linear BVH (sorting + indexing)

• Hit/miss links can be constructed on the fly, too

64

65

Build BVH Photon tracing Density estimationEye ray tracing

CPU GPU

Photon tracing
66

Photon tracing on GPUs
• One pixel = one photon path

67

Pixels

Photon tracing on GPUs
• One pixel = one photon path

68

Pixels

Photon tracing on GPUs
• One pixel = one photon path

69

Pixels

Photon tracing on GPUs
• One pixel = one photon path

70

Pixels

Photon tracing on GPUs
• One pixel = one photon path

71

Pixels

Challenges
• The number of bounces can vary a lot

• Don’t want to wait until long ones terminate

• Need make a list of photons

• Need high quality random numbers in parallel

• Only with floating-point number operations

• “Noise” function won’t work

72

Photon tracing on GPUs
73

Photon tracing on GPUs
74

Ray tracing from a light source

Photon tracing on GPUs
75

Hit points = photons

Photon tracing on GPUs
76

Photon tracing on GPUs
77

Terminated

Photon tracing on GPUs
78

Waiting

Photon tracing on GPUs
79

Multiple photons per pixel

Asynchronous path regeneration

• Each photon pass = only one bounce  

• Photon paths are asynchronously regenerated

• As soon as it’s terminated, sample a new one

• Count the number of photon paths via reduction

• Similar to the idea by Novak et al. [2010]

80

1st pass
81

0

0

0

0

of bounces

1st pass
82

0

0

0

0

of bounces
0th bounce = gen. a new path

1st pass
83

0

0

0

0

of bounces
0th bounce = gen. a new path

of zeros = 4

1st pass
84

0

0

0

0

of bounces

of zeros = 4

1st pass
85

Terminated

1

1

1

0

of bounces

of zeros = 4

2nd pass
86

New path

1

1

1

0

of bounces

of zeros = 5

2nd pass
87

1

1

1

0

of bounces

of zeros = 5

2nd pass
88

1

1

1

0

of bounces

of zeros = 5

3rd pass
89

0

0

0

1

of bounces

of zeros = 8

Performance
90

M
 p

at
hs

/s
ec

0.7

0.9

1.1

1.3

1.5

Number of bounces

5 6 7 8 9 10

Regeneration
Multiple bounces

Random number generator
91

Famous fract(sin(…)) PRNG Good PRNG

Random number generator
• Photon mapping is a statistical computation

• “Noise function” is not random enough

• Low quality random numbers = artifacts

• Legacy GLSL does not support integer operations

• Existing good PRNGs use integer operations

• Need lots of good random numbers in parallel

92

Random number generator
• Modification of PRNG of unknown origin (post on an old

GPGPU forum), but works surprisingly well and very fast

93

float GPURnd(inout vec4 state)	
{	
	 const vec4 q = vec4(1225.0, 1585.0, 2457.0, 2098.0);	
	 const vec4 r = vec4(1112.0, 367.0, 92.0, 265.0);	
	 const vec4 a = vec4(3423.0, 2646.0, 1707.0, 1999.0);	
	 const vec4 m = vec4(4194287.0, 4194277.0, 4194191.0, 4194167.0);	
!
	 vec4 beta = floor(state / q);	
	 vec4 p = a * (state - beta * q) - beta * r;	
	 beta = (sign(-p) + vec4(1.0)) * vec4(0.5) * m;	
	 state = (p + beta);	
!
	 return fract(dot(state / m, vec4(1.0, -1.0, 1.0, -1.0))); 	
}

Other PRNGs
• LCG: works fine only if you do some simple stuff

• Crypto-hash: works well, but somewhat slower

• (GPU) Mersenne twister: works well, but too slow

• xorshift: not very suitable for parallel PRNGs  

• My choices: crypto-hash or the one in prev. slide

94

95

Build BVH Photon tracing Density estimationEye ray tracing

CPU GPU

Eye ray tracing
96

Eye ray tracing
• Almost the same as photon but one difference

• Trace a path until it hits a “non-specular” surface

• Single pass = multiple bounces

• No asynchronous path regeneration (run it once
per multiple photon passes to balance the loads)

• Store the result for the density estimation step

97

Eye ray tracing
98

Density estimation
• Find nearby photons around the eye ray hit point

99

Challenges
• Brute-force search is too slow (O(N) for N photons)

• Photons are newly generated at each pass

• Cannot use a fixed data structure like BVHs

• More nearby photons = more computation

• Highly non-uniform workload distribution

100

Spatial hashing
!

• Multidimensional extension of regular hashing

• Two phase

• Construct a hash table

• Query the hash table

101

Construction
102

Construction
103

Construction
104

Hash

Construction
105

Hash

Construction
106

Hash

Random writes using points
• Drawing one vertex per pixel

• Write into a specific pixel, not the same pixel

107

Source

Destination

Hash function
• Utilize the PRNG (works fairly well)

!

• S-box via textures (works very well, but slow)

• Some standard integer hash functions  
(they can fail for spatial hashing - be careful)

108

vec4 n = vec4(idx, (idx.x + idx.y + idx.z) / 3.0) * 4194304.0;	
float hash = GPURnd(n);

Query
109

Hash

Query
110

Hash

Query
111

Hash

Query
112

Hash

Problems
!

• Need to make a list when hash collision occurs

• Not GPU friendly data structure  

• Some hashed lists can contain lots of photons

• Very non-uniform workload distribution

113

Stochastic spatial hashing
114

Randomly keep only one photon

!
"Parallel Progressive Photon Mapping on GPUs” T. Hachisuka and H. W. Jensen

SIGGRAPH Asia 2010 Technical Sketches

Construction
115

Construction
116

Construction
117

Hash

Construction
118

Hash

Construction
119

Hash

Construction
120

Hash

Construction
121

Hash

Construction
122

Hash

Query
123

Hash

Implementation
• Extremely simple!

124

For all photons in parallel	

HashIndex = Hash(Photon.Position)	

Table[HashIndex] = Photon	

AtomicInc(Count[HashIndex])

Comparison with spatial hashing

125

��

��

��

��

�

�
� ��� ��� ��� ��� ��� ���

�
�		
�

��

�
�

������	�������
����		�
�
�

�	������������	����
�
������
�
�	������������	��� �������	
!������"
����
�
������
�
!������"
��� �������	

Fabianowski09: Ring

Zou08: Glass

Stochastic Hashing: Cognac

Milliseconds

0 40 80 120 160

Photon Tracing
Photon Map Construction
Gathering & Rendering

×3 ~ ×10 faster

Comparison with tree

126

OptiX sample (CPU & GPU)

Stochastic Hashing (GPU)

Milliseconds

0 225 450 675 900

Photon Tracing
Photon Map Construction
Gathering & Rendering

Comparison with CPU

127

Construction alone: ×30	

 Total: ×5

Additional noise
128

1:64 table 1:1 table Full list

Stochastic spatial hashing
!

• Fundamentally avoids the two issues

• No list construction is necessary

• Hashed entry contains only one photon at most

• Added bonus - very easy to implement

129

Other Tips

Texturing
• You don’t want to have a separate GL texture for each

• Slow & the number of textures is limited

• Store multiple textures as one volume texture

131

texture3D(textures, vec3(hit.texcoord.uv, hit.mat_id).rgb

Data structure for materials
• “Über shader” fits well with the current system

• Three options to store material data

• Texture - generally the slowest

• Uniform - faster than texture, but limited

• Embedded - need to compile shaders

132

Lowering CPU usage
!

• Naive implementation causes 100% CPU usage

• Due to the way OpenGL waits for next command

• GPU renderer uses 100% CPU sounds stupid!

133

Lowering CPU usage
• Use asynchronous occlusion query

• Wait until we get the number of pixels drawn back

• Use non-busy sleep (e.g., usleep)

134

int a = 0;	
glBeginQuery(GL_TIME_ELAPSED_EXT, OcclusionQuery);	
	 // draw quad	
glEndQuery(GL_TIME_ELAPSED_EXT);	
do {	
	 glGetQueryObjectiv(OcclusionQuery, GL_QUERY_RESULT_AVAILABLE, &a);	
	 sleep(1);	
} while(!a);

16bits vs 32bits
• GLSL can easily use 16bits floats

• Surprising(?) fact: 16bits is often times enough!

• As long as you convert everything into 16bits

• Perhaps not true for very large scenes

• Usually slightly faster than 32bits

135

Cross-platform issues
• OpenCL and GLSL are cross-platform, in theory

• This is the reason to use “legacy” GLSL

• Battle-tested GLSL versions are stable enough

• My code works on Intel’s, NVIDIA’s, and AMD’s

• Some annoyance only in rare cases

• “mod” produces wrong results (use floor and arithmetics)

• conditional while loop does not work (use break instead)

136

Live demo
137

Approx. 100M photon paths in 1 min @ GeForce GTX 680

Conclusions
• Fully functional rendering system using GLSL

• Multiple-threaded BVH

• Asynchronous path generation

• PRNG using only floating-point numbers

• Stochastic hashing

138

