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Aim of this seminar
2

Sharing my experience of writing a practical  
rendering system on a GPU only with GLSL

Approx. 100M photon paths in 1 min @ GeForce GTX 680



Disclaimer

Not all of my comments in this seminar  
are fully validated by scientific experiments. 

 
Take them with a grain of salt! 
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Why GLSL?
• Cross-platform (both OS and GPU) 

• Battle-tested 

• Easy to write 

• Automatic support for multiple GPUs
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Key features
• Bounding volume hierarchy (BVH) 

• Efficient ray tracing of lots of objects 

• Triangles only 

• Stochastic progressive photon mapping (SPPM) 

• Physically accurate global illumination 

• Textures and basic materials
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Bounding volume hierarchy
• In a practical system, we have lots of triangles 

• Data structure to avoid touching every triangle
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Stochastic PPM
• Global illumination algorithm developed by myself 

• Consists of three steps 

• Photon tracing 

• Eye ray tracing 

• Density estimation
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"Stochastic Progressive Photon Mapping”  T. Hachisuka and H. W. Jensen 
ACM Transactions on Graphics (SIGGRAPH Asia 2009)



Stochastic PPM
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Stochastic PPM
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Stochastic PPM
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Stochastic PPM
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Stochastic PPM
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Density estimation
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Design principles
• Make all the tasks in rendering to 

• Have a high degree of parallelism 

• Have a uniform workload distribution 

• Use no local memory 
 
… so that they run efficiently on GPUs 

• I did not aim for a “production-quality” system
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Bounding Volume Hierarchy



Challenges
!

• Standard BVH traversal uses stack 

• Stack is implemented via local memory on GPUs 

• Contradicts with the design principles!
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We want stackless traversal!



Why stackless?
• Modern GPUs can do stack-based traversal [Aila 09] 

• Straightforward to implement 

• Efficient (due to dynamic traversal order)
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Why bother implementing stackless traversal?



Why stackless?
  Size of local memory can limit the parallelism  

• Modern GPUs have around 32kB local memory 

• Stack-based traversal consumes around 512 B  
 
         32kB / 512 B = 64 rays in parallel 
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Threaded BVH
• Precompute “hit” and “miss” links 

• Also known as skip pointers [Smits 98]  

• Allows stackless traversal 

• Order of traversal of child nodes is fixed
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Threaded BVH
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Threaded BVH
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Hit and miss links
• Hit links 

• Always the next node in the array 

• Miss links 

• Internal, left: sibling node 

• Internal, right: parent’s sibling node (until it exists) 

• Leaf: same as hit links
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Traversal
• Extremely simple! (no stack, no bitwise ops.)
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node = root;	
while (node != null) {	
	 if (intersect(node.bonding, ray)) {	
	 	 if (node.leaf) {	
	 	 	 hit_point = intersect(node.triangles, ray);	
	 	 }	
	 	 node = node.hit;	
	 } else {	
	 	 node = node.miss;	
	 }	
}



Challenges
• Traversal order is fixed 

• Want to visit the closest node first
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Multiple-threaded BVH (MTBVH)

• Prepare threaded BVHs for six major directions 

• +X -X +Y -Y +Z -Z 

• Need to add only “hit” and “miss” links 

• Bounding boxes data is shared 

• Classify ray directions via 1x1 cube maps 

• Unpublished novel idea as far as I know :->
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Data layout
• Put all six sets of hit and miss links into one texture
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Data layout
• Threading (vec4 × 1) 

• vec4(hit.uv, miss.uv)	

• Store -1.0 to indicate the terminal 

• AABB (vec4 × 2) 

• vec4(min.xyz, triangle.u), vec4(max.xyz, triangle.v)	

• Store -1.0 for w to indicate internal nodes
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MTBVH traversal
• Still extremely simple (only one change)!
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node = cubemap(root_tex, ray.direction);	
while (node != null) {	
	 if (intersect(node.bonding, ray)) {	
	 	 if (node.leaf) {	
	 	 	 hit_point = intersect(node.triangles, ray);	
	 	 }	
	 	 node = node.hit;	
	 } else {	
	 	 node = node.miss;	
	 }	
}



Ray-triangle intersection
• There are many different approaches  

• Best algorithm for CPUs is not the best for GPUs 

• Different computation/data transfer ratio  
and cost of conditional branches 

• Some “optimisation” can backfire! 

• Modified Möller-Trumbore algorithm works well
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Ray-triangle intersection
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vec3 p0 = V0;	
vec3 e0 = V1 - V0;	
vec3 e1 = V2 - V0;	
vec3 pv = cross(ray.direction, e1);	
float det = dot(e0, pv);	
vec3 tv = ray.origin - p0;	
vec3 qv = cross(tv, e0);	
!
vec4 uvt;	
uvt.x = dot(tv, pv);	
uvt.y = dot(ray.direction, qv);	
uvt.z = dot(e1, qv);	
uvt.xyz = uvt.xyz / det;	
uvt.w = 1.0 - uvt.x - uvt.y;	
if (all(greaterThanEqual(uvt, vec4(0.0))) && (uvt.z < hit.a)) {	
	 hit = vec4(triangle_id.uv, material_id, uvt.z);	
}



Packing vertex data
• Each vertex is packed into two vec4 data 

• Normal can be reconstructed via sign(z) 

• Material id is redundantly copied three times
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vec4_0 position.x position.y position.z texcoord.u

vec4_1 normal.x normal.y sign(normal.z) 
* material_id texcoord.v
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Performance
• 2.5 ~ 3.0 times faster than threaded BVH 

• Roughly 0.5 of highly optimized SVBH traversal kernel 
for NVIDIA GPUs [Aila 09] 

• Not too bad for cross-platform code in my opinion 

• Threading (x 6 times) is very fast 

• Can use SBVH with this algorithm as well 

• Potentially fill the rest of the performance gap
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Memory overhead
• Original threaded BVH  

• Triangle: 8 floats × 3 vertex 

• Bounding box: 4 floats × 2 (min & max) 

• Hit/miss links: 4 floats 

• Total: 36 floats
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Memory overhead
• Multiple-threaded BVH  
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(only) 1.5 times of the original



Other stackless traversals
• There are many different approaches 

• Bitwise operation [Barringer13, Afra13…] 

• Restarting [Foley05, Laine10, Hapala11…]  

• Multiple-threaded BVH seems faster in my tests 

• Traversal algorithm is extremely simple 

• 1.5 times memory overhead is acceptable IMHO
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Dynamic scenes
!

• Threaded BVH can be constructed entirely on GPUs 

• Just like linear BVH (sorting + indexing) 

• Hit/miss links can be constructed on the fly, too
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Photon tracing
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Photon tracing on GPUs
• One pixel = one photon path
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Photon tracing on GPUs
• One pixel = one photon path
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Challenges
• The number of bounces can vary a lot 

• Don’t want to wait until long ones terminate 

• Need make a list of photons 

• Need high quality random numbers in parallel 

• Only with floating-point number operations 

• “Noise” function won’t work
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Photon tracing on GPUs
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Photon tracing on GPUs
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Ray tracing from a light source



Photon tracing on GPUs
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Hit points = photons



Photon tracing on GPUs
76



Photon tracing on GPUs
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Terminated



Photon tracing on GPUs
78

Waiting



Photon tracing on GPUs
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Multiple photons per pixel



Asynchronous path regeneration

• Each photon pass = only one bounce  

• Photon paths are asynchronously regenerated 

• As soon as it’s terminated, sample a new one 

• Count the number of photon paths via reduction 

• Similar to the idea by Novak et al. [2010]
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82

0

0

0

0

# of bounces
0th bounce = gen. a new path



1st pass
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1st pass
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2nd pass
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Random number generator
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Famous fract(sin(…)) PRNG Good PRNG



Random number generator
• Photon mapping is a statistical computation 

• “Noise function” is not random enough 

• Low quality random numbers = artifacts 

• Legacy GLSL does not support integer operations 

• Existing good PRNGs use integer operations 

• Need lots of good random numbers in parallel
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Random number generator
• Modification of PRNG of unknown origin (post on an old 

GPGPU forum), but works surprisingly well and very fast
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float GPURnd(inout vec4 state)	
{	
	 const vec4 q = vec4(   1225.0,    1585.0,    2457.0,    2098.0);	
	 const vec4 r = vec4(   1112.0,     367.0,      92.0,     265.0);	
	 const vec4 a = vec4(   3423.0,    2646.0,    1707.0,    1999.0);	
	 const vec4 m = vec4(4194287.0, 4194277.0, 4194191.0, 4194167.0);	
!
	 vec4 beta = floor(state / q);	
	 vec4 p = a * (state - beta * q) - beta * r;	
	 beta = (sign(-p) + vec4(1.0)) * vec4(0.5) * m;	
	 state = (p + beta);	
!
	 return fract(dot(state / m, vec4(1.0, -1.0, 1.0, -1.0))); 	
}



Other PRNGs
• LCG: works fine only if you do some simple stuff 

• Crypto-hash: works well, but somewhat slower 

• (GPU) Mersenne twister: works well, but too slow 

• xorshift: not very suitable for parallel PRNGs  

• My choices: crypto-hash or the one in prev. slide
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Eye ray tracing
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Eye ray tracing
• Almost the same as photon but one difference 

• Trace a path until it hits a “non-specular” surface 

• Single pass = multiple bounces 

• No asynchronous path regeneration (run it once 
per multiple photon passes to balance the loads) 

• Store the result for the density estimation step
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Eye ray tracing
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Density estimation
• Find nearby photons around the eye ray hit point
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Challenges
• Brute-force search is too slow (O(N) for N photons) 

• Photons are newly generated at each pass 

• Cannot use a fixed data structure like BVHs 

• More nearby photons = more computation 

• Highly non-uniform workload distribution
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Spatial hashing
!

• Multidimensional extension of regular hashing 

• Two phase 

• Construct a hash table 

• Query the hash table
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Random writes using points
• Drawing one vertex per pixel 

• Write into a specific pixel, not the same pixel
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Source

Destination



Hash function
• Utilize the PRNG (works fairly well) 

!

• S-box via textures (works very well, but slow) 

• Some standard integer hash functions  
(they can fail for spatial hashing - be careful)
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vec4 n = vec4(idx, (idx.x + idx.y + idx.z) / 3.0) * 4194304.0;	
float hash = GPURnd(n);



Query
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Problems
!

• Need to make a list when hash collision occurs 

• Not GPU friendly data structure  

• Some hashed lists can contain lots of photons 

• Very non-uniform workload distribution
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Stochastic spatial hashing
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Randomly keep only one photon

!
"Parallel Progressive Photon Mapping on GPUs”  T. Hachisuka and H. W. Jensen 

SIGGRAPH Asia 2010 Technical Sketches 
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Implementation
• Extremely simple!
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For all photons in parallel	


HashIndex = Hash(Photon.Position)	


Table[HashIndex] = Photon	


AtomicInc(Count[HashIndex])



Comparison with spatial hashing
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Fabianowski09: Ring

Zou08: Glass

Stochastic Hashing: Cognac

Milliseconds

0 40 80 120 160

Photon Tracing
Photon Map Construction
Gathering & Rendering

×3 ~ ×10 faster

Comparison with tree
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OptiX sample (CPU & GPU)

Stochastic Hashing (GPU)

Milliseconds

0 225 450 675 900

Photon Tracing
Photon Map Construction
Gathering & Rendering

Comparison with CPU
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Construction alone: ×30	


 Total: ×5



Additional noise
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1:64 table 1:1 table Full list



Stochastic spatial hashing
!

• Fundamentally avoids the two issues 

• No list construction is necessary 

• Hashed entry contains only one photon at most 

• Added bonus - very easy to implement
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Other Tips



Texturing
• You don’t want to have a separate GL texture for each 

• Slow & the number of textures is limited 

• Store multiple textures as one volume texture
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texture3D(textures, vec3(hit.texcoord.uv, hit.mat_id).rgb



Data structure for materials
• “Über shader” fits well with the current system 

• Three options to store material data 

• Texture - generally the slowest 

• Uniform - faster than texture, but limited 

• Embedded - need to compile shaders
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Lowering CPU usage
!

• Naive implementation causes 100% CPU usage 

• Due to the way OpenGL waits for next command 

• GPU renderer uses 100% CPU sounds stupid!
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Lowering CPU usage
• Use asynchronous occlusion query 

• Wait until we get the number of pixels drawn back 

• Use non-busy sleep (e.g., usleep)
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int a = 0;	
glBeginQuery(GL_TIME_ELAPSED_EXT, OcclusionQuery);	
	 // draw quad	
glEndQuery(GL_TIME_ELAPSED_EXT);	
do {	
	 glGetQueryObjectiv(OcclusionQuery, GL_QUERY_RESULT_AVAILABLE, &a);	
	 sleep(1);	
} while(!a);



16bits vs 32bits
• GLSL can easily use 16bits floats 

• Surprising(?) fact: 16bits is often times enough! 

• As long as you convert everything into 16bits 

• Perhaps not true for very large scenes 

• Usually slightly faster than 32bits
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Cross-platform issues
• OpenCL and GLSL are cross-platform, in theory 

• This is the reason to use “legacy” GLSL 

• Battle-tested GLSL versions are stable enough 

• My code works on Intel’s, NVIDIA’s, and AMD’s 

• Some annoyance only in rare cases  

• “mod” produces wrong results (use floor and arithmetics) 

• conditional while loop does not work (use break instead)
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Live demo
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Approx. 100M photon paths in 1 min @ GeForce GTX 680



Conclusions
• Fully functional rendering system using GLSL 

• Multiple-threaded BVH 

• Asynchronous path generation 

• PRNG using only floating-point numbers 

• Stochastic hashing

138


