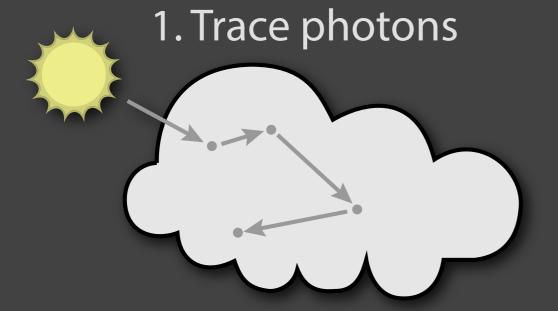
State of the Art in Photon Density Estimation

Progressive Expectation–Maximization for Hierarchical Volumetric Photon Mapping

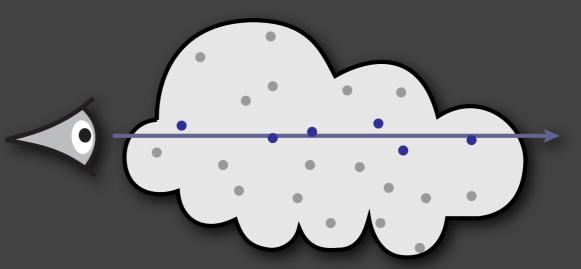
Wojciech Jarosz

(slides courtesy of Wenzel Jakob)

Volumetric photon mapping



2. Radiance estimate



Issues

- high-frequency illumination requires many photons
- time spent on photons that contribute very little
- prone to temporal flickering

Beam radiance estimate: 917K photons

Per-pixel render time

Jakob et al. 2011. Proceedings of EGSR.

Beam radiance estimate: 917K photons

Render time: 281 s

Per-pixel render time

Our method: 4K Gaussians

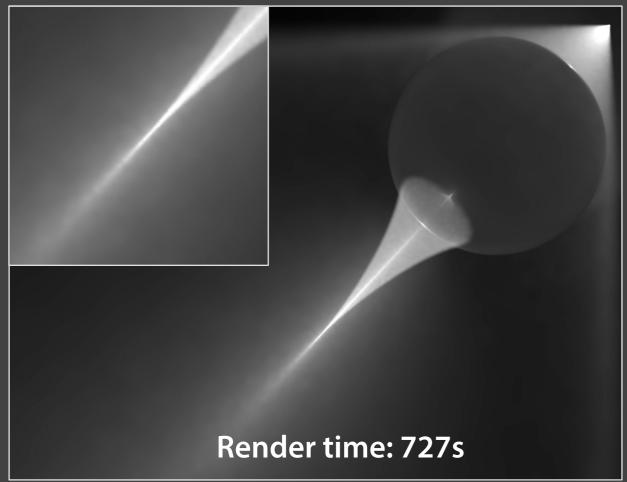
Render time: 125 s

Per-pixel render time

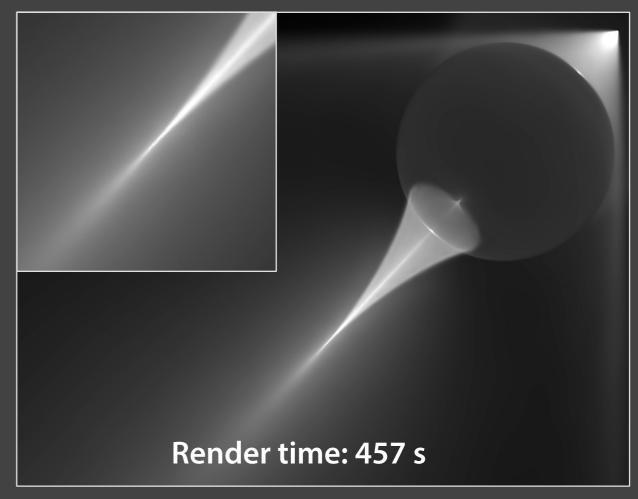
Our approach:

- represent radiance using a Gaussian mixture model (GMM)
- fit using progressive expectation maximization (EM)
- render with multiple levels of detail

Beam radiance estimate: 4M photons



Our method: 16K Gaussians



Our approach:

- represent radiance using a Gaussian mixture model (GMM)
- fit using progressive expectation maximization (EM)
- render with multiple levels of detail

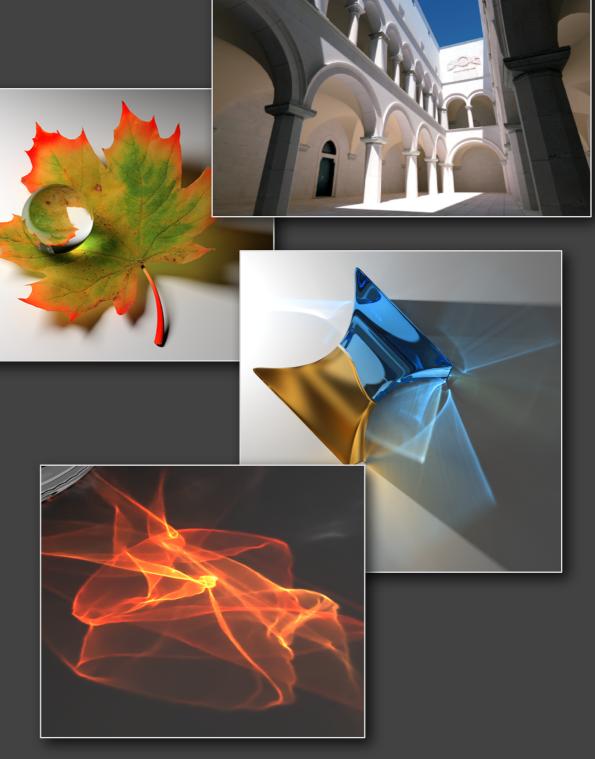
Related work

Hierarchical photon mapping
 [Spencer and Jones 09]

Photon relaxation[Spencer and Jones 09]

Progressive photon relaxation
 [Spencer and Jones 13]

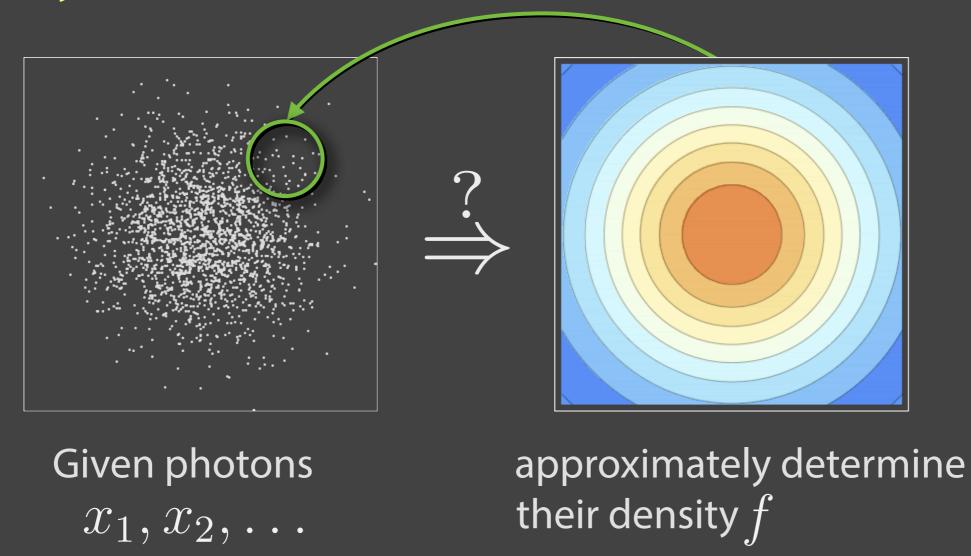
 Photon parameterisation for robust relaxation constraints [Spencer and Jones 13]



Feature detection & preservation challenging

Density estimation

Density estimation



Nonparametric:

Count the number of photons within a small region

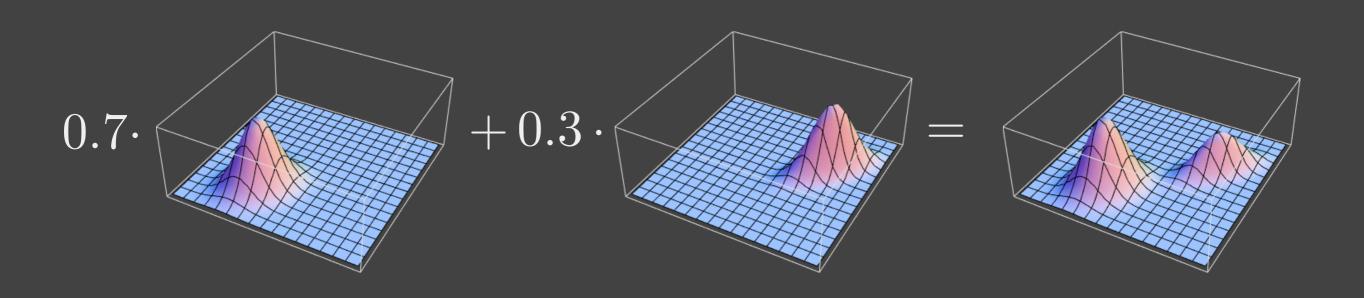
Parametric:

• Find suitable parameters for a known distribution

Gaussian mixture models

• Photon density modeled as a weighted sum of Gaussians:

$$f(\mathbf{x} \mid \Theta) = \sum_{i=1}^{k} w_i \ g(\mathbf{x} \mid \Theta_i)$$



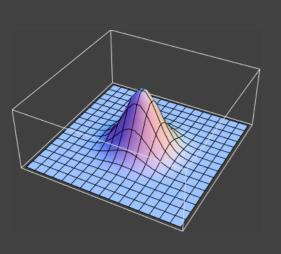
Gaussian mixture models

• Photon density modeled as a weighted sum of Gaussians:

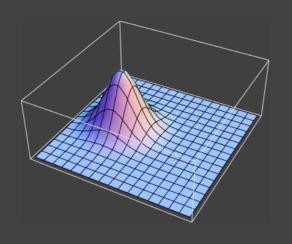
$$f\left(\mathbf{x} \mid \Theta\right) = \sum_{i=1}^{k} w_i \ g\left(\mathbf{x} \mid \Theta_i\right)$$

Unknown parameters (-):

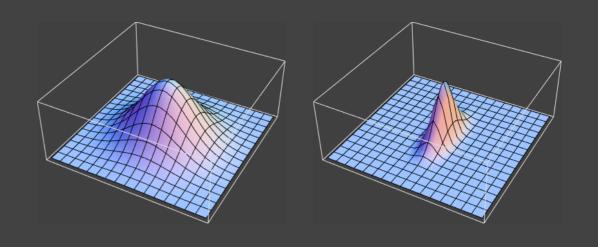
1. Weights



2. Means

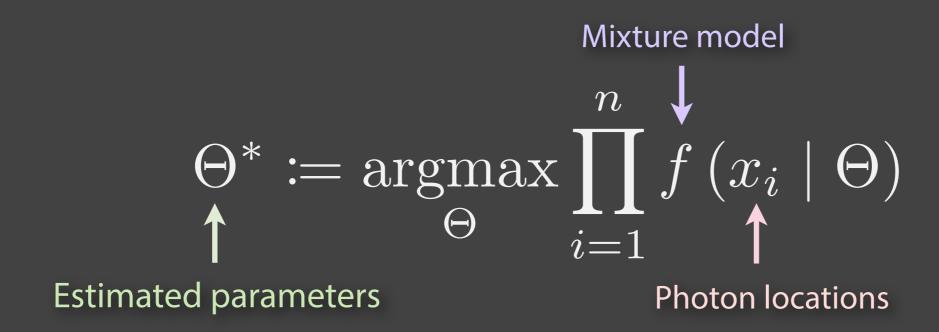


3. Covariance matrices



Maximum likelihood estimation

Approach: find the "most likely" parameters, i.e.



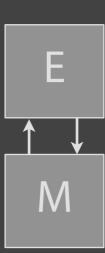
Expectation maximization

• Two components:

E-Step: establish soft assignment between

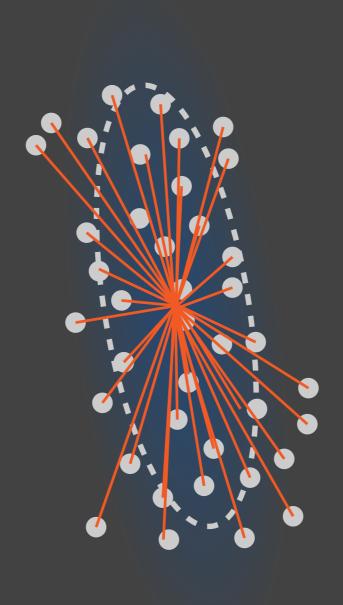
photons and Gaussians

M-Step: maximize the expected likelihood



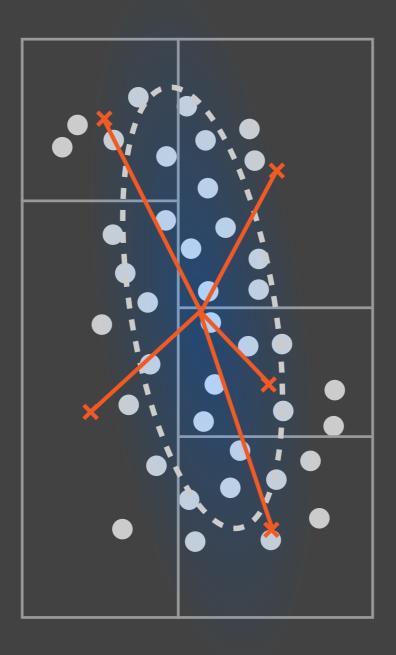
- Finds a locally optimal solution
 - → good starting guess needed!
- Slow and scales poorly $\mathcal{O}(n^2)$ (where n: photon count)

Plain EM



Each photo Accordet saté plus Moboyn (eletro by eletro train (26) mponents

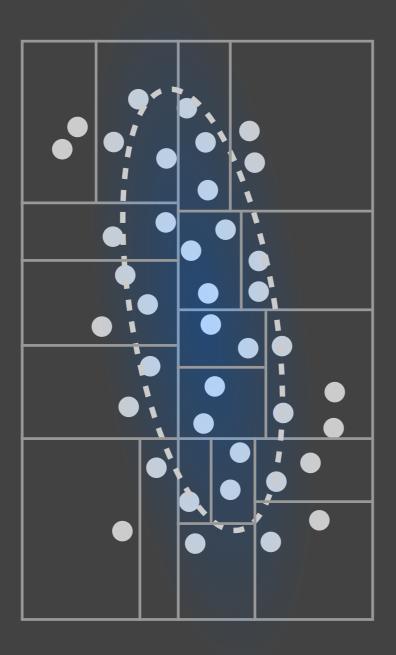
Accelerated EM



Stored cell statistics:

- photon count
- mean position
- average outer product

Progressive EM



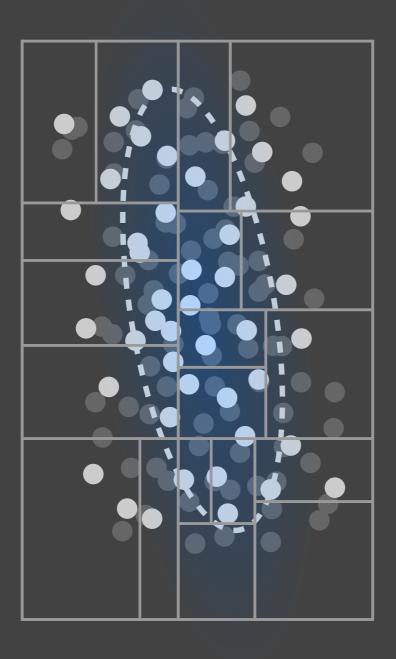
Stored cell statistics:

- photon count
- mean position
- average outer product

Our modifications:

• better cell refinement

Progressive EM



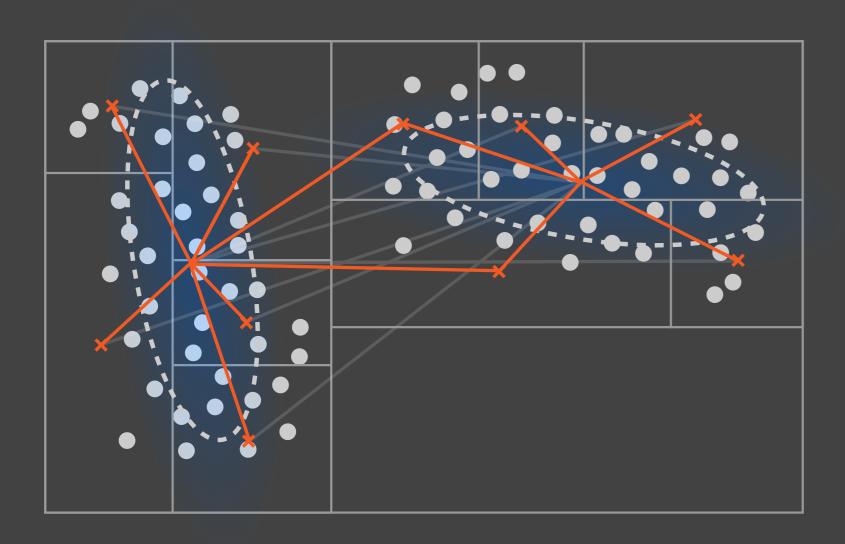
Stored cell statistics:

- photon count
- mean position
- average outer product

Our modifications:

- better cell refinement
- progressive photons shooting passes

Progressive EM



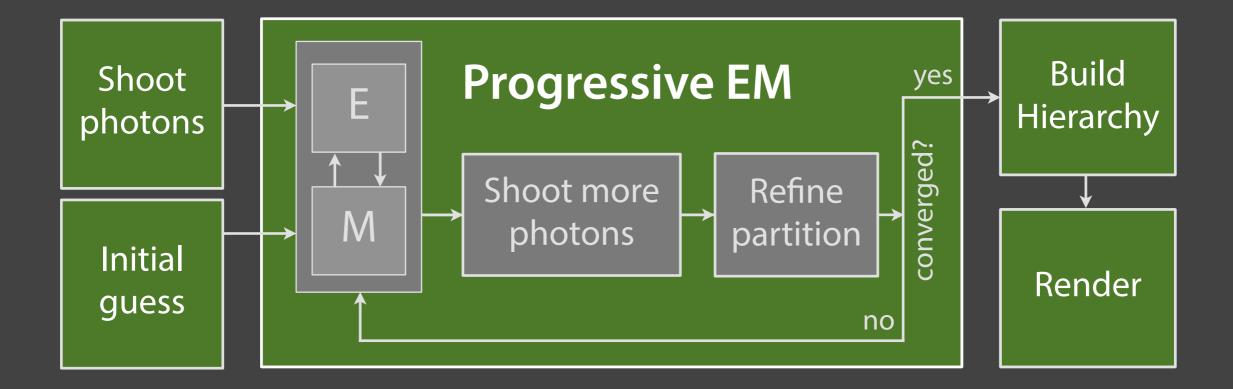
Stored cell statistics:

- photon count
- mean position
- average outer product

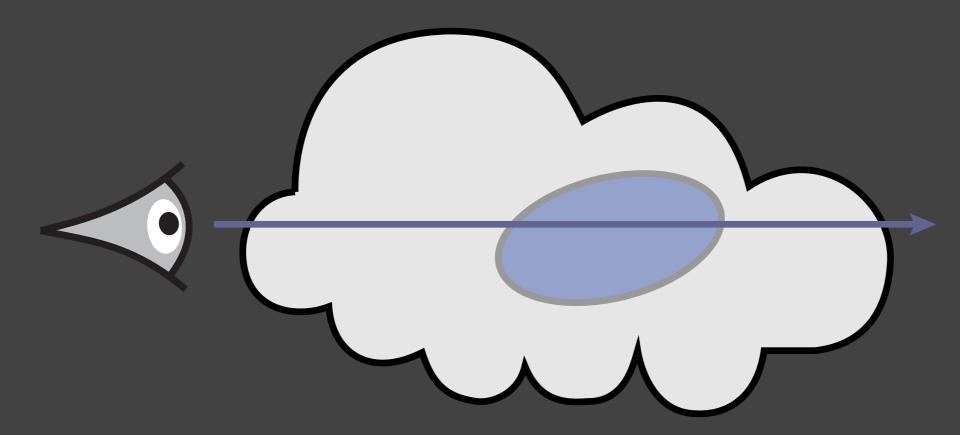
Our modifications:

- better cell refinement
- progressive photons shooting passes
- reduced complexity $\mathcal{O}(n^2) \to \mathcal{O}(n \log n)$

Pipeline overview



Rendering



$$pixel value = \sum_{i=1}^{k} contrib(i)$$

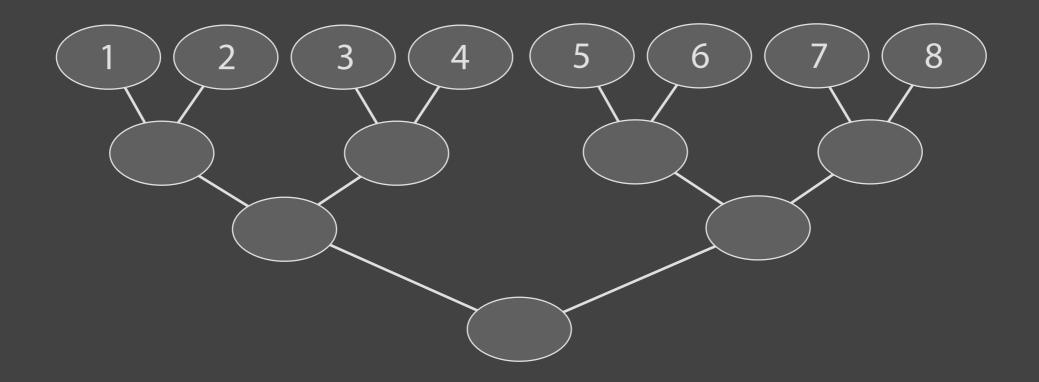
$$contrib(i) = \int_{a}^{b} g(\mathbf{r}(t)|\bar{\Theta}_{i}) e^{-\sigma_{t} t} dt = C_{0} \left[erf\left(\frac{C_{3} + 2C_{2}b}{2\sqrt{C_{2}}}\right) - erf\left(\frac{C_{3} + 2C_{2}a}{2\sqrt{C_{2}}}\right) \right]$$

•••

Level of detail hierarchy

Agglomerative construction:

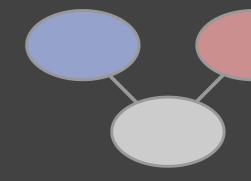
 Repeatedly merge nearby Gaussians based on their Kullback-Leibler divergence

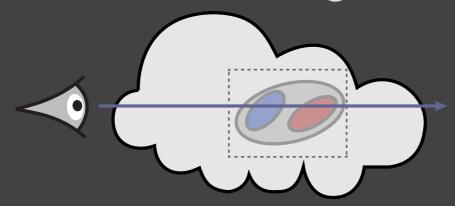


Rendering

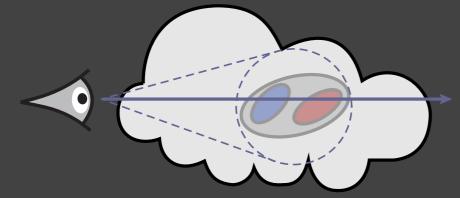
Example hierarchy:

Criterion 1: bounding box intersected?

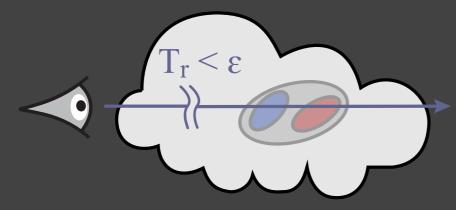




Criterion 2: solid angle large enough?



Criterion 3: attenuation low enough?



BRE: 1M Photons

23+192=215 s

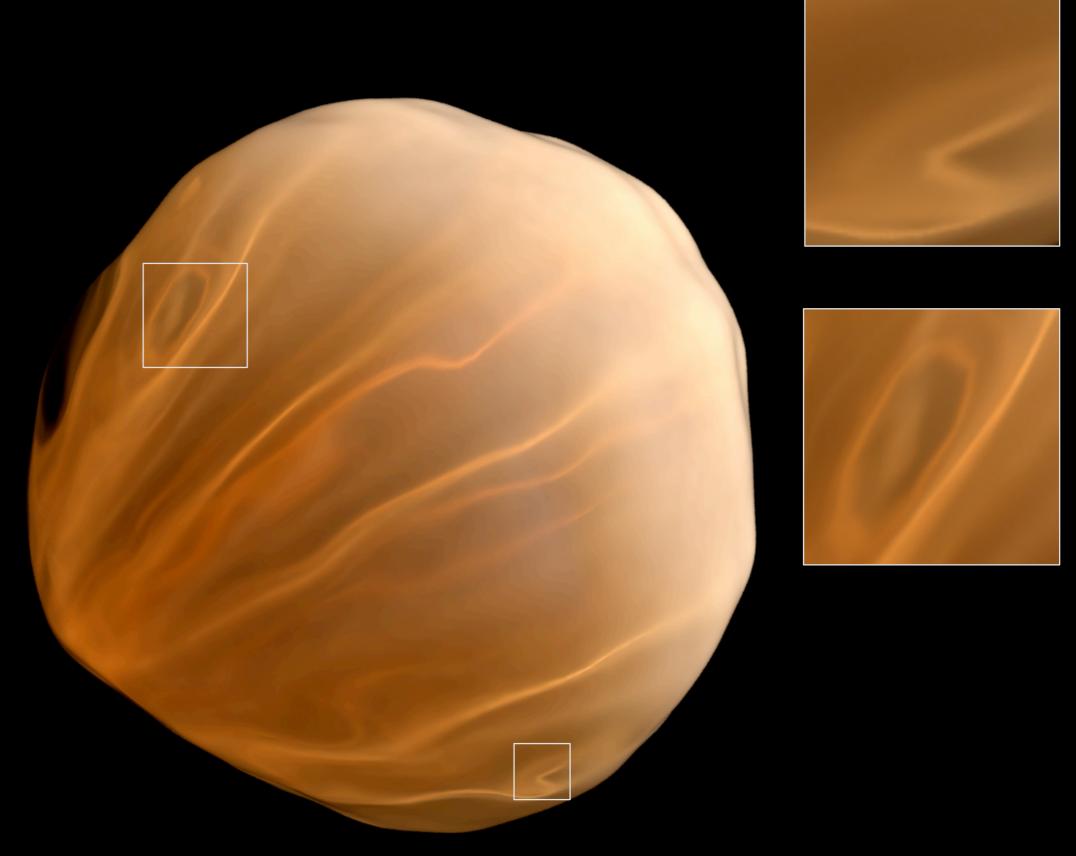
Our method: 4K Gaussians (fit to 1M photons)

35+24 = 59 s (3.6×)



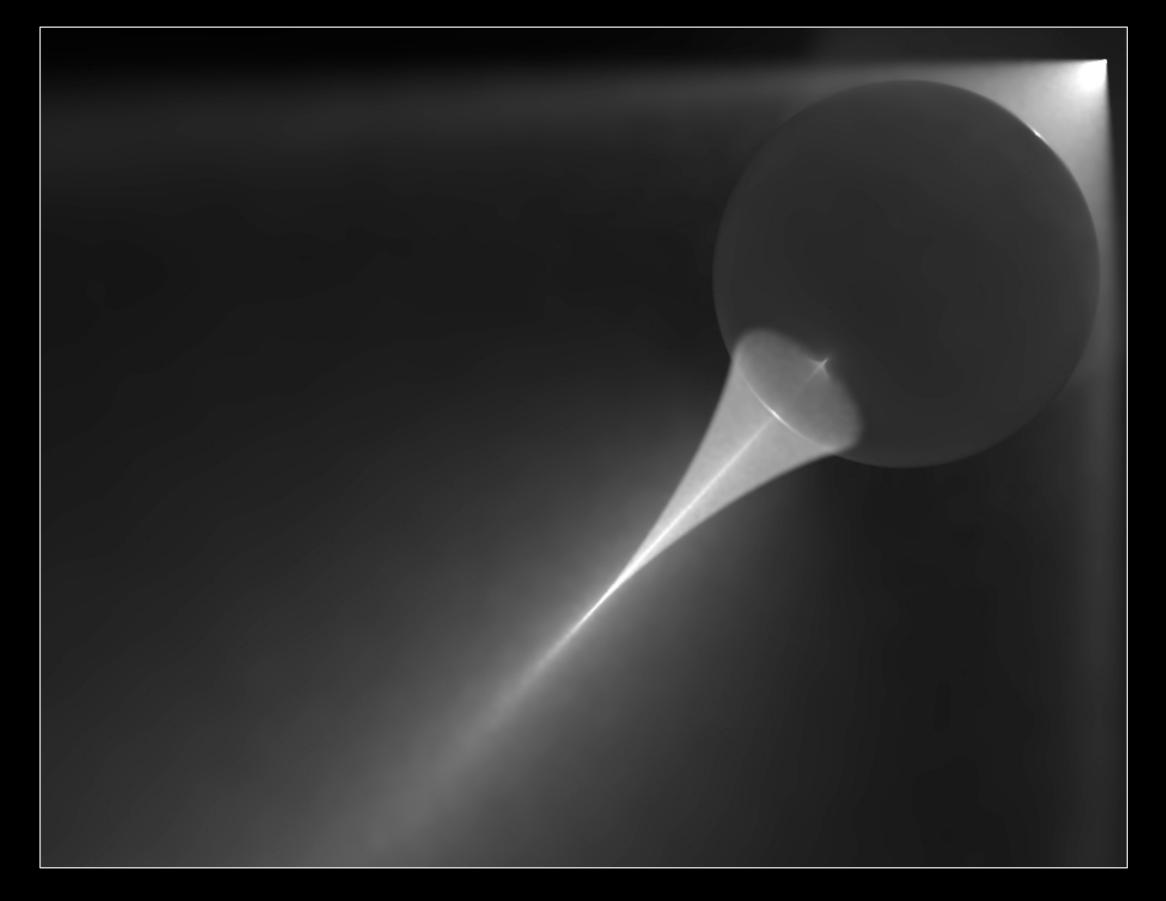
BRE: 18M Photons

507+609 = 1116 s



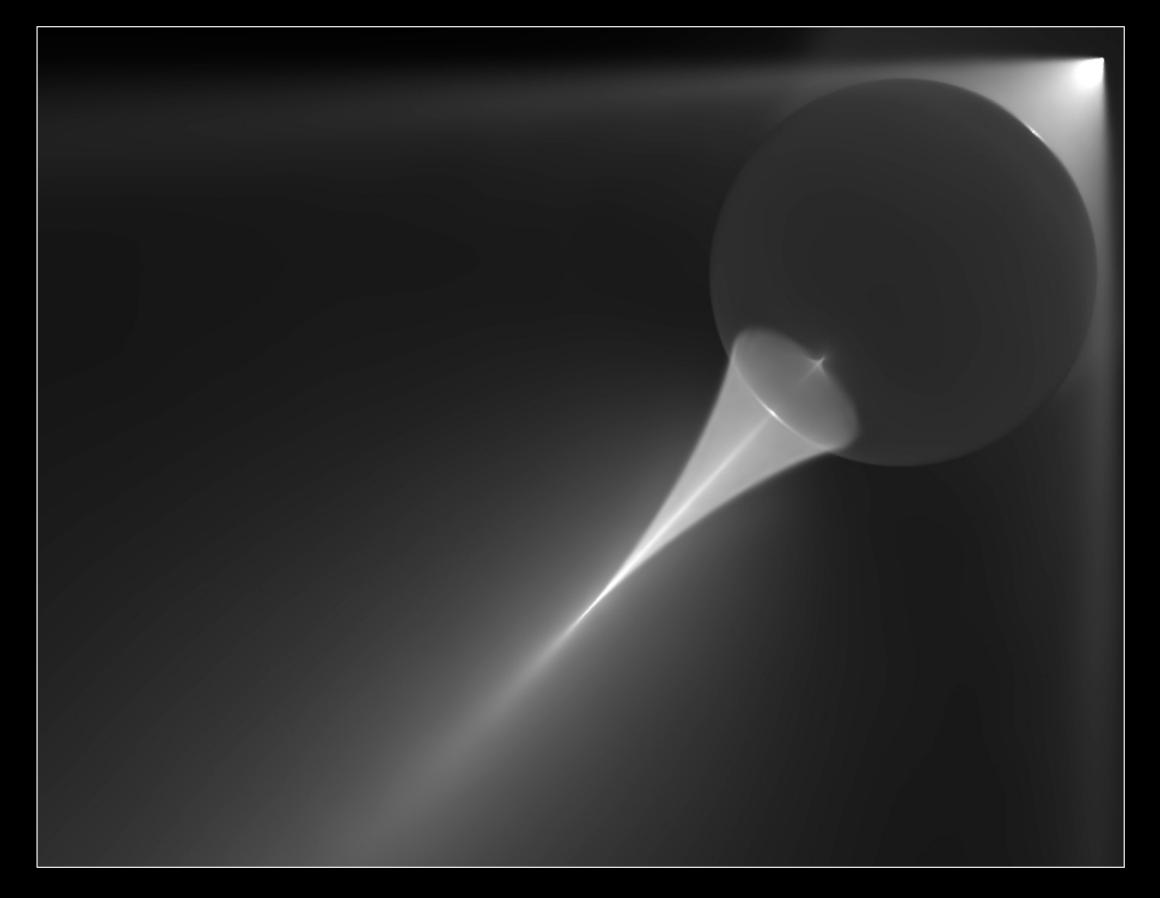
Our method: 64K Gaussians (fit to 18M photons)

868+66 = 934 s



BRE: 4M Photons

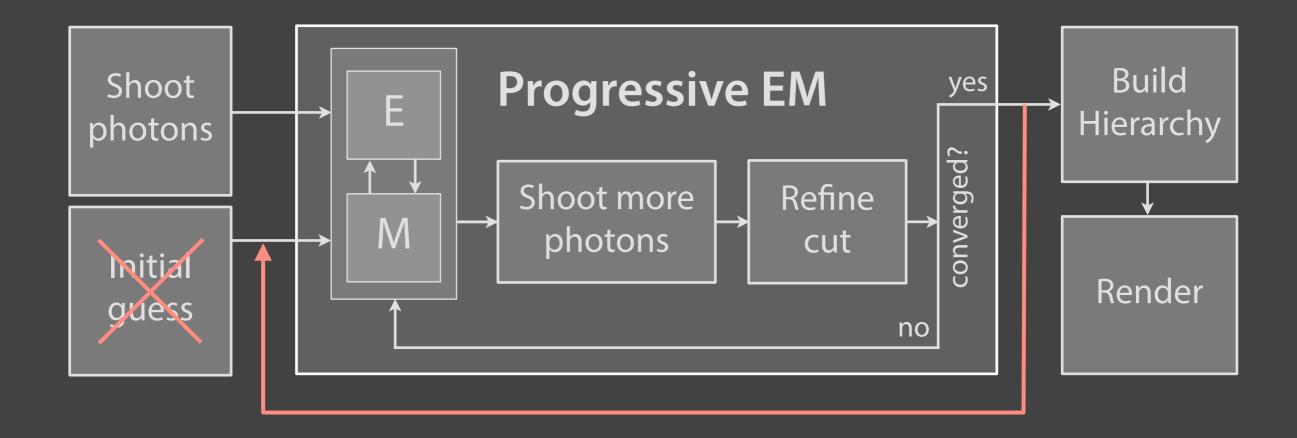
89 + 638 = 727 s



Our method: 16K Gaussians

$$330 + 127 = 457 s$$
(1.6×)

Temporal Coherence



- Feed the result of the current frame into the next one
 - → Faster fitting, no temporal noise

Scene 1: BumpySphere

Volume caustics from a rotating light source

GPU-based rasterizer:

- Anisotropic Gaussian splat shader: 30 lines of GLSL
- Gaussian representation is very compact (4096-term GMM requires only ~240KB of storage)

Conclusion

- Rendering technique based on parametric density estimation
- Uses a progressive and optimized variant of accelerated EM
- Compact & hierarchical representation of volumetric radiance
- Extensions for temporal coherence and real-time visualization

Questions?