# State of the Art in Photon Density Estimation Progressive Expectation–Maximization for Hierarchical Volumetric Photon Mapping Wojciech Jarosz (slides courtesy of Wenzel Jakob) ## Volumetric photon mapping 2. Radiance estimate #### Issues - high-frequency illumination requires many photons - time spent on photons that contribute very little - prone to temporal flickering Beam radiance estimate: 917K photons Per-pixel render time #### Jakob et al. 2011. Proceedings of EGSR. Beam radiance estimate: 917K photons Render time: 281 s Per-pixel render time Our method: 4K Gaussians Render time: 125 s Per-pixel render time ## Our approach: - represent radiance using a Gaussian mixture model (GMM) - fit using progressive expectation maximization (EM) - render with multiple levels of detail Beam radiance estimate: 4M photons Our method: 16K Gaussians ## Our approach: - represent radiance using a Gaussian mixture model (GMM) - fit using progressive expectation maximization (EM) - render with multiple levels of detail ## Related work Hierarchical photon mapping [Spencer and Jones 09] Photon relaxation[Spencer and Jones 09] Progressive photon relaxation [Spencer and Jones 13] Photon parameterisation for robust relaxation constraints [Spencer and Jones 13] Feature detection & preservation challenging # Density estimation # Density estimation #### Nonparametric: Count the number of photons within a small region #### **Parametric:** • Find suitable parameters for a known distribution ## Gaussian mixture models • Photon density modeled as a weighted sum of Gaussians: $$f(\mathbf{x} \mid \Theta) = \sum_{i=1}^{k} w_i \ g(\mathbf{x} \mid \Theta_i)$$ ## Gaussian mixture models • Photon density modeled as a weighted sum of Gaussians: $$f\left(\mathbf{x} \mid \Theta\right) = \sum_{i=1}^{k} w_i \ g\left(\mathbf{x} \mid \Theta_i\right)$$ #### Unknown parameters (-): 1. Weights 2. Means 3. Covariance matrices ## Maximum likelihood estimation Approach: find the "most likely" parameters, i.e. # Expectation maximization • Two components: **E-Step**: establish soft assignment between photons and Gaussians **M-Step**: maximize the expected likelihood - Finds a locally optimal solution - → good starting guess needed! - Slow and scales poorly $\mathcal{O}(n^2)$ (where n: photon count) ## Plain EM Each photo Accordet saté plus Moboyn (eletro by eletro train (26) mponents # Accelerated EM #### **Stored cell statistics:** - photon count - mean position - average outer product # Progressive EM #### **Stored cell statistics:** - photon count - mean position - average outer product #### Our modifications: • better cell refinement # Progressive EM #### **Stored cell statistics:** - photon count - mean position - average outer product #### Our modifications: - better cell refinement - progressive photons shooting passes # Progressive EM #### **Stored cell statistics:** - photon count - mean position - average outer product #### **Our modifications:** - better cell refinement - progressive photons shooting passes - reduced complexity $\mathcal{O}(n^2) \to \mathcal{O}(n \log n)$ # Pipeline overview # Rendering $$pixel value = \sum_{i=1}^{k} contrib(i)$$ $$contrib(i) = \int_{a}^{b} g(\mathbf{r}(t)|\bar{\Theta}_{i}) e^{-\sigma_{t} t} dt = C_{0} \left[ erf\left(\frac{C_{3} + 2C_{2}b}{2\sqrt{C_{2}}}\right) - erf\left(\frac{C_{3} + 2C_{2}a}{2\sqrt{C_{2}}}\right) \right]$$ ••• # Level of detail hierarchy #### Agglomerative construction: Repeatedly merge nearby Gaussians based on their Kullback-Leibler divergence # Rendering Example hierarchy: **Criterion 1:** bounding box intersected? Criterion 2: solid angle large enough? **Criterion 3:** attenuation low enough? **BRE**: 1M Photons 23+192=215 s Our method: 4K Gaussians (fit to 1M photons) 35+24 = 59 s (3.6×) **BRE**: 18M Photons 507+609 = 1116 s Our method: 64K Gaussians (fit to 18M photons) 868+66 = 934 s **BRE**: 4M Photons 89 + 638 = 727 s Our method: 16K Gaussians $$330 + 127 = 457 s$$ (1.6×) # Temporal Coherence - Feed the result of the current frame into the next one - → Faster fitting, no temporal noise # Scene 1: BumpySphere Volume caustics from a rotating light source #### **GPU-based rasterizer:** - Anisotropic Gaussian splat shader: 30 lines of GLSL - Gaussian representation is very compact (4096-term GMM requires only ~240KB of storage) ## Conclusion - Rendering technique based on parametric density estimation - Uses a progressive and optimized variant of accelerated EM - Compact & hierarchical representation of volumetric radiance - Extensions for temporal coherence and real-time visualization **Questions?**