State of the Art in Photon Density Estimation

Photon Mapping Basics

Wojciech Jarosz

Motivation - Global Illumination SIGGRAPHASIA2013

Motivation - Direct Illumination

Motivation - Before photon mapping SIGGRAPHASIA2013

- Radiosity
 - Mostly diffuse
 - Mesh based lighting representation
- Monte Carlo path tracing
 - ✓ Very general
 - X Noisy
 - Computation time/slow convergence

Path Tracing

10 paths/pixel

10 paths/pixel

Density Estimation

- Light tracing / "Backward ray tracing"
- ► James Arvo. In *Developments in Ray Tracing*, SIGGRAPH '86 Course Notes

Light Tracing ("Backward" Ray Tracing) SIGGRAPHASIA 2013

Preprocess:

- parametrize surfaces and create "illumination maps"
- shoot light from light sources
- deposit photon energy in illumination maps

Rendering

- For each shading point
 - compute direct lighting
 - lookup indirect lighting + caustics from illumination maps

Light Tracing

Light Tracing

- ✓ One of first techniques to simulate caustics
- X Requires parametrizing surface or meshing
 - Complex/procedural geometry difficult to handle
- X Illumination map resolution difficult to choose
 - high resolution/few photons: high-frequency noise
 - low resolution/many photons: blurred illumination

Photon Mapping

- A two-pass algorithm:
 - Pass 1: Trace virtual photons from the light source, scatter at surfaces, and cache
 - Pass 2: Ray trace the scene and use the photons to compute indirect illumination
- Same as light tracing, but different way of storing/caching photons

The Photon Map

Photon Mapping (Photon Tracing) SIGGRAPHASIA2013

Photon Mapping (Photon Tracing) SIGGRAPHASIA2013

Photon Mapping (Photon Tracing) SIGGRAPHASIA2013

Photon emission

Define initial:

- x_p : position
- $\triangleright \omega_p$: direction
- ightharpoonup : photon power

Recipe:

- ► Sample position on surface area of light $x_p \sim pdf(x_p)$
- ► Sample direction $\omega_p \sim pdf(\omega_p)$
- $\Phi p = L_e(x_p, \omega_p) / pdf(x_p) / pdf(\omega_p)$

Photon emission examples

- Isotropic point light:
 - Generate uniform random direction over sphere
- Spotlight:
 - Generate uniform random direction within spherical cap
- Diffuse square light
 - Generate uniform random location on square
 - Generate cosine-weighted direction over hemisphere

Pseudocode


```
void generatePhotonMap()
    repeat:
        (l, Prob<sub>l</sub>) = chooseRandomLight()
        (x, ω, Φ) = emitPhotonFromLight(l)
        tracePhoton(x, ω, Φ / Prob<sub>l</sub>)
    until we have enough photons;
    divide all photon powers by number of emitted photons
```

Photon Tracing


```
void generatePhotonMap() 

repeat:  (1, \text{Prob}_1) = \text{chooseRandomLight}() 
 (x, \omega, \phi) = \text{emitPhotonFromLight}(1) 
 \text{tracePhoton}(x, \omega, \phi / \text{Prob}_1) 
 \text{until we have enough photons;} 
 \text{divide all photon powers by number of emitted photons} 
 \text{void tracePhoton}(x, \omega, \phi)
```

Photon Tracing


```
void tracePhoton(x, \omega, \Phi)

s = nearestSurfaceHit(x, \omega)

x += s*\omega // propagate photon Use Russian roulette!

possiblyStorePhoton(x, \omega, \Phi)

(\omega', pdf) = sampleBxDF(x, \omega)

return tracePhoton(o, \omega', \Phi * BxDF(x,\omega,\omega') / pdf)
```

Photon Mapping

A two-pass algorithm:

- Pass 1: Trace virtual photons from the light source, scatter at surfaces, and cache
- Pass 2: Ray trace the scene and use the photons to compute indirect illumination

Photon Mapping (Rendering)

Photon Mapping (Rendering)

The Radiance Estimate

$$L_r(\mathbf{x}, \vec{\omega}) \approx \sum_{p=1}^{k-1} f_r(\mathbf{x}, \vec{\omega}_p, \vec{\omega}) \frac{\Phi_p}{A_k}$$

The Radiance Estimate

$$L_r(\mathbf{x}, \vec{\omega}) \approx \sum_{p=1}^{k-1} f_r(\mathbf{x}, \vec{\omega}_p, \vec{\omega}) \frac{\Phi_p}{\pi r_k^2}$$

The Radiance Estimate

$$L_r(\mathbf{x}, \vec{\omega}) \approx \sum_{p=1}^{k-1} f_r(\mathbf{x}, \vec{\omega}_p, \vec{\omega}) \Phi_p K_{2D}(r_p, r_k)$$

The Photon Map Data Structure SIGGRAPHASIA2013

Requirements:

- Compact (we want many photons)
- Fast nearest neighbor search
- KD-tree

Global Illumination

100000 photons / 50 photons in radiance estimate

Global Illumination

500000 photons / 500 photons in radiance estimate

Path Tracing

Practical Photon Mapping

Split illumination

Caustics

- Separate, higher quality photon map for caustics
 - Only stores LS+D paths
 - Many photons shot directly at specular objects

Diffuse Indirect

- X Density estimation is blotchy
- ✓ Use final gather

Global Illumination

500000 photons / 500 photons in radiance estimate

Improved Photon Mapping

final gather + global photon map (200000) + caustic photon map (50000)

Path Tracing

Next...

- Improve / extend / generalize
- Progressive Photon Mapping