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Introduction

I~

Photon relaxation is a contribution to the area of
error minimization in photon density estimation:

= Estimate error is the sum of bias and noise.

= Goal is to reduce noise without increasing bias.

"= Problem often addressed at the kernel level
with filters/intelligent bandwidth selection.

= Photon relaxation is different in that it directly
manipulates the underlying point dataset.



Background V scomunssin

Challenges facing kernel-based noise removal:

= Tricky to preserve high-frequency detail - particularly at sub-
kernel scales - while ensuring adequate smoothing; noise removal
and bias are correlated.

= Wide bandwidths required to effectively filter all-frequency noise
- increases rendering cost.

Photon relaxation addresses both of these points. Salient features of
caustics can be preserved on a fine scale while allowing noise removal on a
broader scale due to diffusion.

Furthermore, the relaxed distribution allows the use of very low-
bandwidth kernels.
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Background
What causes noise?
/ Two factors:
— = Point discrepancy. Caused by stochastic
\?‘ processes (e.g. scattering) and photon

decoherence (geometry) during the particle
tracing step.
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What causes noise?
Two factors:

= Point discrepancy. Caused by stochastic
processes (e.g. scattering) and photon
decoherence (geometry) during the particle

\ tracing step.
= Variance in photon flux. This can be
caused by absorption, attenuation, dispersion
A//" through dielectric media, etc.



Photon Relaxation

Basic principles:
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= Use point repulsion to minimize

local discrepancy.
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1. For each photon,
i, gather K-nearest
neighbours to i.
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Photon Relaxation
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1. For each photon, 2. Compute
i, gather K-nearest individual repulsive

neighbours to i. forces on i from

members, j, of K.
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1. For each photon,
i, gather K-nearest
neighbours to i.

2. Compute
individual repulsive
forces on i from
members, j, of K.

'/ SIGGRAPHASIA "

...
) ..
1 .
w2 fi ®eo

"ol el

3. Apply mean of
forces to position of
i.



Photon Relaxation

Basic principles:
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= Use point repulsion to minimize

local discrepancy.



Photon Relaxation
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Basic principles:
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= Use point repulsion to minimize

local discrepancy.
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Basic principles:

= Use point repulsion to minimize
local discrepancy.

= Aim to relax distribution so it
exhibits a blue noise spectral
signature and low angular
anisotropy.
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Photon Relaxation Vesorsernsin

Basic principles:

= Use point repulsion to minimize
local discrepancy.

Radially-averaged power spectrum = Aim to relax distribution so it
exhibits a blue noise spectral
signature and low angular

- anisotropy.

Angular anisotropy
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Photon Relaxation

Basic principles:

= Use point repulsion to minimize
local discrepancy.

= Aim to relax distribution so it
exhibits a blue noise spectral
signature and low angular
anisotropy.

= Use diffusion to homogenize flux
between photons.
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Photon Relaxation
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Feature Detection and Preservation V scamsrusi

Relaxation removes noise effectively, but photon diffusion also
degrades larger-scale features of the distribution.

Sample PDF Stochastically- Diffusion results in
seeded photon degraded
distribution reconstruction
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Feature Detection and Preservation
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Feature Detection and Preservation Vecamsnss

?

Caustic before After relaxation. Can we do better?

relaxation High-frequency
detail has been lost

due to diffusion.
20



Feature Detection and Preservation V scamsnusn

Feature detection aims to preserve these features by detecting
and inhibiting motion in the direction of migration.

L
ISP S /1\
Sample PDF Photons migrate  Feature detection Reconstructed
along direction constrains photons in distribution
of density the direction of better preserves
derivative. migration (red = PDF.

constrained).
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Feature Detection and Preservation

Original Naive relaxation Constraints
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Feature Detection and Preservation

Original Naive relaxation Constrained relaxation
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Feature Detection and Preservation V ecarsonasisc-
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Original Constrained relaxation Can we do even better?

24



Parameterization of Photons V asomenssis

Using the flux density gradient to constrain photons is sound in
principle, but hampered in practice by bias from the kernel
estimator.
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Sample flux density Cross-section of Analytical derivative Estimated derivative
function flux density is biased and so

contains error.



Parameterization of Photons
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Introducing a parameterisation to the density function
separates each element into individual domains and makes
gradient estimation more consistent.

Flux density
parameterised into
sets A and B.

B

Cross-section of
flux density

o3

aX

Analytical derivative

Parameterised querying
yields more consistent
estimates.
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Different real-world emitters require different parameter spaces.
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‘ 8]
RSB
16,0
Collimated emitter (eg. Lambertian emitter Omni-directional emitter
sunlight) 2-D space derived from 3-D space derived from
2-D space derived from photon photon primal trajectory photon primal trajectory

origin



Parameterization of Photons Vscomenasn

Structure within the photon map can be dissociated in a similar
fashion by defining photon positions in a parameter space
derived from their origin or primal trajectory.

Incident photons

Dielectric
In this example, collimated photons are This results in a discontinuous, refracted
refracted by a dielectric and absorbed by caustic.

diffuse surface.



Parameterization of Photons Vocomenssi

Gradient querying and relaxation within this high-dimensional

space prevents photons from interlaced or overlapping structures
interfering with one another.

Incident photons

! ! f V@

Dielectric

Suppose we want to
estimate the gradient at
the point marked in red.

Restricting the query to a range in parameter
space reveals two separable components.
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Original Density constraints Parametric constraints
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Results

Original Density Parametric
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 Different approach of density estimation



