## Progressive Photon Mapping Extensions

Toshiya Hachisuka
Aarhus University

State of the Art in Photon Density Estimation

**💠** 🧔

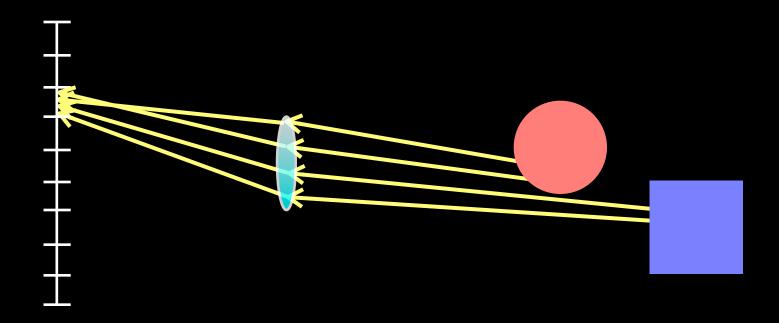




## Distribution Ray Tracing

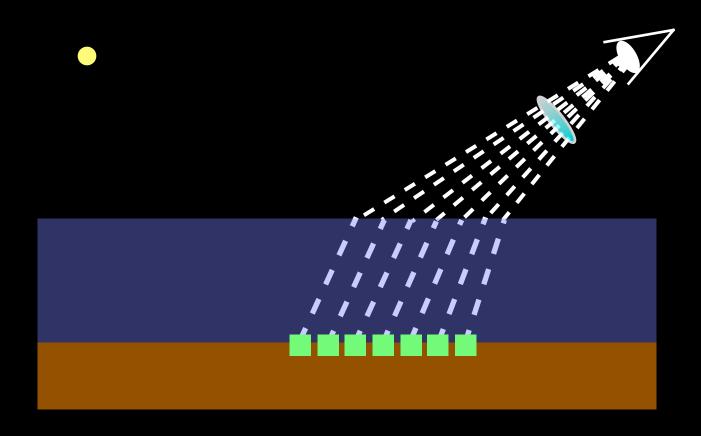


Computes average illumination [Cook et al. 84]



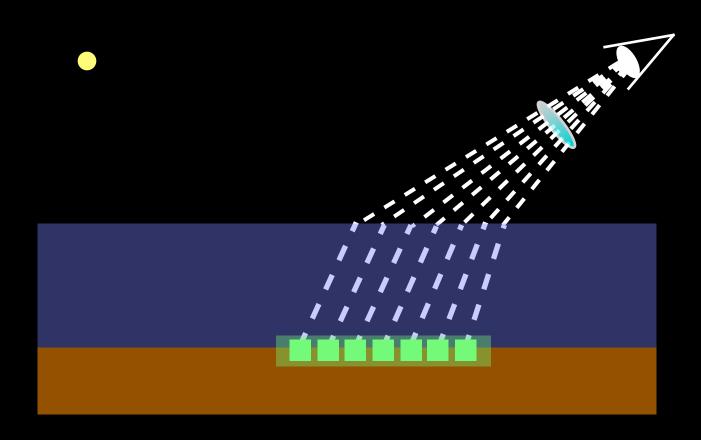
#### Lens Simulation with PPM





#### Lens Simulation with PPM



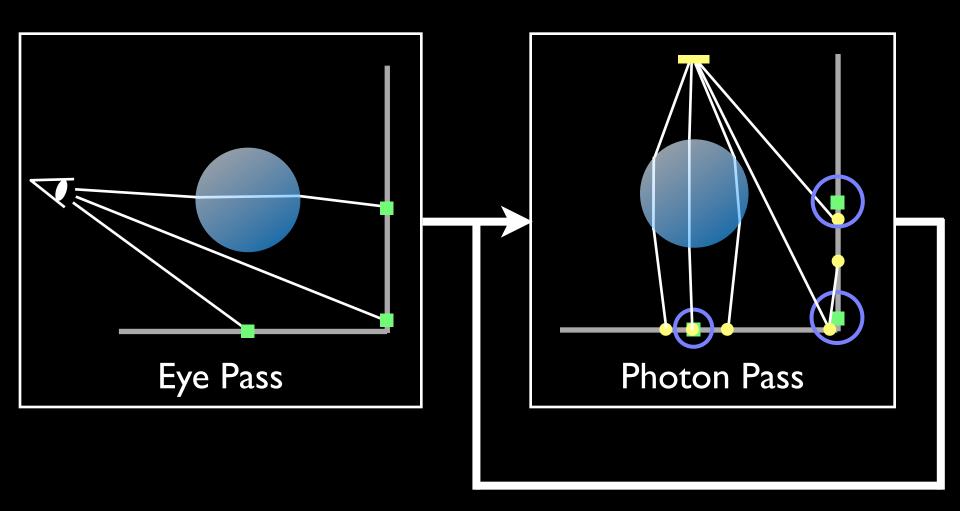


Infinite number of measurement points

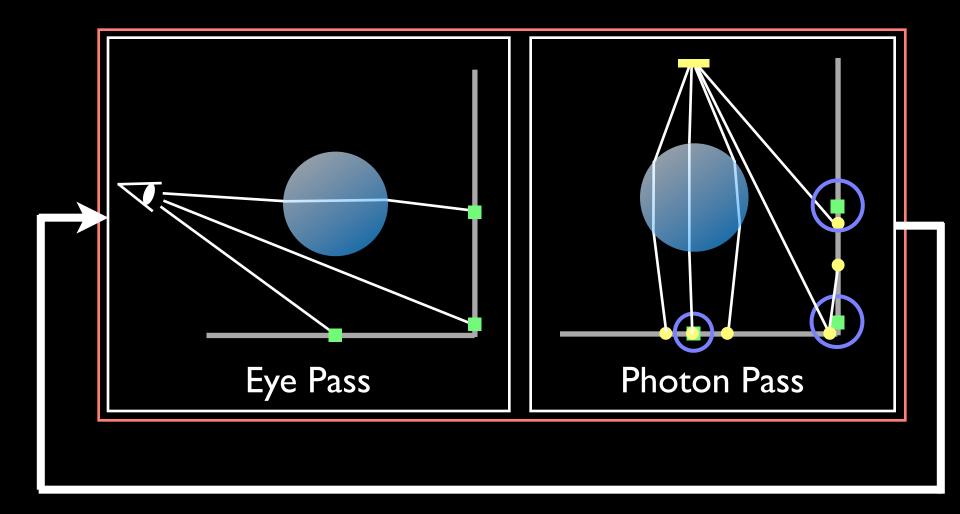




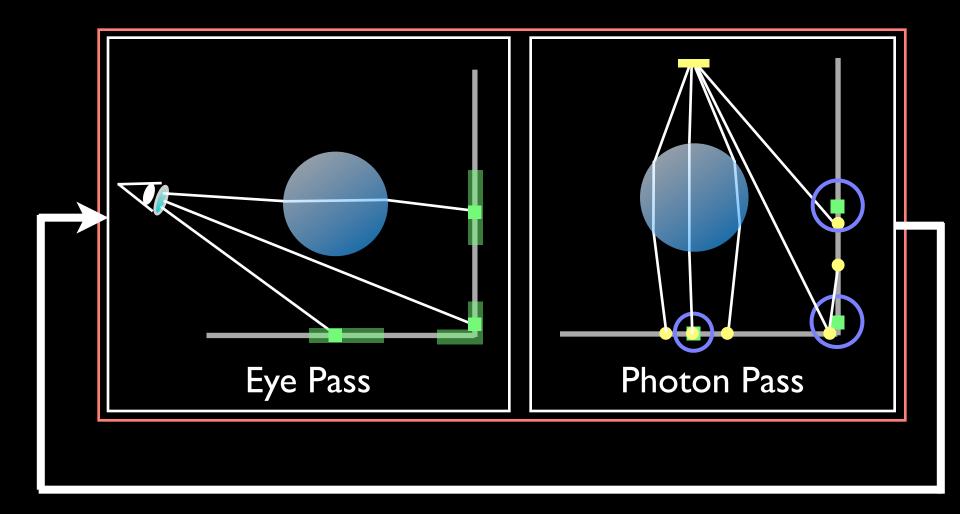




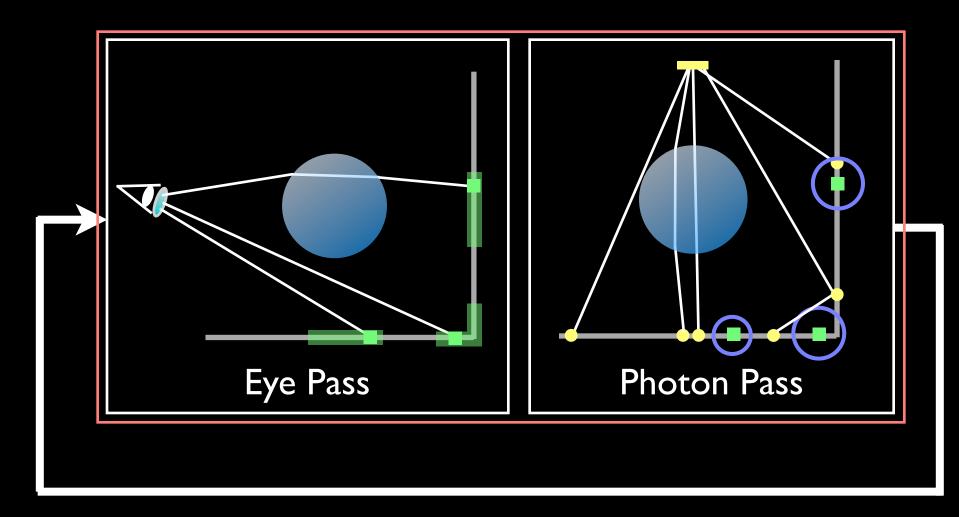




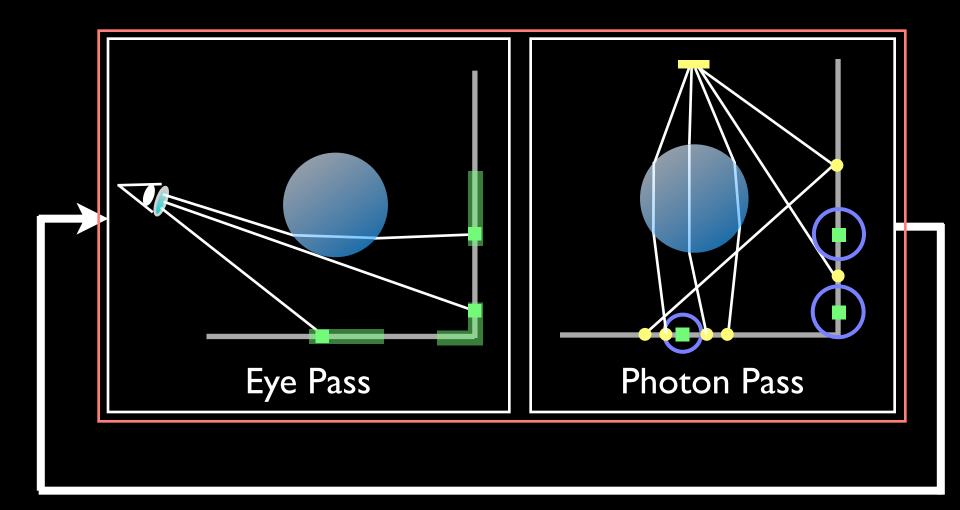












#### Stochastic Progressive Density Estimation



$$L_{i}(S, \vec{\omega}) = \frac{\tau_{i}(S, \vec{\omega})}{\pi R_{i}(S)^{2} N_{e}(i)}$$

$$\lim_{i \to \infty} L_i(S, \vec{\omega}) = L(S, \vec{\omega})$$

Provable convergence to average photon density over a region S

## Bidirectional Path Tracing





# Original PPM





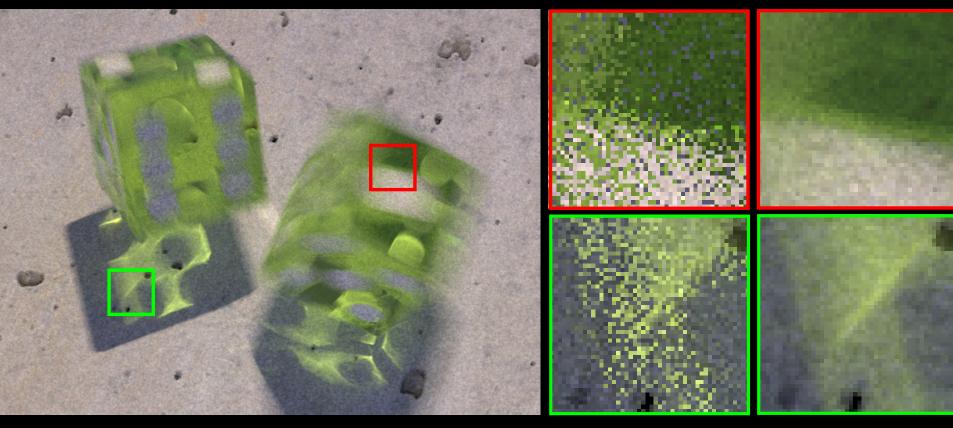
## Stochastic PPM





### **Motion Blur**





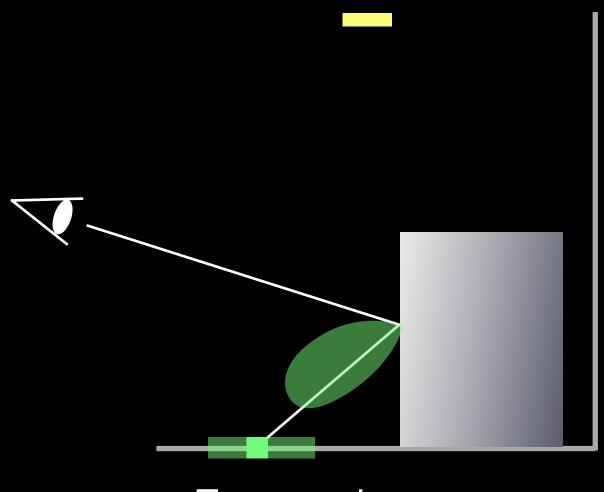
Equal time, Equal memory

PPM

**SPPM** 

## **Glossy Materials with SPPM**

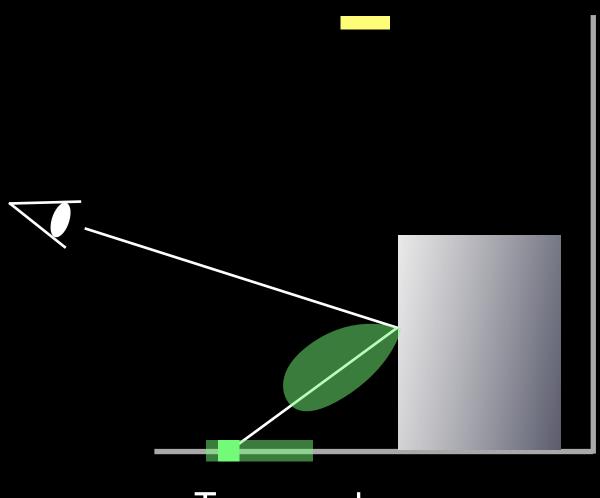




Trace one bounce rays

## **Glossy Materials with SPPM**

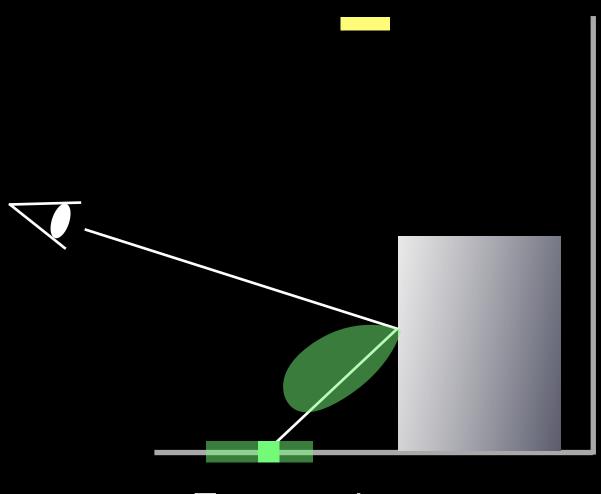




Trace one bounce rays

## **Glossy Materials with SPPM**

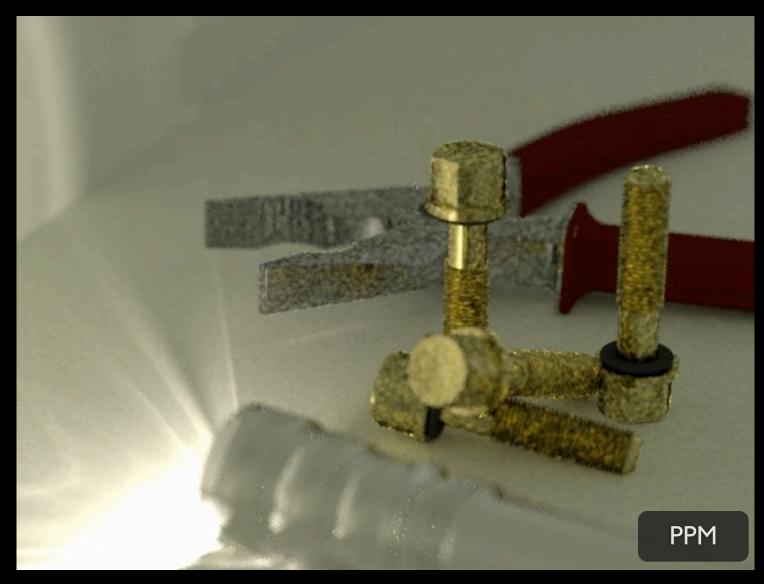




Trace one bounce rays

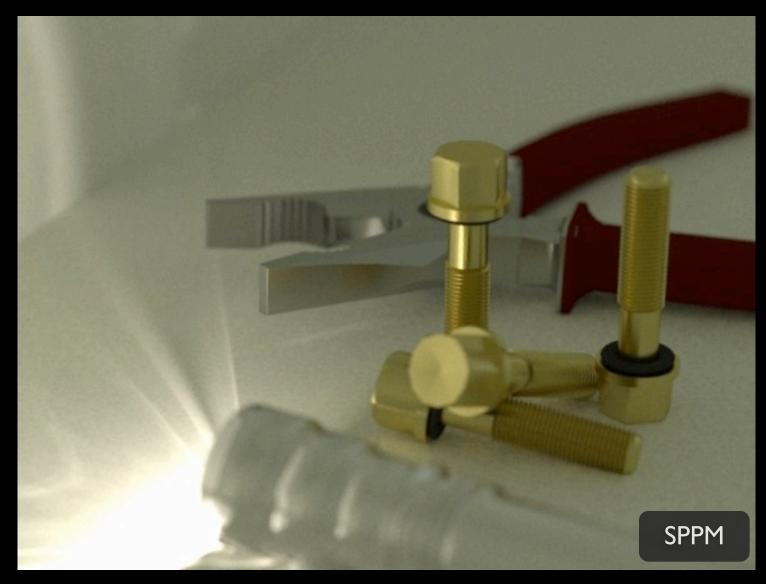
## DOF + Glossy Reflection + Caustics





## DOF + Glossy Reflection + Caustics

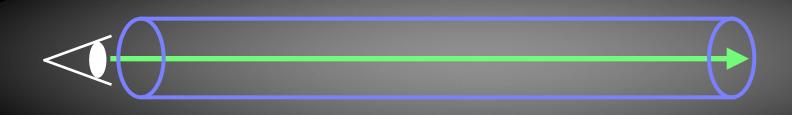








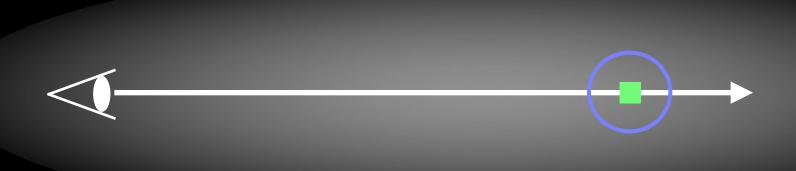
- Two basic approaches
  - Progressive beam radiance estimate (PPM)
  - Stochastically sample a point along eye ray (SPPM)



PPM style: cylinder progressive estimate



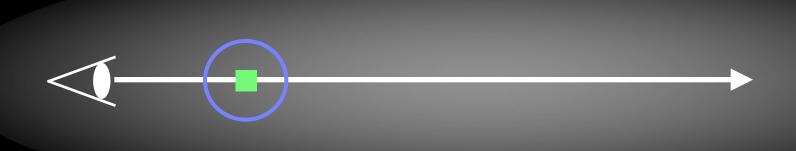
- Two basic approaches
  - Progressive beam radiance estimate (PPM)
  - Stochastically sample a point along eye ray (SPPM)



SPPM style: stochastic sampling along a ray



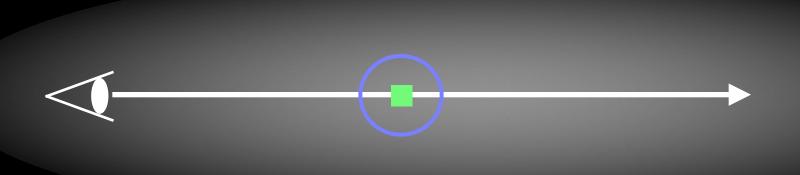
- Two basic approaches
  - Progressive beam radiance estimate (PPM)
  - Stochastically sample a point along eye ray (SPPM)



SPPM style: stochastic sampling along a ray



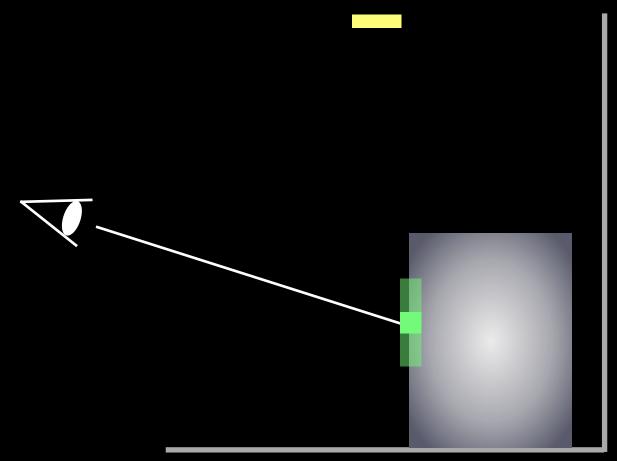
- Two basic approaches
  - Progressive beam radiance estimate (PPM)
  - Stochastically sample a point along eye ray (SPPM)



SPPM style: stochastic sampling along a ray

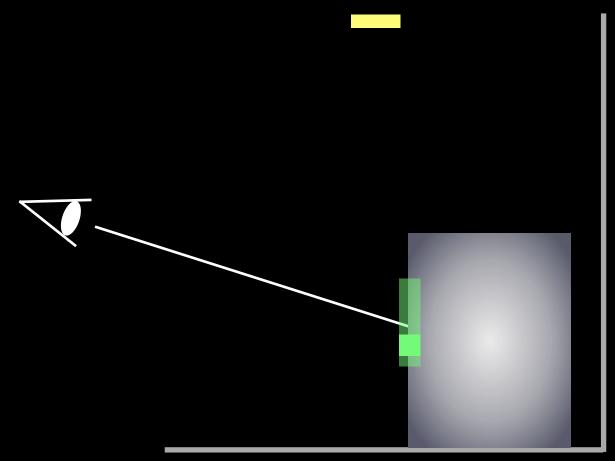


- Stochastically sample a disc around the original location
  - e.g., BSSRDF Importance Sampling [King et al. 2013]



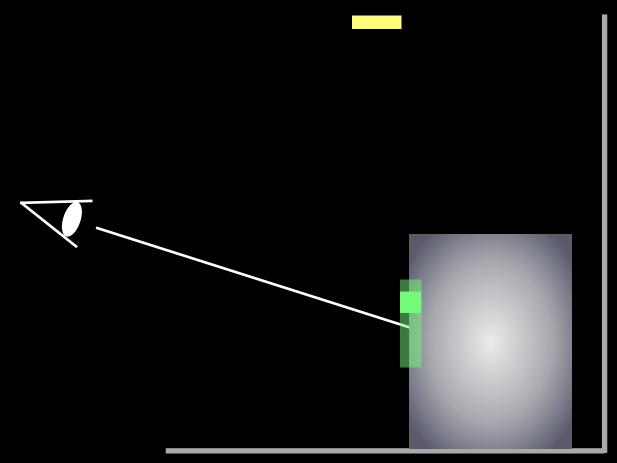


- Stochastically sample a disc around the original location
  - e.g., BSSRDF Importance Sampling [King et al. 2013]





- Stochastically sample a disc around the original location
  - e.g., BSSRDF Importance Sampling [King et al. 2013]





- Stochastically sample a disc around the original location
  - e.g., BSSRDF Importance Sampling [King et al. 2013]



## Full Spectrum Rendering



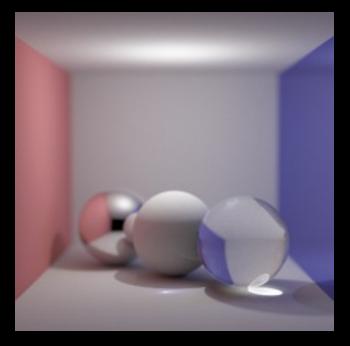
Pick one random wavelength per iteration



#### **GPUSPPM**



- SPPM implementation using GLSL
  - Based on smallppm
  - DOF, motion blur, glossy reflection, full spectrum
  - Stochastic hashing for accel. data structure "Parallel Progressive Photon Mapping on GPUs", 2010



cs.au.dk/~toshiya/gpusppm.zip





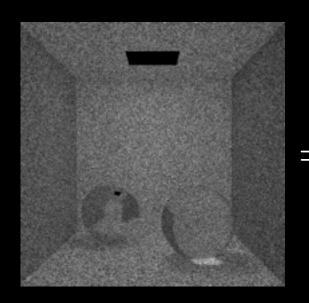
How much computation is enough?

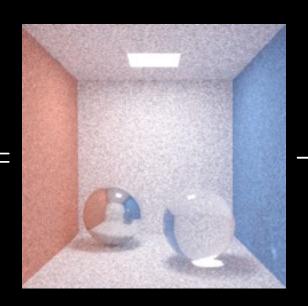
#### **Definition of Error**

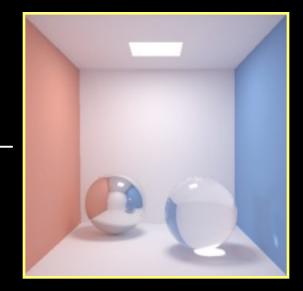


Difference between computed and exact

$$E_i = L_i - \boxed{L}$$
 Unknown





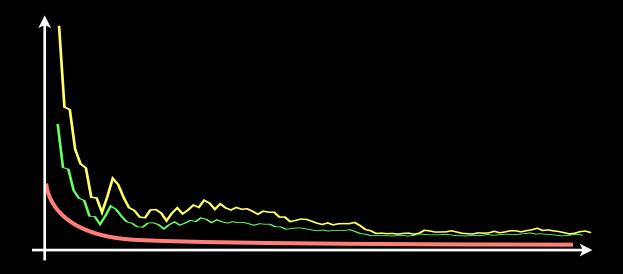


### Decomposition of Error



Bias-Noise decomposition

$$E_i = L_i - L = B_i + N_i$$



#### Stochastic Error Bound Derivation



$$E_i = L_i - L = B_i + N_i$$

Stochastic error bound

User-defined Probability

$$P(|E_i| \le E_{b,i}) \le 1 - \beta$$

$$E_{b,i} = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}} + |B_i|$$

#### Stochastic Error Bound Derivation



$$E_i = L_i - L = B_i + N_i$$

$$P(|E_i| \le E_{b,i}) \le 1 - \beta$$

$$E_{b,i} = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}} + |B_i|$$

Error due to Noise



#### Stochastic Error Bound Derivation



$$E_i = L_i - L = B_i + N_i$$

$$P(|E_i| \le E_{b,i}) \le 1 - \beta$$

$$E_{b,i} = C_{i,1-rac{eta}{2}} \sqrt{rac{ ext{Variance}}{i}} + |B_i|$$

Error due to Bias



#### **Bias Estimation**



- Bias can be approximated by Laplacian
- Progressive estimation of Laplacian (and any derivatives)

$$B_i \approx k_2 R_i^2 \Delta L$$

 $k_2$  constant

 $R_i$  search radius

 $\Delta L$  Laplacian of radiance

### Kernel

$$L_i(x) = \frac{\sum K(x_p - x) f_r(x, \omega, \omega_p) \Phi(x_p, x)}{\pi R_i^2}$$

#### **Bias Estimation**



- Bias can be approximated by Laplacian
- Progressive estimation of Laplacian (and any derivatives)

$$B_i \approx k_2 R_i^2 \Delta L$$

 $k_2$  constant

 $R_i$  search radius

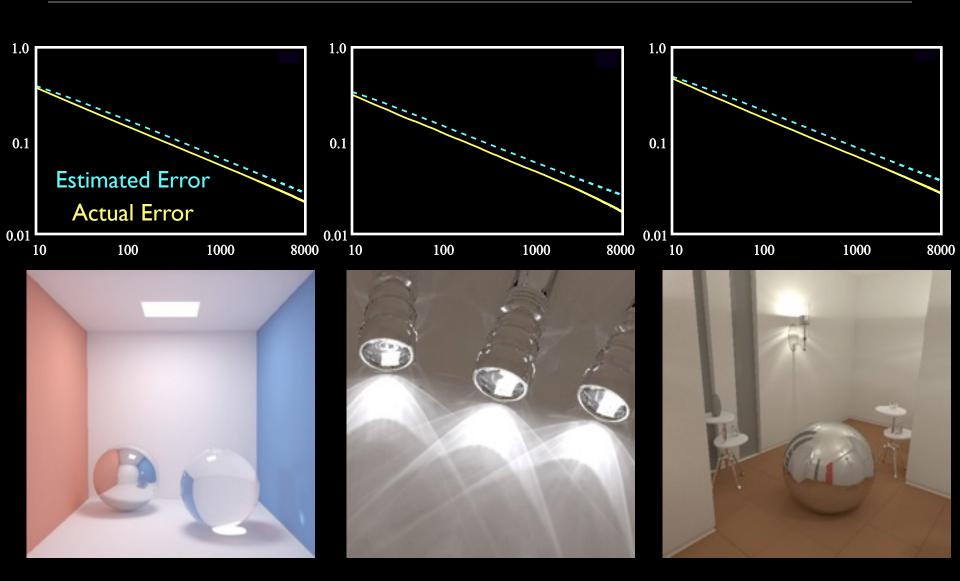
 $\Delta L$  Laplacian of radiance

## Laplacian of the kernel

$$\Delta L_i(x) = \frac{\sum \Delta K(x_p - x) f_r(x, \omega, \omega_p) \Phi(x_p, x)}{\pi R_i^2}$$

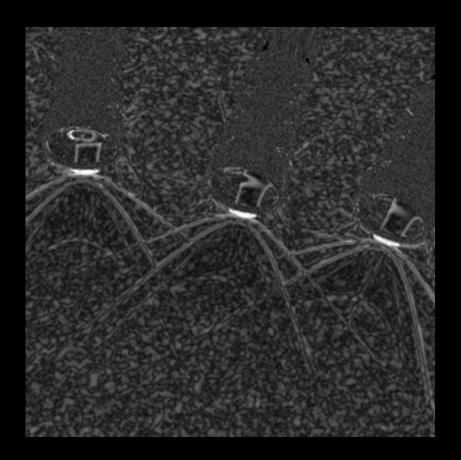
## **Error Estimation**



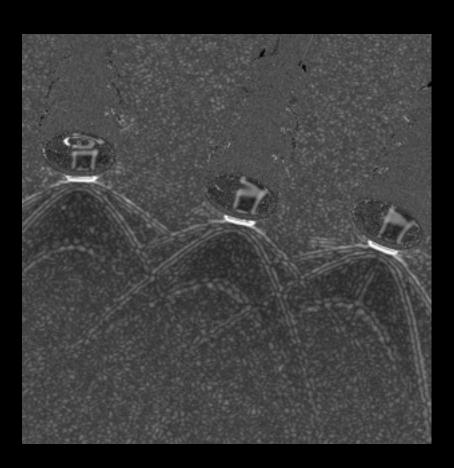


## **Error Estimation**





**Actual Error** 

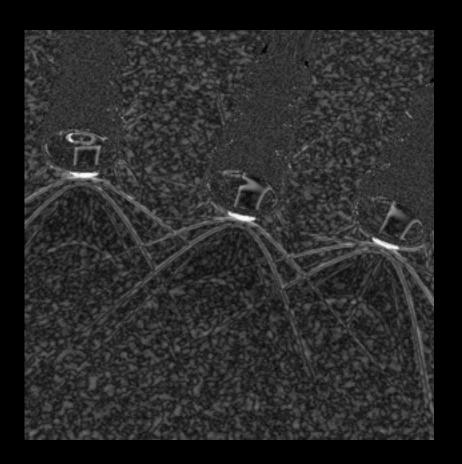


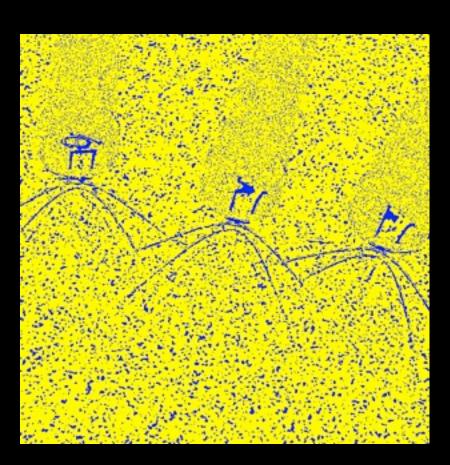
**Estimated Error Bound** 



### **Error Estimation**







**Actual Error** 

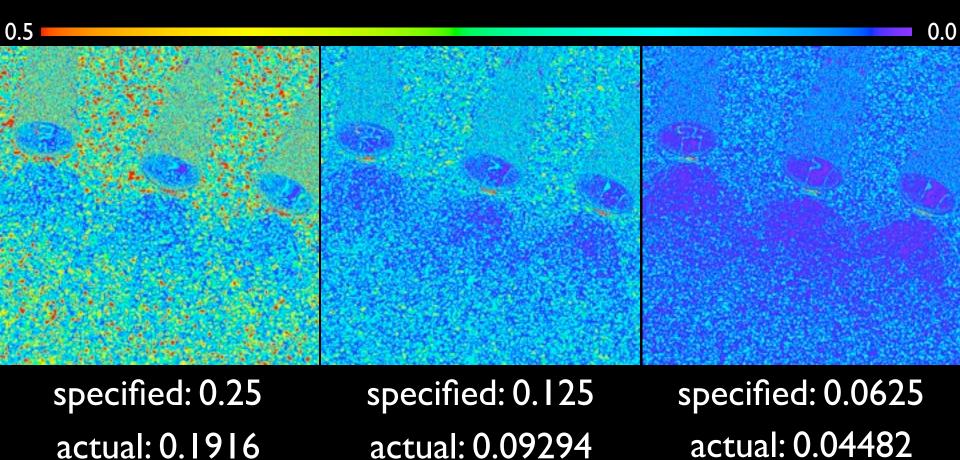
Bounded/Not bounded

Specified: 90% Actual: 85%



## **Automatic Rendering Termination**



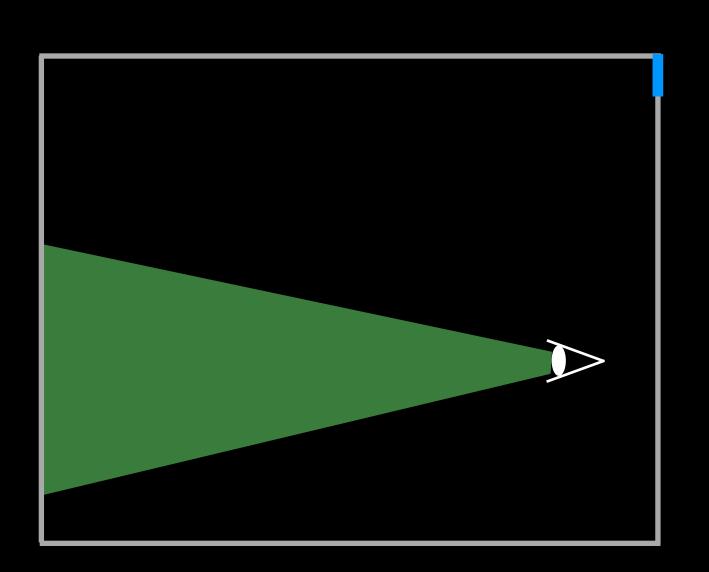


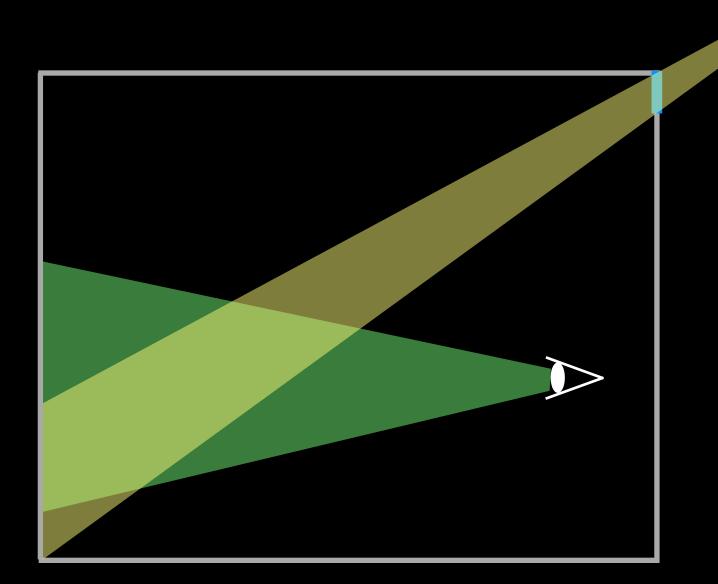
1.3 times overestimation on average



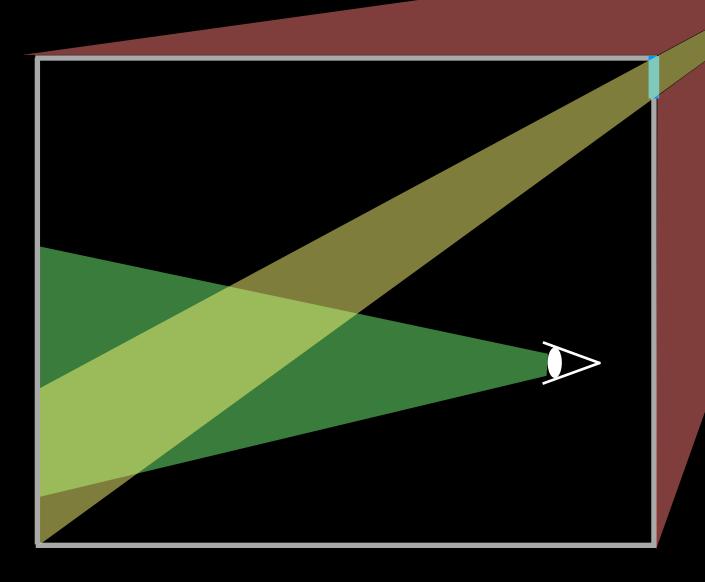
## Light source







## Invisible paths = wasted computation



# Metropolis Light Transport





#### Ideal



- Can we combine these two algorithms?
  - MLT: Efficient for difficult lighting scenarios
  - PPM: Robust to complex types of light paths

#### Ideal



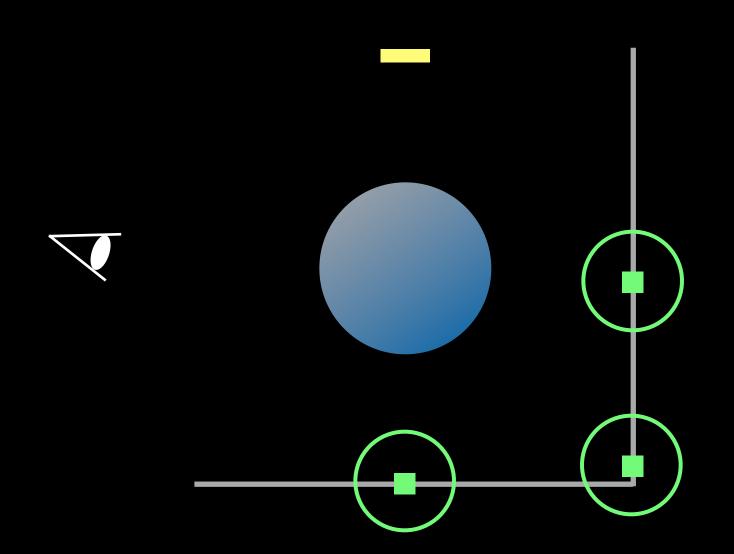
- Can we combine these two algorithms?
  - MLT: Efficient for difficult lighting scenarios
  - PPM: Robust to complex types of light paths

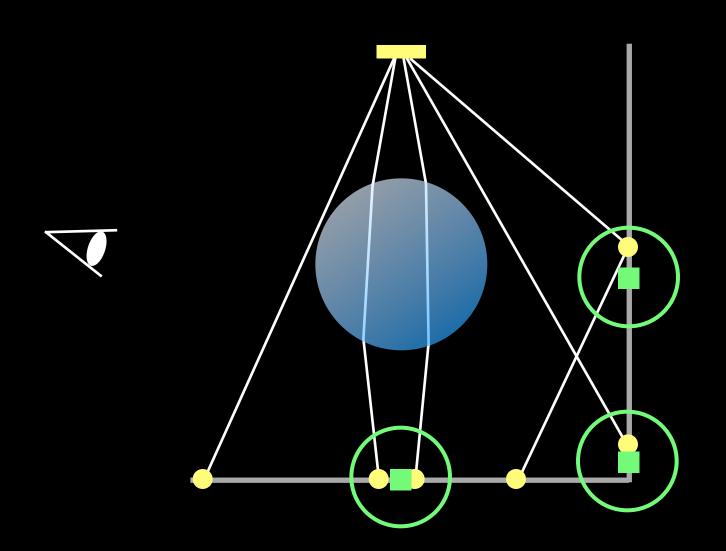


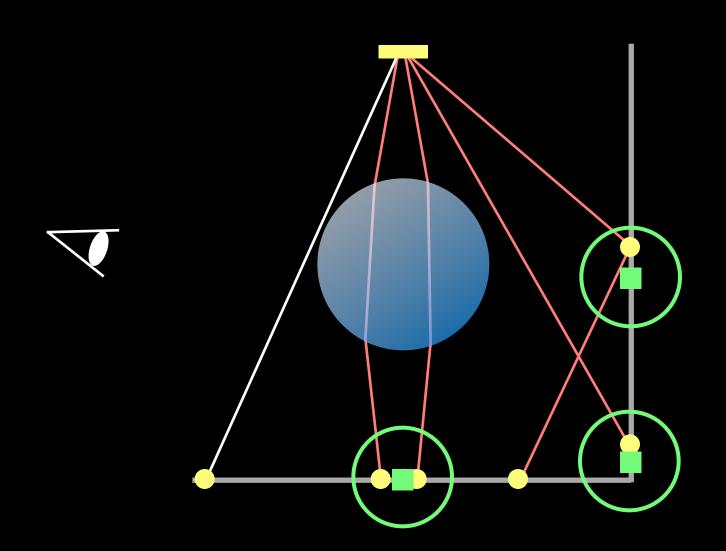
## **Key Observation**

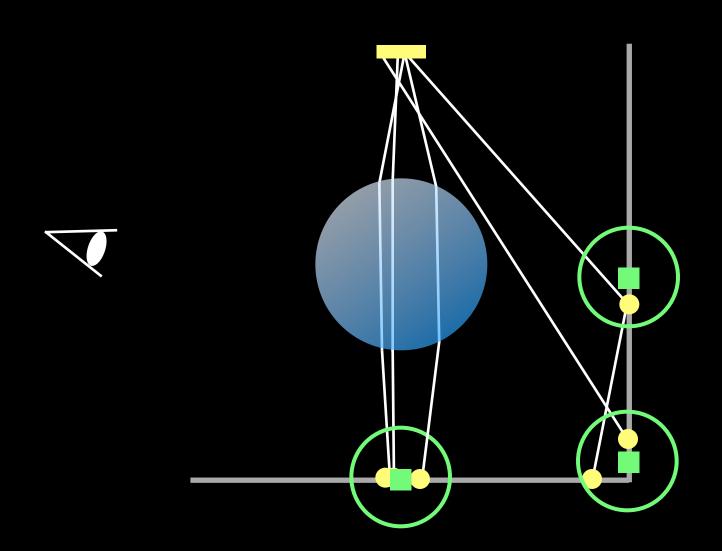


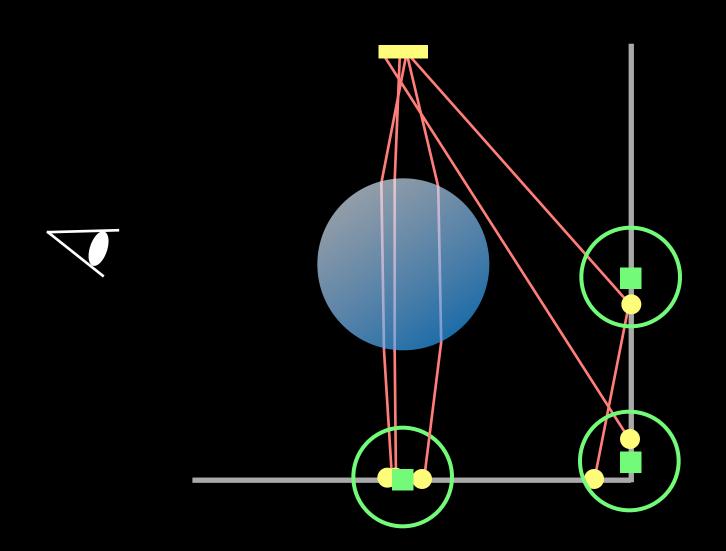
- We can determine whether a photon path is visible or not
  - Because PPM stores visible points from the eye
  - Contributed to at least one visible point = visible







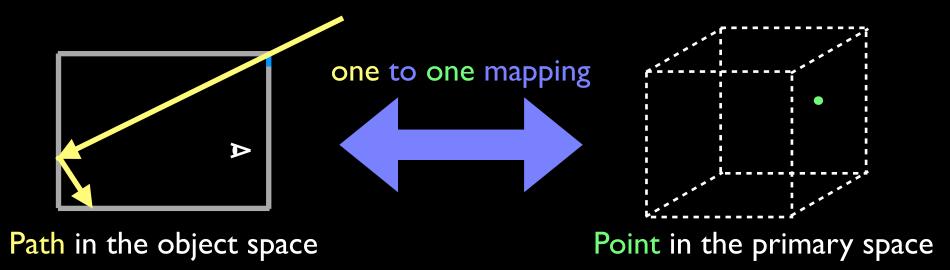




## **Primary Space**



- Mapping a path to a point [Kelemen et al. 2002]
- ▶ Path = vector of random numbers  $\vec{u} = (\xi_1, \dots, \xi_N) \in (0, 1)^N$



## Visibility-based Sampling



- Consider space of random numbers
- Photon path visibility function

If the photon is not visible:

$$V\left(\vec{u}\right) = 0$$

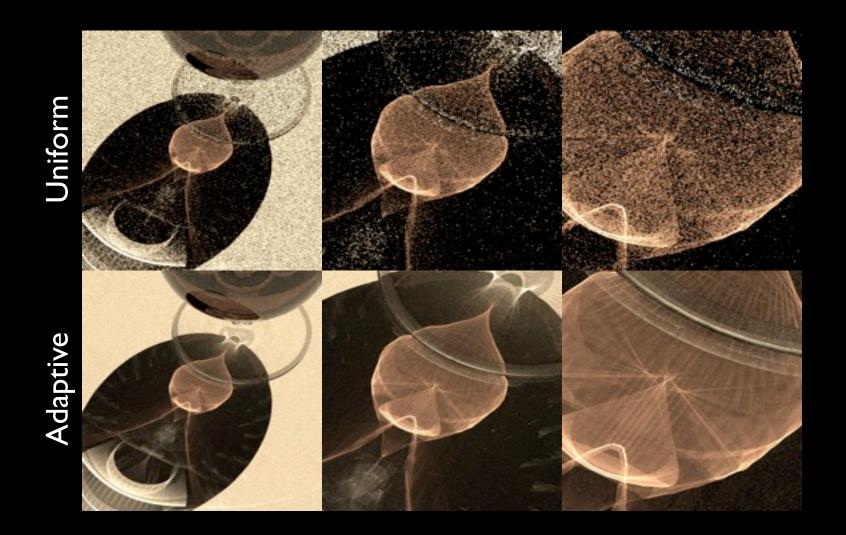
If the photon is visible:

$$V\left(\vec{u}\right) = 1$$

Sample  $V\left( \overrightarrow{u} \right)$  using Markov chain Monte Carlo Methods

# **Small-scale Lighting Details**





## **Automatic Parameter Tuning**





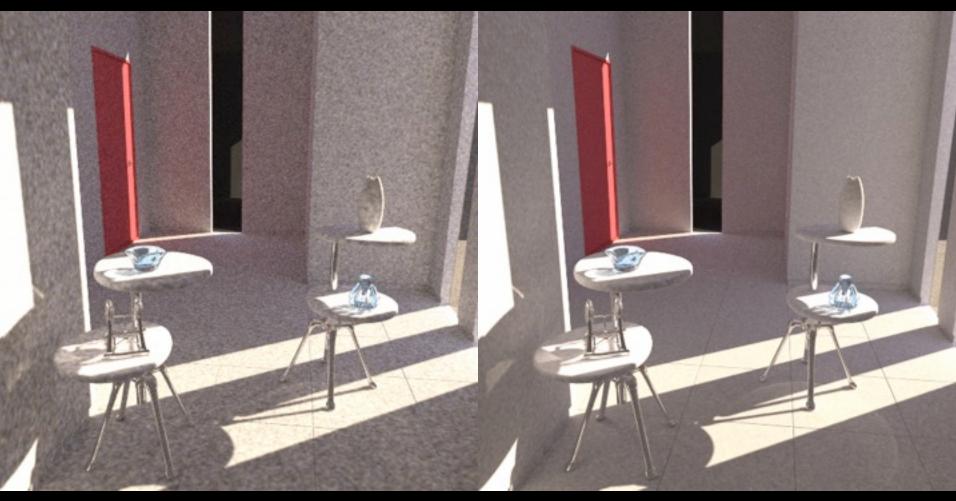
Value is too small

Automatic

Value is too large

# Sunlit Room



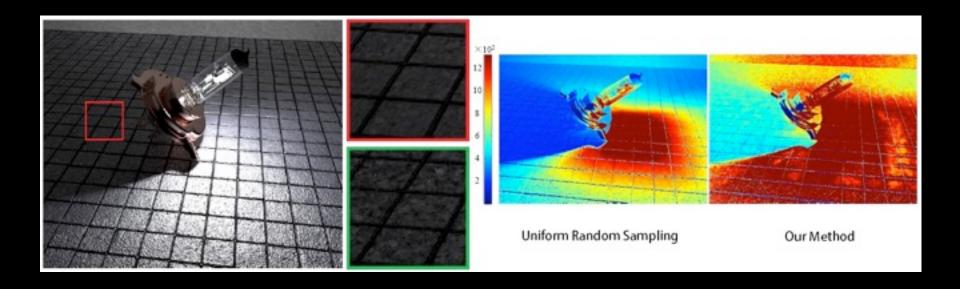


Uniform Adaptive

Y 🔷

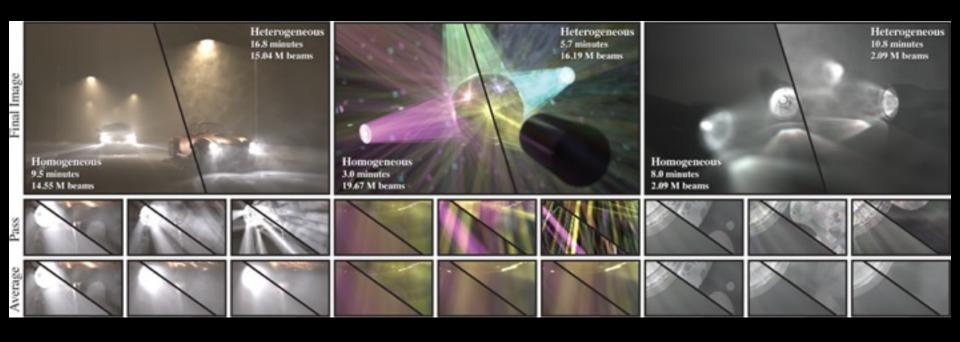


Adaptive photon tracing based on photon density on the image [Chen et al. 2011]





- Progressive photon beams [Jarosz et al. 2011]
  - Wojciech will talk more about it





Efficient rendering of dynamic scenes [Weiss and Grosch 2012]





- Combine density estimation and MC integration [Hachisuka et al. 2012, Georgiev et al. 2012]
  - Iliyan will talk more about it









Q: Is PPM unbiased?





- Q: Is PPM unbiased?
- A: It is biased and consistent, but does not matter in practice.

$$E[X] = \lim_{N \to \infty} \sum_{i=1}^{N} x_i$$

BOTH unbiased and consistent methods need inf. samples!



- Q: Is PPM unbiased?
- A: It is biased and consistent, but does not matter in practice.

$$E[X] = \lim_{N \to \infty} \sum_{i=1}^{N} x_i$$

BOTH unbiased and consistent methods need inf. samples!

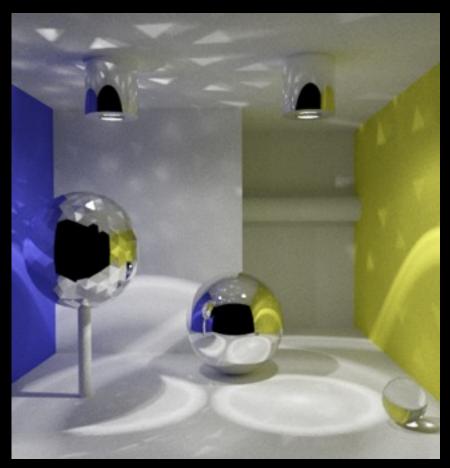
"Five Common Misconceptions about Bias in Light Transport Simulation" cs.au.dk/~toshiya/misc.pdf



Q: Do we still use global + caustics separation?



- Q: Do we still use global + caustics separation?
- A: No. Just render everything as one.







Q: Is PPM slower for diffuse scenes than other methods?



- Q: Is PPM slower for diffuse scenes than other methods?
- A: True, but not much, and you can do more.







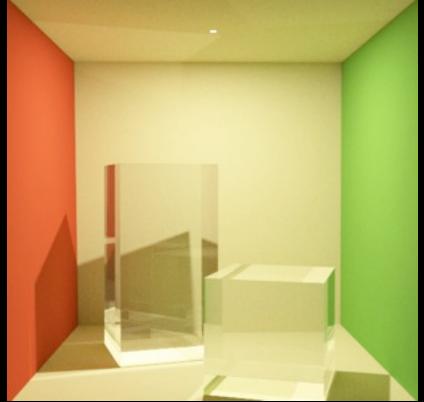
**PPM** 





- Q: Is PPM slower for diffuse scenes than other methods?
- A: True, but not much, and you can do more.





**Bidirectional PT** 

**PPM** 

### Summary



- SPPM = PPM + Distributed Ray Tracing
- Error estimation is available
- Adaptive photon tracing based on visibility
- Lots of useful extensions
- My opinion: (S)PPM + extensions is very hard to "break"
  - Just works fine in really many cases

## More details



cs.au.dk/~toshiya



### Next Talk



More advanced and efficient radius reduction