Progressive Photon Mapping Extensions

Toshiya Hachisuka
Aarhus University

State of the Art in Photon Density Estimation

💠 🧔

Distribution Ray Tracing

Computes average illumination [Cook et al. 84]

Lens Simulation with PPM

Lens Simulation with PPM

Infinite number of measurement points

Stochastic Progressive Density Estimation

$$L_{i}(S, \vec{\omega}) = \frac{\tau_{i}(S, \vec{\omega})}{\pi R_{i}(S)^{2} N_{e}(i)}$$

$$\lim_{i \to \infty} L_i(S, \vec{\omega}) = L(S, \vec{\omega})$$

Provable convergence to average photon density over a region S

Bidirectional Path Tracing

Original PPM

Stochastic PPM

Motion Blur

Equal time, Equal memory

PPM

SPPM

Glossy Materials with SPPM

Trace one bounce rays

Glossy Materials with SPPM

Trace one bounce rays

Glossy Materials with SPPM

Trace one bounce rays

DOF + Glossy Reflection + Caustics

DOF + Glossy Reflection + Caustics

- Two basic approaches
 - Progressive beam radiance estimate (PPM)
 - Stochastically sample a point along eye ray (SPPM)

PPM style: cylinder progressive estimate

- Two basic approaches
 - Progressive beam radiance estimate (PPM)
 - Stochastically sample a point along eye ray (SPPM)

SPPM style: stochastic sampling along a ray

- Two basic approaches
 - Progressive beam radiance estimate (PPM)
 - Stochastically sample a point along eye ray (SPPM)

SPPM style: stochastic sampling along a ray

- Two basic approaches
 - Progressive beam radiance estimate (PPM)
 - Stochastically sample a point along eye ray (SPPM)

SPPM style: stochastic sampling along a ray

- Stochastically sample a disc around the original location
 - e.g., BSSRDF Importance Sampling [King et al. 2013]

- Stochastically sample a disc around the original location
 - e.g., BSSRDF Importance Sampling [King et al. 2013]

- Stochastically sample a disc around the original location
 - e.g., BSSRDF Importance Sampling [King et al. 2013]

- Stochastically sample a disc around the original location
 - e.g., BSSRDF Importance Sampling [King et al. 2013]

Full Spectrum Rendering

Pick one random wavelength per iteration

GPUSPPM

- SPPM implementation using GLSL
 - Based on smallppm
 - DOF, motion blur, glossy reflection, full spectrum
 - Stochastic hashing for accel. data structure "Parallel Progressive Photon Mapping on GPUs", 2010

cs.au.dk/~toshiya/gpusppm.zip

How much computation is enough?

Definition of Error

Difference between computed and exact

$$E_i = L_i - \boxed{L}$$
 Unknown

Decomposition of Error

Bias-Noise decomposition

$$E_i = L_i - L = B_i + N_i$$

Stochastic Error Bound Derivation

$$E_i = L_i - L = B_i + N_i$$

Stochastic error bound

User-defined Probability

$$P(|E_i| \le E_{b,i}) \le 1 - \beta$$

$$E_{b,i} = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}} + |B_i|$$

Stochastic Error Bound Derivation

$$E_i = L_i - L = B_i + N_i$$

$$P(|E_i| \le E_{b,i}) \le 1 - \beta$$

$$E_{b,i} = C_{i,1-\frac{\beta}{2}} \sqrt{\frac{\text{Variance}}{i}} + |B_i|$$

Error due to Noise

Stochastic Error Bound Derivation

$$E_i = L_i - L = B_i + N_i$$

$$P(|E_i| \le E_{b,i}) \le 1 - \beta$$

$$E_{b,i} = C_{i,1-rac{eta}{2}} \sqrt{rac{ ext{Variance}}{i}} + |B_i|$$

Error due to Bias

Bias Estimation

- Bias can be approximated by Laplacian
- Progressive estimation of Laplacian (and any derivatives)

$$B_i \approx k_2 R_i^2 \Delta L$$

 k_2 constant

 R_i search radius

 ΔL Laplacian of radiance

Kernel

$$L_i(x) = \frac{\sum K(x_p - x) f_r(x, \omega, \omega_p) \Phi(x_p, x)}{\pi R_i^2}$$

Bias Estimation

- Bias can be approximated by Laplacian
- Progressive estimation of Laplacian (and any derivatives)

$$B_i \approx k_2 R_i^2 \Delta L$$

 k_2 constant

 R_i search radius

 ΔL Laplacian of radiance

Laplacian of the kernel

$$\Delta L_i(x) = \frac{\sum \Delta K(x_p - x) f_r(x, \omega, \omega_p) \Phi(x_p, x)}{\pi R_i^2}$$

Error Estimation

Error Estimation

Actual Error

Estimated Error Bound

Error Estimation

Actual Error

Bounded/Not bounded

Specified: 90% Actual: 85%

Automatic Rendering Termination

1.3 times overestimation on average

Light source

Invisible paths = wasted computation

Metropolis Light Transport

Ideal

- Can we combine these two algorithms?
 - MLT: Efficient for difficult lighting scenarios
 - PPM: Robust to complex types of light paths

Ideal

- Can we combine these two algorithms?
 - MLT: Efficient for difficult lighting scenarios
 - PPM: Robust to complex types of light paths

Key Observation

- We can determine whether a photon path is visible or not
 - Because PPM stores visible points from the eye
 - Contributed to at least one visible point = visible

Primary Space

- Mapping a path to a point [Kelemen et al. 2002]
- ▶ Path = vector of random numbers $\vec{u} = (\xi_1, \dots, \xi_N) \in (0, 1)^N$

Visibility-based Sampling

- Consider space of random numbers
- Photon path visibility function

If the photon is not visible:

$$V\left(\vec{u}\right) = 0$$

If the photon is visible:

$$V\left(\vec{u}\right) = 1$$

Sample $V\left(\overrightarrow{u} \right)$ using Markov chain Monte Carlo Methods

Small-scale Lighting Details

Automatic Parameter Tuning

Value is too small

Automatic

Value is too large

Sunlit Room

Uniform Adaptive

Y 🔷

Adaptive photon tracing based on photon density on the image [Chen et al. 2011]

- Progressive photon beams [Jarosz et al. 2011]
 - Wojciech will talk more about it

Efficient rendering of dynamic scenes [Weiss and Grosch 2012]

- Combine density estimation and MC integration [Hachisuka et al. 2012, Georgiev et al. 2012]
 - Iliyan will talk more about it

Q: Is PPM unbiased?

- Q: Is PPM unbiased?
- A: It is biased and consistent, but does not matter in practice.

$$E[X] = \lim_{N \to \infty} \sum_{i=1}^{N} x_i$$

BOTH unbiased and consistent methods need inf. samples!

- Q: Is PPM unbiased?
- A: It is biased and consistent, but does not matter in practice.

$$E[X] = \lim_{N \to \infty} \sum_{i=1}^{N} x_i$$

BOTH unbiased and consistent methods need inf. samples!

"Five Common Misconceptions about Bias in Light Transport Simulation" cs.au.dk/~toshiya/misc.pdf

Q: Do we still use global + caustics separation?

- Q: Do we still use global + caustics separation?
- A: No. Just render everything as one.

Q: Is PPM slower for diffuse scenes than other methods?

- Q: Is PPM slower for diffuse scenes than other methods?
- A: True, but not much, and you can do more.

PPM

- Q: Is PPM slower for diffuse scenes than other methods?
- A: True, but not much, and you can do more.

Bidirectional PT

PPM

Summary

- SPPM = PPM + Distributed Ray Tracing
- Error estimation is available
- Adaptive photon tracing based on visibility
- Lots of useful extensions
- My opinion: (S)PPM + extensions is very hard to "break"
 - Just works fine in really many cases

More details

cs.au.dk/~toshiya

Next Talk

More advanced and efficient radius reduction