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Progressive photon mapping can be interpreted as an estimator that 

constructs the full paths from camera to light by constantly connecting two 

fresh subpaths.

The estimation is a sum, where W_n is the importance of the eye subpath and 

gamma_i is the outgoing radiance from a light subpath (photon), as described 

in Probabilistic PPM [KnausZwicker2011].

So, the actual construction is a regularized (imprecise) junction of two end 

vertices.
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We write this estimation for every photon map in a recursive manner. This is 

the first step that allows us to apply the knowledge about recursive (aka 

online) estimation accumulated in the statistical research.

To do that, we push the W_n term into the sum to reduce the expression to the 

canonical form of kernel estimation for the new function, which now represents 

the complete path contribution. 

Using this form, we can apply many statistical results from recursive estimation 

field.
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Radius, or kernel bandwidth, is the central parameter for efficiency of the 

kernel estimation in general.

Knaus and Zwicker shown that the radius must be decreased exponentially. 

This equation has two extremely important parameters. 

It is an initial radius; and a shrinkage rate alpha.

The alpha parameter is usually defined by user, while the initial radius can be 

selected using k-NN.
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This is a Box scene with complicated illumination.

We show how these two parameters affect the rendering.
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First, we initialize the algorithm with a large initial kNN-selected radius and a 

small alpha of 0.5. 

This leads to a lot of bias, like smoothened caustics due to the large initial 

radius, yet the noise quickly becomes apparent due to a rapid radius 

shrinkage.

The second case suffers from high image noise due to a small and quickly 

shrinking initial radius.

The third case demonstrates high bias that appears due to initially large and 

slowly shrinking radius.

In the fourth, a too-small initial radius can lead to high noise, while bias 

becomes apparent due to slow shrinkage rate.
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If we measure the convergence rate with different parameters alpha and r_0  

(vertically – MSE, horizontally – number of photons), it appears that the 

parameter alpha influences the slope of the plot (in log-log scale) in a non-

trivial manner. And parameter r_0 influences the starting error.
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First, we will show how to choose alpha parameter for asymptotically optimal 

convergence.
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Here, we will do an asymptotic analysis, focusing on the optimal alpha 

parameter. 

Note that under the asymptotic assumptions, there is no dependency on the 

other parameter r_0, 

since we analyze the convergence slope, but not the absolute value of the 

error.
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As it was explained by Toshiya Hachisuka in his part of the course, both bias 

and variance depend on this parameter. 

If we put them together into MSE (with some additional analysis described in 

the Adaptive Progressive Photon Mapping paper), we can deduce the 

asymptotic behavior of MSE with respect to the parameter alpha. The MSE 

plot has a minimum. 

The optimal asymptotic convergence rate is achieved with alpha = 2/3.

Interestingly, kernel-estimation-based methods are asymptotically slower than 

unbiased methods.
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Moreover, the asymptotic convergence rate of kernel estimation methods 

depends on the number of dimensions involved in the estimation.

This is a well-known formula in statistics for computing the asymptotic 

convergence rate of d-dimensional kernel estimation.

Note that unlike, for example, Monte Carlo methods, kernel estimation suffers 

from curse of dimensionality.

What does that mean for rendering? Every time we add a new dimension, we 

decrease the convergence rate and quickly face the curse of dimensionality.

For example, if we add kernel estimation in time domain for support of motion 

blur, then in this case we add one more dimension, and the convergence rate 

decreases. The same holds if we attempt to do spectral rendering by kernel 

estimation of wavelength during gathering. Both methods are not practically 

recommended, since they decrease the asymptotic convergence rate. In order 

to support motion blur and spectral rendering, one can pre-sample these 

domains before each pass, as was described by Toshiya Hachisuka in his part 

of the course.

Another interesting detail is that original volumetric photon mapping suffers 
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from slower convergence due to 3-dimensional kernel estimation (as opposed 

to 2 dimensions for regular photon mapping). Thus, using photon beams as a 

primitive is more desirable.
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This was an asymptotic analysis. In practice, we have to worry about behavior

of MSE on a finite number of photons.

We will show how to select the bandwidth (radius) parameter r to achieve 

faster convergence in finite time.
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To minimize the MSE on a finite set of samples, we optimize it w.r.t. the 

second free parameter, kernel radius (bandwidth) r.

In recursive estimation in statistics, this is also a well-known approach called 

bandwidth selection.
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As we can see from this plot, minimizing MSE with respect to the parameter 

alpha is not enough for practical rendering.

Even the optimal value of alpha, 2/3 (magenta), might lead to high MSE at 

early stages of rendering, while providing the steepest slope.

We will show that both variance and bias depend on kernel bandwidth (radius) 

r. 

It is possible to select the optimal bandwidth in a way to achieve the trade-off 

between variance and bias, using the past photon maps.
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As was mentioned by Toshiya Hachisuka earlier in this course, we know that 

the mean squared error of such recursive kernel estimator can be 

decomposed into variance and a bias squared.
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The variance in our case consists of two subterms: 

- the variance directly related to the kernel estimation (that is, the noisy 

distribution of photons);

- and the variance coming from the high-dimensional path integral.
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It can be shown that the measurement variance is significantly higher (see the 

original paper for details).
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Thus the major contributors to the error of photon mapping class methods are 

the variance stemming from the path sampling (image noise); and the bias 

introduced by kernel estimation (blurred illumination). This error directly 

depends on the two parameters (alpha and r) we described earlier.
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As was explained by Toshiya Hachisuka in his error analysis part of the 

course, both variance and bias depend on kernel bandwidth. 

Interestingly, both terms have a counter-dependence on the bandwidth, which 

suggests that we can balance between variance and bias just by changing this 

bandwidth r.

We generalize Toshiya’s error analysis for stochastic progressive photon 

mapping case, where the kernel estimation point can also vary.

In this case, bias depends on the so-called pixel Laplacian ∆𝐼, which can be 

intuitively explained as an average curvature of the estimated radiance around 

the all estimation points within the pixel. 

This pixel Laplacian is unknown and needs to be robustly estimated.
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In order to estimate pixel Laplacian, we expand it into Laplacians at each 

potential shading point.

This way we can estimate Laplacian with kernel method at a shading point and 

then compute a Monte-Carlo estimate of the resulting pixel Laplacian by taking 

into account the importance weight of the camera subpath and the probability 

of sampling this shading point.
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In order to estimate Laplacian at each shading point, Toshiya mentioned that 

the derivatives of the kernel can be used.

However, we found that such an estimation is instable on the radiance 

discontinuities, such as, for example, a hard edge of a shadow.

Thus, we use a recent approach of recursive finite differencing along tangent 

axes of the surface.

This is a standalone recursive estimator, which has multiple kernel estimators 

and computes the Laplacian as a recursive finite difference of them.

This estimator has its own independent shrinking bandwidth parameter h, 

which can be selected in a more simplified way and does not influence the 

quality of bandwidth selection too much (please see the original paper for more 

details on it).

Unlike kernel derivatives estimator, this recursive finite differencing estimator is 

robust on discontinuities, which is an important property for our bandwidth 

selection method.
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Now, that we have all the unknowns to select the optimal bandwidth on the fly, 

we can achieve faster convergence in practical scenarios of finite time. 

After estimating all the unknowns, we minimize the MSE with respect to the 

parameter r.

After a few photon maps, MSE becomes already smaller than with the best 

manually-chosen parameters.

However, at some point, the lines become parallel, which suggests that the 

asymptotic convergence rate is the same.

The proposed selector always tries to keep the balance between image noise 

and bias.

The selector uses past samples to estimate several auxiliary values, so it 

learns from the data.
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Here are some results.

Equal time comparison. Less variance in flat regions, yet caustic edges are 

sharp.
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Equal time comparison. Heavy out of focus region (different shading points 

within pixel support). 

Less variance, caustic edges remain sharp even out of focus, yet gathering 

radius is enlarged where possible.
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To conclude my part, we have deduced the asymptotic convergence rate for 

photon mapping class methods.

The asymptotic convergence is slower comparing to unbiased methods 

whenever one applies a kernel estimation (please notice that the slopes of the 

plots on the figure are different).

However, that does not necessarily mean the results are inferior – in many 

practical cases the initial error is much lower because of efficient variance 

reduction; and might still stay low after long rendering time.

The second part is the adaptive bandwidth (radius) selection.

The method uses the same photon map data to estimate the pixel Laplacian, 

thus an additional sampling is not needed.

This selection technique allows to significantly cut the amount of bias and 

variance in the image starting already from the first photon map. 

This property makes it attractive for fast interactive preview renderers, but also 

reduces the bias in final images.
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