Progressive Expectation–Maximization for Hierarchical Volumetric Photon Mapping

Wenzel Jakob^{1,2} Christian Regg^{1,3} Wojciech Jarosz¹

- ¹ Disney Research, Zürich
- ² Cornell University
- ³ ETH Zürich

Volumetric photon mapping

2. Radiance estimate

Issues

- high-frequency illumination requires many photons
- time spent on photons that contribute very little
- prone to temporal flickering

Beam radiance estimate: 917K photons

Per-pixel render time

Beam radiance estimate: 917K photons

Render time: 281 s

Per-pixel render time

Our method: 4K Gaussians

Render time: 125 s

Per-pixel render time

Our approach:

- represent radiance using a Gaussian mixture model (GMM)
- fit using progressive expectation maximization (EM)
- render with multiple levels of detail

Beam radiance estimate: 4M photons

Our method: 16K Gaussians

Our approach:

- represent radiance using a Gaussian mixture model (GMM)
- fit using progressive expectation maximization (EM)
- render with multiple levels of detail

Related work

 Diffusion based photon mapping [Schjøth et al. 08]

Photon relaxation
 [Spencer et al. 09]

 Hierarchical photon mapping [Spencer et al. 09]

Density estimation

Nonparametric:

Count the number of photons within a small region

Density estimation

Given photons x_1, x_2, \ldots

approximately determine their density f

Nonparametric:

Count the number of photons within a small region

Parametric:

• Find suitable parameters for a known distribution

Gaussian mixture models

• Photon density modeled as a weighted sum of Gaussians:

$$f(\mathbf{x} \mid \Theta) = \sum_{i=1}^{k} w_i \ g(\mathbf{x} \mid \Theta_i)$$

Gaussian mixture models

• Photon density modeled as a weighted sum of Gaussians:

$$f\left(\mathbf{x} \mid \Theta\right) = \sum_{i=1}^{k} w_i \ g\left(\mathbf{x} \mid \Theta_i\right)$$

256 Gaussians

1024 Gaussians

4096 Gaussians

16384 Gaussians

[Papas et al.]

Target density

Gaussian mixture models

• Photon density modeled as a weighted sum of Gaussians:

$$f\left(\mathbf{x} \mid \Theta\right) = \sum_{i=1}^{k} w_i \ g\left(\mathbf{x} \mid \Theta_i\right)$$

Unknown parameters (-):

1. Weights

2. Means

3. Covariance matrices

Maximum likelihood estimation

Approach: find the "most likely" parameters, i.e.

Expectation maximization

• Two components:

E-Step: establish soft assignment between

photons and Gaussians

M-Step: maximize the expected likelihood

- Finds a locally optimal solution
 - → good starting guess needed!
- Slow and scales poorly $\mathcal{O}(n^2)$ (where n: photon count)

Expectation maximization

Accelerated EM by [Verbeek et al. 06]

Accelerated EM

Stored cell statistics:

- photon count
- mean position
- average outer product

Progressive EM

Stored cell statistics:

- photon count
- mean position
- average outer product

Our modifications:

• better cell refinement

Progressive EM

Stored cell statistics:

- photon count
- mean position
- average outer product

Our modifications:

- better cell refinement
- progressive photons shooting passes

Progressive EM

Stored cell statistics:

- photon count
- mean position
- average outer product

Our modifications:

- better cell refinement
- progressive photons shooting passes
- reduced complexity $\mathcal{O}(n^2) \to \mathcal{O}(n \log n)$

Pipeline overview

Rendering

$$pixel value = \sum_{i=1}^{k} contrib(i)$$

$$contrib(i) = \int_{a}^{b} g(\mathbf{r}(t)|\bar{\Theta}_{i}) e^{-\sigma_{t} t} dt = C_{0} \left[erf\left(\frac{C_{3} + 2C_{2}b}{2\sqrt{C_{2}}}\right) - erf\left(\frac{C_{3} + 2C_{2}a}{2\sqrt{C_{2}}}\right) \right]$$

• • •

Level of detail hierarchy

Agglomerative construction:

 Repeatedly merge nearby Gaussians based on their Kullback-Leibler divergence

Rendering

Example hierarchy:

Criterion 1: bounding box intersected?

Criterion 2: solid angle large enough?

Criterion 3: attenuation low enough?

BRE: 1M Photons

23+192=215 s

Our method: 4K Gaussians (fit to 1M photons)

35+24 = 59 s(3.6×)

BRE: 18M Photons

507+609 = 1116 s

Our method: 64K Gaussians (fit to 18M photons)

868+66 = 934 s

BRE: 4M Photons

89 + 638 = 727 s

Our method: 16K Gaussians

$$330 + 127 = 457 s$$
(1.6×)

Temporal Coherence

- Feed the result of the current frame into the next one
 - → Faster fitting, no temporal noise

[Video]

[Video]

GPU-based rasterizer:

- Anisotropic Gaussian splat shader: 30 lines of GLSL
- Gaussian representation is very compact (4096-term GMM requires only ~240KB of storage)

Conclusion

Contributions

- Rendering technique based on parametric density estimation
- Uses a progressive and optimized variant of accelerated EM
- Compact & hierarchical representation of volumetric radiance
- Extensions for temporal coherence and real-time visualization

