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Motivation
Volumetric photon mapping

1. Trace photons 2. Radiance estimate

Issues

• high-frequency illumination requires many photons

• time spent on photons that contribute very little

• prone to temporal !ickering
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Motivation

Beam radiance estimate : 917K photons  Per-pixel
render time 

Saturday, August 4, 12



Per-pixel
render time

Motivation
Beam radiance estimate : 917K photons Our method: 4K Gaussians

Per-pixel
render time 

Render time: 281 s Render time: 125 s

Our approach:

• represent radiance using a Gaussian mixture model (GMM)

• "t using progressive expectation maximization (EM)

• render with multiple levels of detail
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Motivation
Beam radiance estimate : 4M photons Our method: 16K Gaussians

Render time: 727s Render time: 457 s

Our approach:

• represent radiance using a Gaussian mixture model (GMM)

• "t using progressive expectation maximization (EM)

• render with multiple levels of detail
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Related work 

• Diffusion based photon mapping
[Schjøth et al. 08]

• Photon relaxation
[Spencer et al. 09]

• Hierarchical photon mapping
[Spencer et al. 09]
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Density estimation

Given photons approximately determine
their density

Nonparametric:
• Count the number of photons within a small region
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Density estimation

Given photons approximately determine
their density

Nonparametric:
• Count the number of photons within a small region

Parametric:
• Find suitable parameters for a known distribution
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• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models
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• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models

256 Gaussians 1024 Gaussians 4096 Gaussians 16384 Gaussians Target density

[Papas et al.]
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1. Weights 2. Means 3. Covariance matrices

Unknown parameters     :

• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models

1. Weights 2. Means 3. Covariance matrices
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Maximum likelihood estimation

Approach: "nd the “most likely” parameters, i.e.

Mixture model

Photon locationsEstimated parameters

Expectation maximization
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• Two components:

E-Step: 

M-Step: 

Expectation maximization

M

Eestablish soft assignment between
photons and Gaussians

maximize the expected likelihood

• Finds a locally optimal solution
            good starting guess needed!

• Slow and scales poorly —                
(where     : photon count)
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Expectation maximization

Accelerated EM by [Verbeek et al. 06]
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Stored cell statistics: 
• photon count
• mean position
• average outer product

Accelerated EM
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Stored cell statistics: 
• photon count
• mean position
• average outer product

Our modi!cations: 
• better cell re"nement

Progressive EM
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Progressive EM

Stored cell statistics: 
• photon count
• mean position
• average outer product

Our modi!cations:
• better cell re"nement
• progressive photons 

shooting passes
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Progressive EM

Stored cell statistics: 
• photon count
• mean position
• average outer product

Our modi!cations:
• better cell re"nement
• progressive photons 

shooting passes
• reduced complexity
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Progressive EMProgressive EM

Pipeline overview
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Rendering

...

Saturday, August 4, 12



Level of detail hierarchy

1 2 3 4 5 6 7 8

Agglomerative construction:
• Repeatedly merge nearby Gaussians based 

on their Kullback-Leibler divergence
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Rendering Example 
hierarchy:

Criterion 1:  bounding box intersected?

Criterion 2:  solid angle large enough?

 Tr ܭ��

Criterion 3:  attenuation low enough?
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23

BRE: 1M Photons 23+192 = 215 s
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Our method: 4K Gaussians 35+24 = 59 s
("t to 1M photons) (3.6×)
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BRE: 18M Photons 507+609 = 1116 s
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Our method: 64K Gaussians 868+66 = 934 s
("t to 18M photons) (1.2×)
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BRE: 4M Photons 89 + 638 = 727 s
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28

Our method: 16K Gaussians 330 + 127 = 457 s
(1.6×)
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Temporal Coherence
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• Feed the result of the current frame into the next one
Faster "tting, no temporal noise
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[ Video ]

Saturday, August 4, 12



GPU-based rasterizer:

• Anisotropic Gaussian splat shader: 30 lines of GLSL

• Gaussian representation is very compact 
(4096-term GMM requires only ~240KB of storage)

[ Video ]
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Conclusion

Contributions

• Rendering technique based on parametric density estimation

• Uses a progressive and optimized variant of accelerated EM

• Compact & hierarchical representation of volumetric radiance

• Extensions for temporal coherence and real-time visualization
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