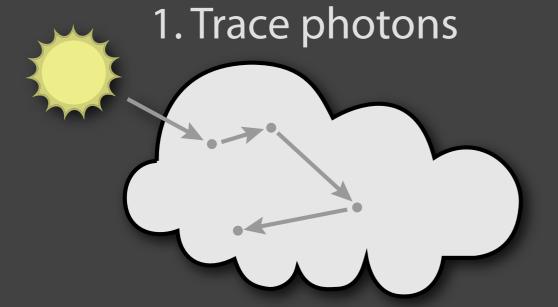
# Progressive Expectation–Maximization for Hierarchical Volumetric Photon Mapping

Wenzel Jakob<sup>1,2</sup> Christian Regg<sup>1,3</sup> Wojciech Jarosz<sup>1</sup>

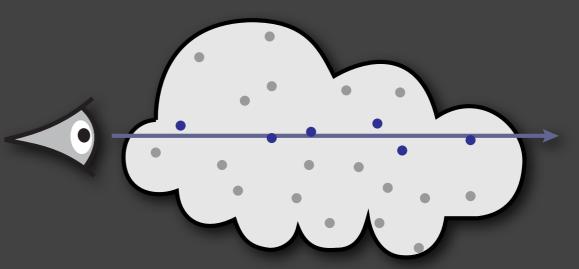


- <sup>1</sup> Disney Research, Zürich
- <sup>2</sup> Cornell University
- <sup>3</sup> ETH Zürich

### Volumetric photon mapping



2. Radiance estimate



#### Issues

- high-frequency illumination requires many photons
- time spent on photons that contribute very little
- prone to temporal flickering





Beam radiance estimate: 917K photons

Per-pixel render time

Beam radiance estimate: 917K photons



Render time: 281 s



Per-pixel render time

#### **Our method: 4K Gaussians**



Render time: 125 s

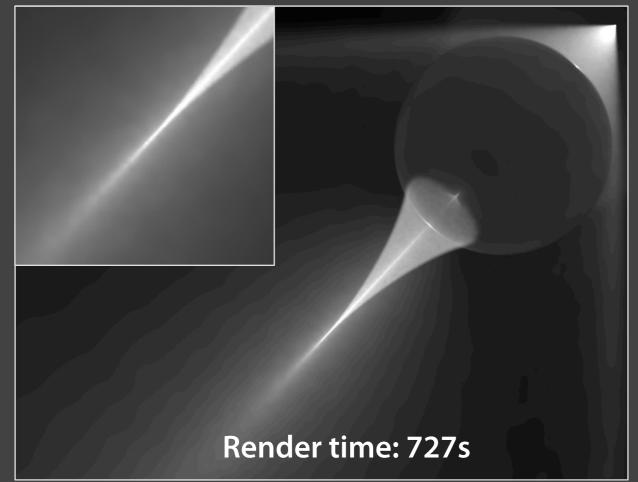


Per-pixel render time

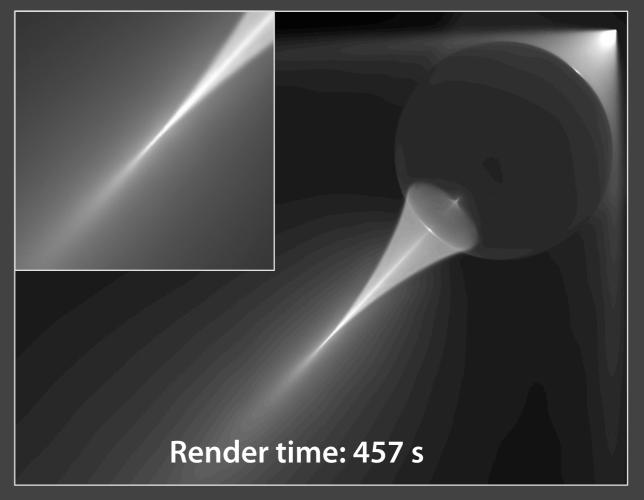
### Our approach:

- represent radiance using a Gaussian mixture model (GMM)
- fit using progressive expectation maximization (EM)
- render with multiple levels of detail

Beam radiance estimate: 4M photons



Our method: 16K Gaussians



### Our approach:

- represent radiance using a Gaussian mixture model (GMM)
- fit using progressive expectation maximization (EM)
- render with multiple levels of detail

### Related work

 Diffusion based photon mapping [Schjøth et al. 08]

Photon relaxation
 [Spencer et al. 09]

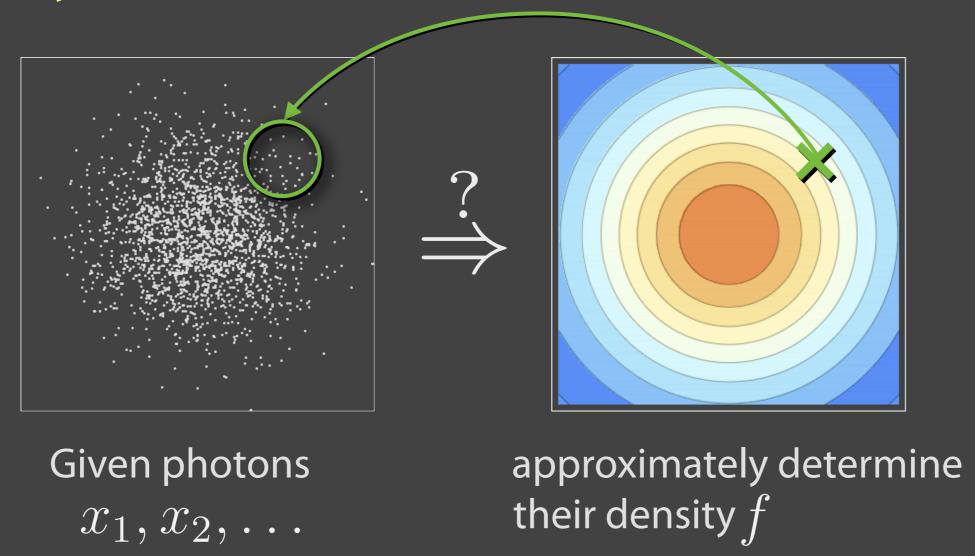
 Hierarchical photon mapping [Spencer et al. 09]







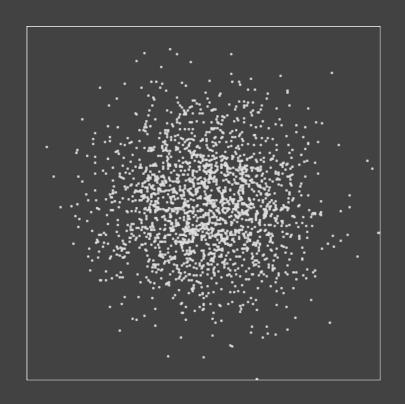
# Density estimation



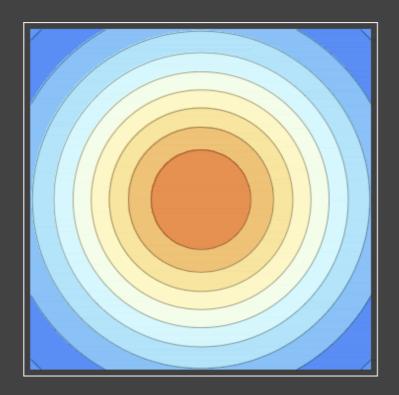
#### Nonparametric:

Count the number of photons within a small region

# Density estimation



Given photons  $x_1, x_2, \ldots$ 



approximately determine their density f

#### Nonparametric:

Count the number of photons within a small region

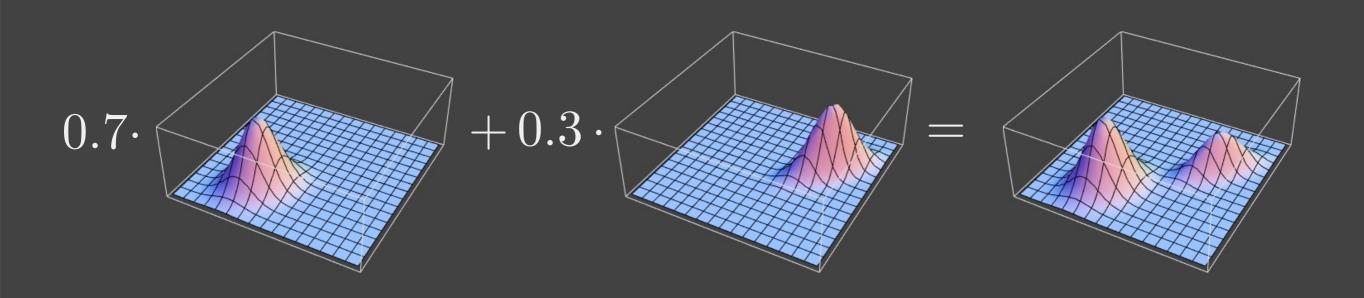
#### **Parametric:**

• Find suitable parameters for a known distribution

### Gaussian mixture models

• Photon density modeled as a weighted sum of Gaussians:

$$f(\mathbf{x} \mid \Theta) = \sum_{i=1}^{k} w_i \ g(\mathbf{x} \mid \Theta_i)$$



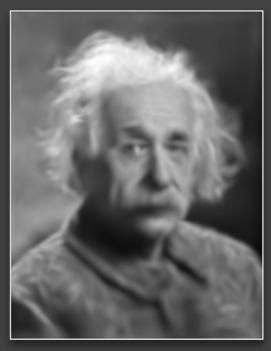
### Gaussian mixture models

• Photon density modeled as a weighted sum of Gaussians:

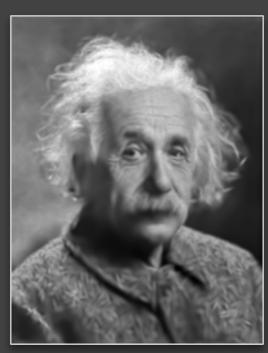
$$f\left(\mathbf{x} \mid \Theta\right) = \sum_{i=1}^{k} w_i \ g\left(\mathbf{x} \mid \Theta_i\right)$$



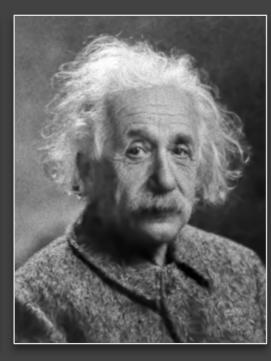
256 Gaussians



1024 Gaussians



4096 Gaussians



16384 Gaussians

[Papas et al.]

Target density

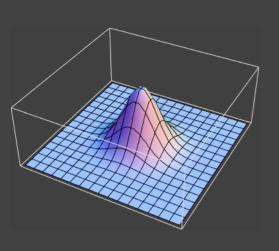
### Gaussian mixture models

• Photon density modeled as a weighted sum of Gaussians:

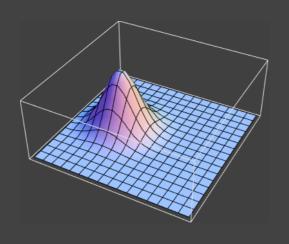
$$f\left(\mathbf{x} \mid \Theta\right) = \sum_{i=1}^{k} w_i \ g\left(\mathbf{x} \mid \Theta_i\right)$$

#### Unknown parameters (-):

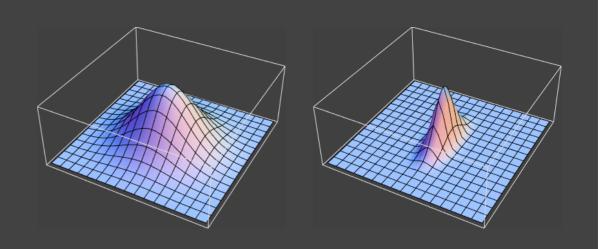
1. Weights



2. Means

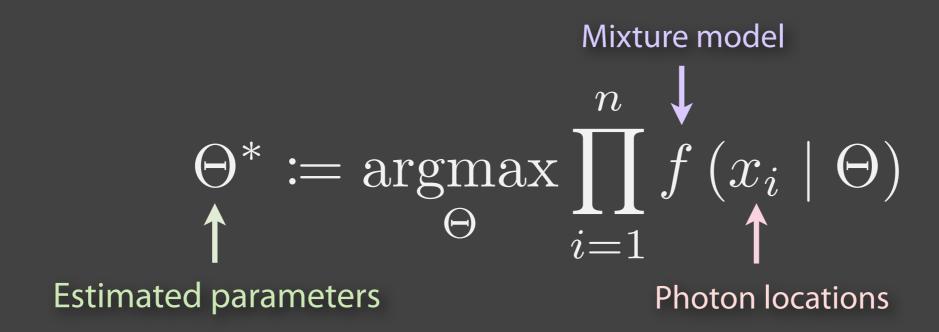


3. Covariance matrices



### Maximum likelihood estimation

Approach: find the "most likely" parameters, i.e.





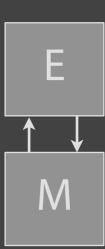
## Expectation maximization

• Two components:

**E-Step**: establish soft assignment between

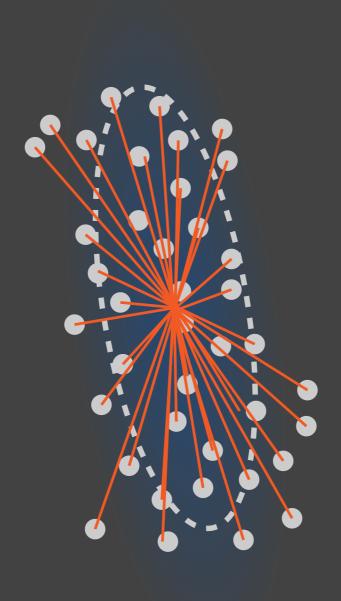
photons and Gaussians

M-Step: maximize the expected likelihood



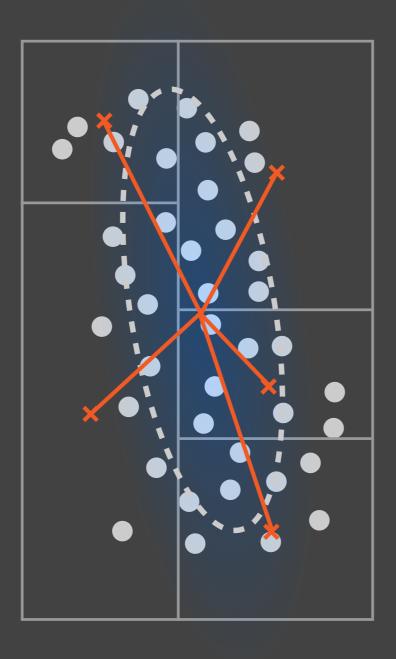
- Finds a locally optimal solution
  - → good starting guess needed!
- Slow and scales poorly  $\mathcal{O}(n^2)$  (where n: photon count)

# Expectation maximization



Accelerated EM by [Verbeek et al. 06]

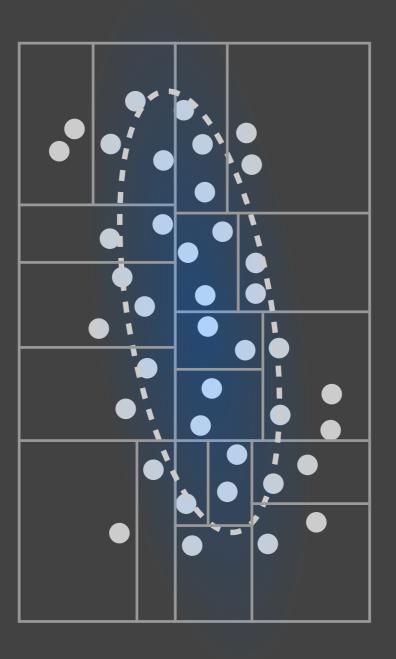
## Accelerated EM



#### **Stored cell statistics:**

- photon count
- mean position
- average outer product

# Progressive EM



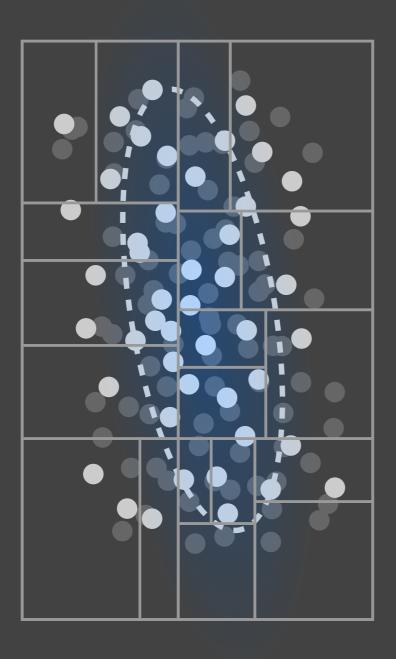
#### **Stored cell statistics:**

- photon count
- mean position
- average outer product

#### Our modifications:

• better cell refinement

# Progressive EM



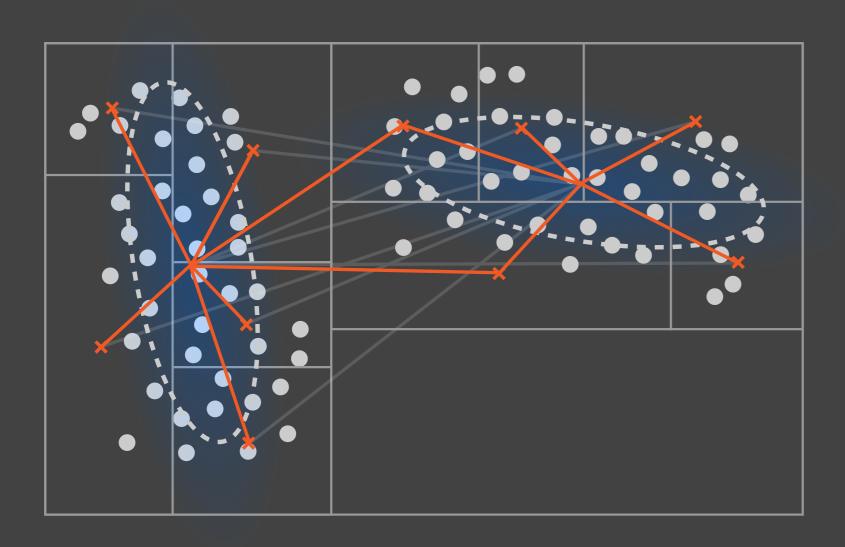
#### **Stored cell statistics:**

- photon count
- mean position
- average outer product

#### Our modifications:

- better cell refinement
- progressive photons shooting passes

# Progressive EM



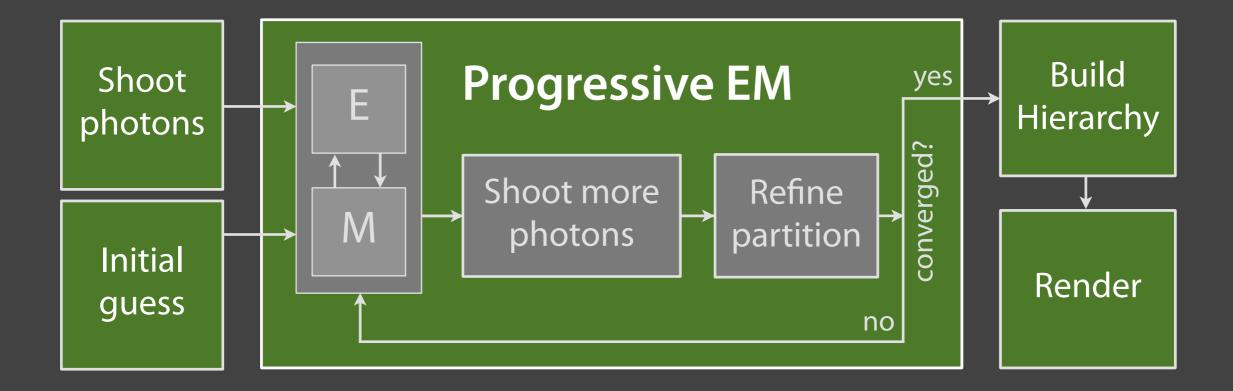
#### **Stored cell statistics:**

- photon count
- mean position
- average outer product

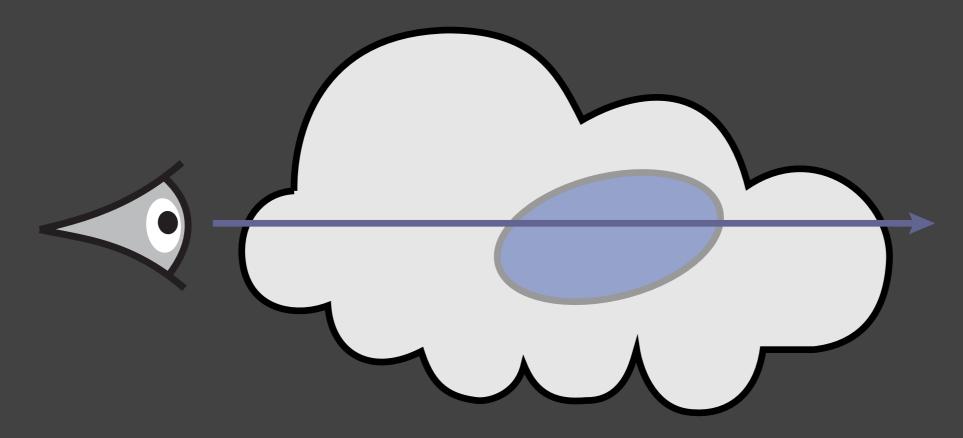
#### **Our modifications:**

- better cell refinement
- progressive photons shooting passes
- reduced complexity  $\mathcal{O}(n^2) \to \mathcal{O}(n \log n)$

# Pipeline overview



## Rendering



$$pixel value = \sum_{i=1}^{k} contrib(i)$$

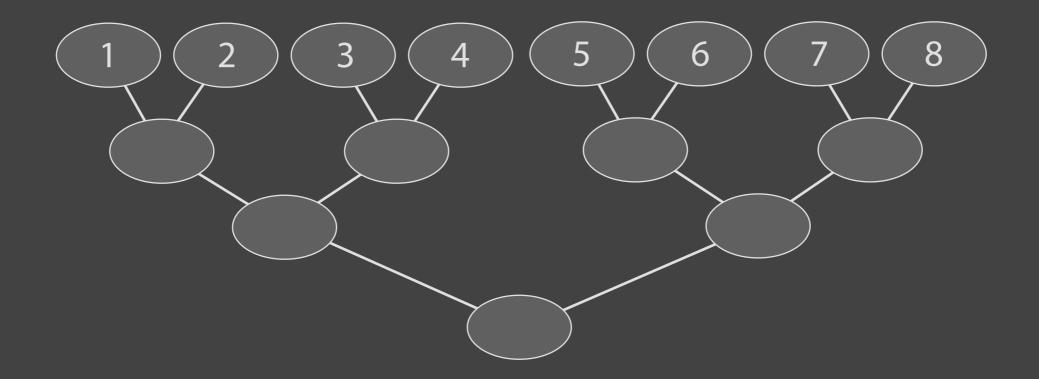
$$contrib(i) = \int_{a}^{b} g(\mathbf{r}(t)|\bar{\Theta}_{i}) e^{-\sigma_{t} t} dt = C_{0} \left[ erf\left(\frac{C_{3} + 2C_{2}b}{2\sqrt{C_{2}}}\right) - erf\left(\frac{C_{3} + 2C_{2}a}{2\sqrt{C_{2}}}\right) \right]$$

• • •

# Level of detail hierarchy

#### Agglomerative construction:

 Repeatedly merge nearby Gaussians based on their Kullback-Leibler divergence

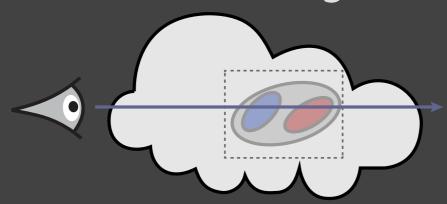


# Rendering

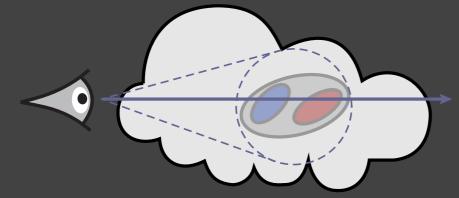
Example hierarchy:

**Criterion 1:** bounding box intersected?

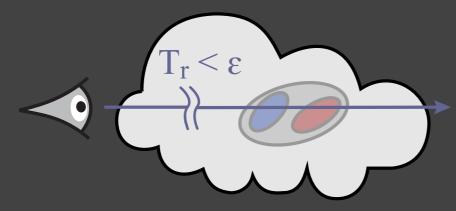




Criterion 2: solid angle large enough?



**Criterion 3:** attenuation low enough?





**BRE**: 1M Photons

23+192=215 s



Our method: 4K Gaussians (fit to 1M photons)

35+24 = 59 s(3.6×)



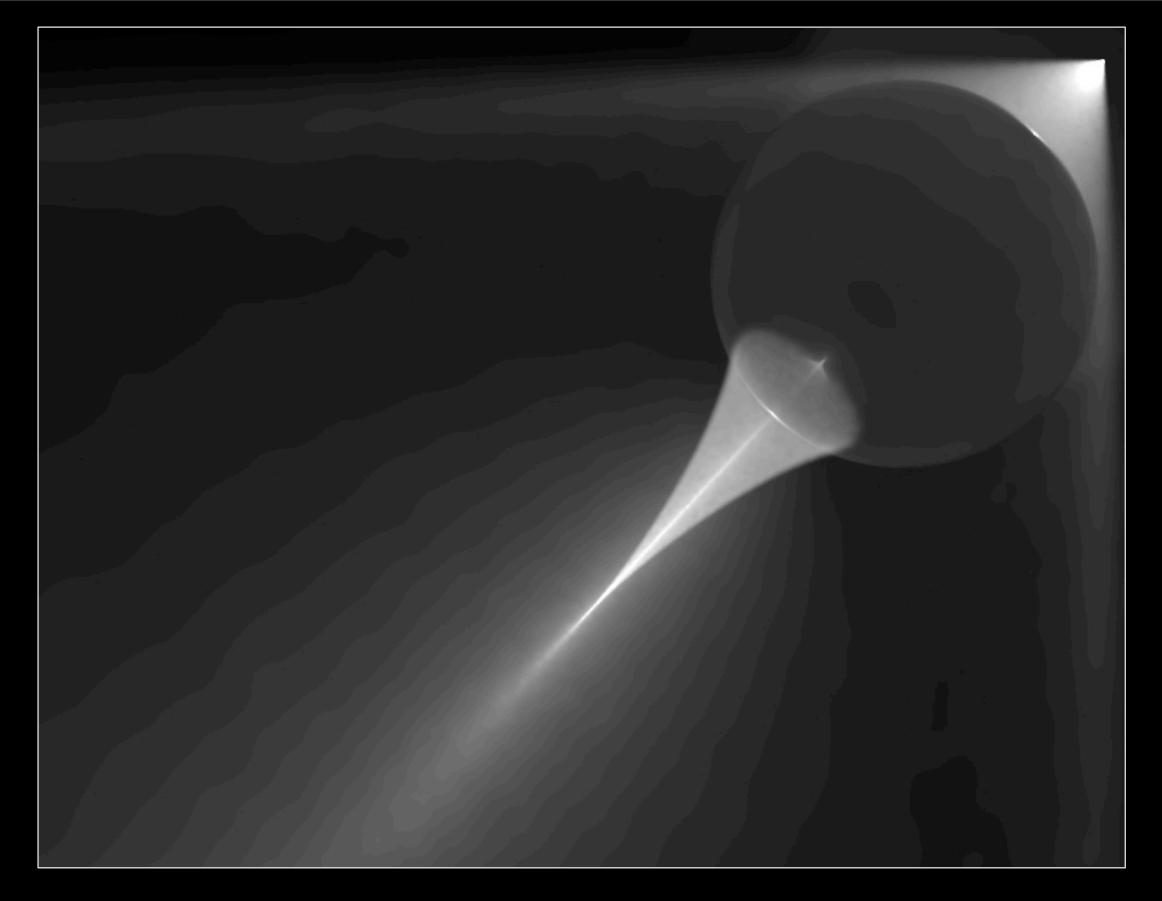
**BRE**: 18M Photons

507+609 = 1116 s



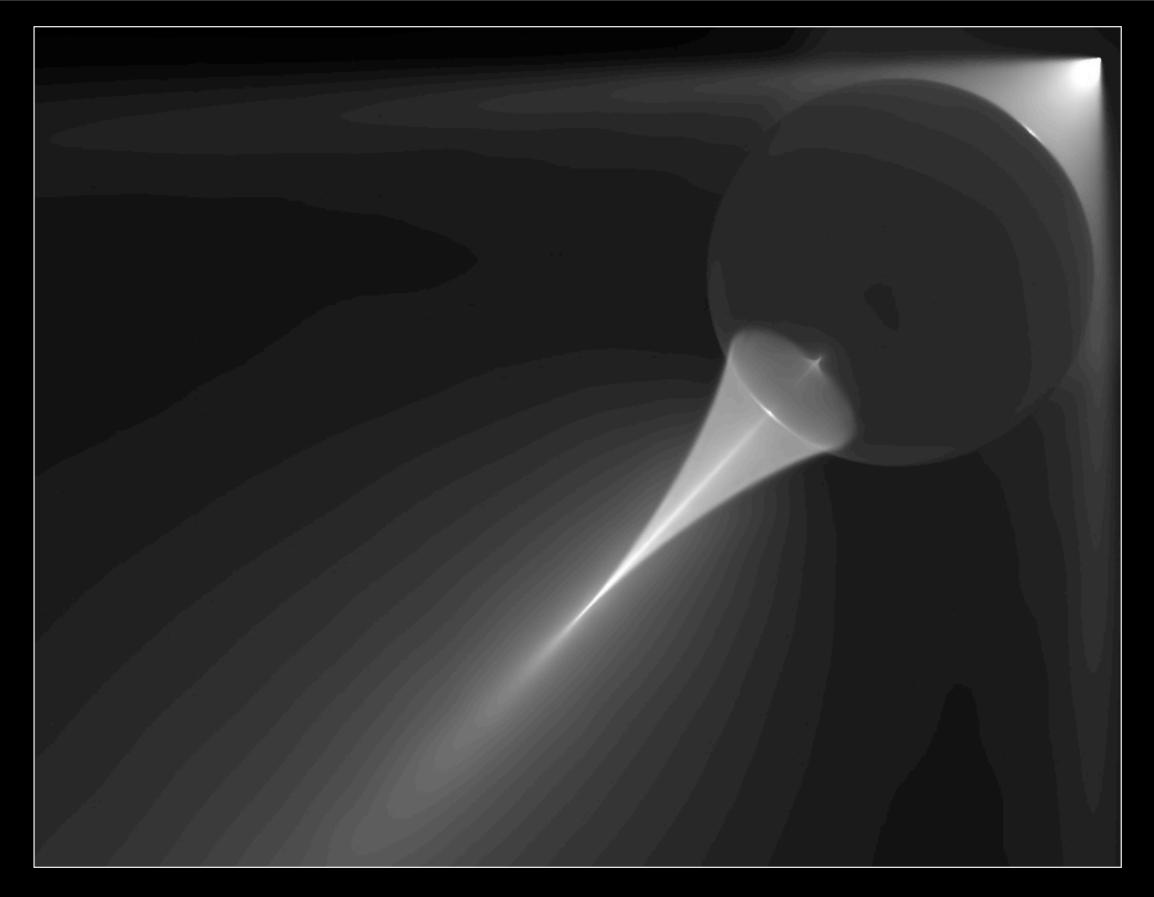
Our method: 64K Gaussians (fit to 18M photons)

868+66 = 934 s



**BRE**: 4M Photons

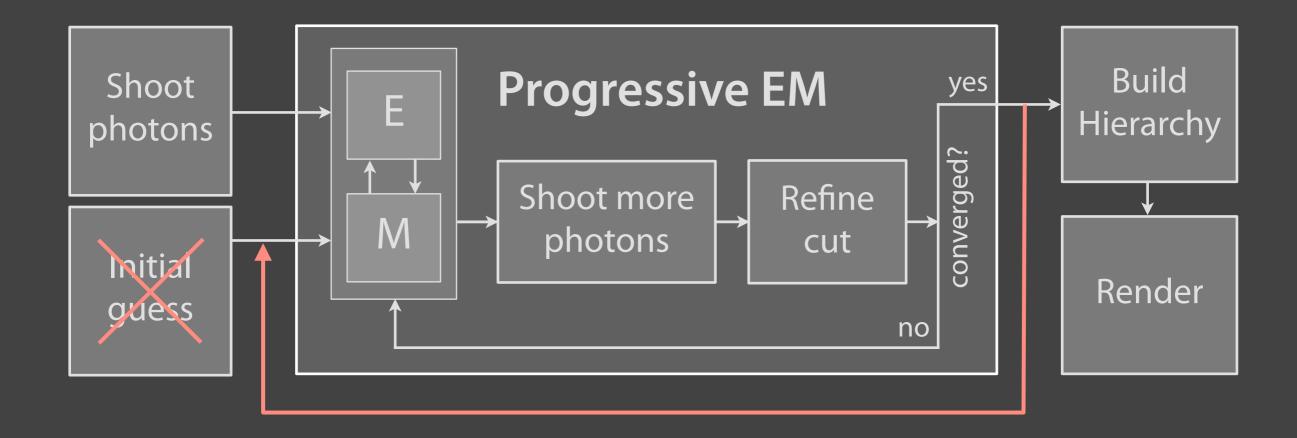
89 + 638 = 727 s



Our method: 16K Gaussians

$$330 + 127 = 457 s$$
(1.6×)

# Temporal Coherence



- Feed the result of the current frame into the next one
  - → Faster fitting, no temporal noise

# [Video]

# [Video]

#### **GPU-based rasterizer:**

- Anisotropic Gaussian splat shader: 30 lines of GLSL
- Gaussian representation is very compact (4096-term GMM requires only ~240KB of storage)

### Conclusion

#### Contributions

- Rendering technique based on parametric density estimation
- Uses a progressive and optimized variant of accelerated EM
- Compact & hierarchical representation of volumetric radiance
- Extensions for temporal coherence and real-time visualization

