
Progressive Expectation–Maximization for
Hierarchical Volumetric Photon Mapping

Wenzel Jakob1,2 Christian Regg1,3 Wojciech Jarosz1

1 Disney Research, Zürich
2 Cornell University
3 ETH Zürich

Saturday, August 4, 12

Motivation
Volumetric photon mapping

1. Trace photons 2. Radiance estimate

Issues

• high-frequency illumination requires many photons

• time spent on photons that contribute very little

• prone to temporal !ickering

Saturday, August 4, 12

Downsides of volumetric photonmapping / BRE:

- To capture fine illumination details, one needs a vast number of photons (curse of
dimensionality)
- high memory consumption & rendering time
- much time is spent processing photons that contribute little to the rendered image
- flickering in animations

Motivation

Beam radiance estimate : 917K photons Per-pixel
render time

Saturday, August 4, 12

Problematic BRE case: a significant amount of time is spent in areas that are actually strongly
attenuated in the rendering.

Per-pixel
render time

Motivation
Beam radiance estimate : 917K photons Our method: 4K Gaussians

Per-pixel
render time

Render time: 281 s Render time: 125 s

Our approach:

• represent radiance using a Gaussian mixture model (GMM)

• "t using progressive expectation maximization (EM)

• render with multiple levels of detail

Saturday, August 4, 12

The presented method renders this scene faster by relying on a different radiance
representation that only requires four thousand terms in this example. The technique can
switch to a lower levels of detail where it makes sense -- for instance, when drawing the
attenuated distant light sources.

Motivation
Beam radiance estimate : 4M photons Our method: 16K Gaussians

Render time: 727s Render time: 457 s

Our approach:

• represent radiance using a Gaussian mixture model (GMM)

• "t using progressive expectation maximization (EM)

• render with multiple levels of detail

Saturday, August 4, 12

The Gaussian-based representation is not only faster, but can also blur noise in way so that
important image features are retained.

Related work

• Diffusion based photon mapping
[Schjøth et al. 08]

• Photon relaxation
[Spencer et al. 09]

• Hierarchical photon mapping
[Spencer et al. 09]

Saturday, August 4, 12

There have been a number of techniques that solve related problems in the surface rendering
setting (these were already covered by previous speakers).

Density estimation

Given photons approximately determine
their density

Nonparametric:
• Count the number of photons within a small region

Saturday, August 4, 12

take-away message: a radiance representation other than photons can be valuable not only
to reduce rendering time, but also to improve quality. To see how we can find such a
representation, let’s start with a bit of review:

Photon mapping (non-parametric density estimation): count the number of photons that fall
into a small region around the point in question, repeat for every evaluation of the density
function.

Density estimation

Given photons approximately determine
their density

Nonparametric:
• Count the number of photons within a small region

Parametric:
• Find suitable parameters for a known distribution

Saturday, August 4, 12

Parametric density estimation: assume that the photons are drawn from a certain known
distribution -- for instance, a 2D Normal distribution. The goal is to find the most suitable
parameter values. This is the approach used in this project.

• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models

Saturday, August 4, 12

Need a distribution that is general enough:

Gaussian mixture model (used in AI/data minig/statistics): weighted sum of gaussian
functions.

Of course, the real radiance distribution is usually not a gaussian mixture model

• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models

256 Gaussians 1024 Gaussians 4096 Gaussians 16384 Gaussians Target density

[Papas et al.]

Saturday, August 4, 12

.. but with an increasingly large number of terms, it can be approximated arbitrarily well by
one.

1. Weights 2. Means 3. Covariance matrices

Unknown parameters :

• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models

1. Weights 2. Means 3. Covariance matrices

Saturday, August 4, 12

The missing parameters then that need to be estimated are the weights, means, and
covariance matrices (4-64K of them!).

Maximum likelihood estimation

Approach: "nd the “most likely” parameters, i.e.

Mixture model

Photon locationsEstimated parameters

Expectation maximization

Saturday, August 4, 12

Having decided on parametric density estimation and Gaussian mixtures, we need some way
of finding their parameters.

-> Find parameters that are the most likely given the photon observations. This is a
maximum likelihood estimation problem.

For gaussian mixture models, the algorithm of choice is expectation maximization.

• Two components:

E-Step:

M-Step:

Expectation maximization

M

Eestablish soft assignment between
photons and Gaussians

maximize the expected likelihood

• Finds a locally optimal solution
 good starting guess needed!

• Slow and scales poorly —
(where : photon count)

Saturday, August 4, 12

This is essentially a soft version of K-means.

E-step: creates soft assignment between every photon and every Gaussian in the mixture
model
M-step: uses these assignments to maximize a likelihood function.
Parameters improve steadily until convergence.

Two issues: EM only finds locally optimal solutions. Also, it does not scale.

Expectation maximization

Accelerated EM by [Verbeek et al. 06]

Saturday, August 4, 12

Intuitive interpretation of EM:

Each photon exerts a “force” onto nearby Gaussian components, pulling them towards it as to
be covered by the density function. This process is iterated until an equilibrium is reached.

To improve performance we rely on accelerated EM and make several modifications to make
it scale to the problems of our size.

Stored cell statistics:
• photon count
• mean position
• average outer product

Accelerated EM

Saturday, August 4, 12

Accelerated EM: operates on cells instead of the individual data points. Each cell summarizes
the photons that fall inside it using their count, mean, and average outer product (i.e. 0th,
1st, and 2nd order statistics).

The entire EM algorithm can be formulated only in terms of cell-Gaussian interactions, which
is much faster.

Stored cell statistics:
• photon count
• mean position
• average outer product

Our modi!cations:
• better cell re"nement

Progressive EM

Saturday, August 4, 12

Can also switch to increasingly finer cells partitions as the algorithm runs.

Progressive EM

Stored cell statistics:
• photon count
• mean position
• average outer product

Our modi!cations:
• better cell re"nement
• progressive photons

shooting passes

Saturday, August 4, 12

- After storing photon statistics in cells, the photons themselves are not needed anymore and
can be discarded.
- Can trace additional photons later on and incorporate them into the cell statistics, without
having to store them.

Progressive EM

Stored cell statistics:
• photon count
• mean position
• average outer product

Our modi!cations:
• better cell re"nement
• progressive photons

shooting passes
• reduced complexity

Saturday, August 4, 12

Exponential decay in Gaussians -> we can cull away interactions between distant Gaussians
and cells. This improves running time from O(n^2) to O(n log n)!

Progressive EMProgressive EM

Pipeline overview

E

M

Shoot
photons

Initial
guess

Build
Hierarchy

Render

Re"ne
partition

Shoot more
photons

co
nv

er
ge

d?

yes

no

Shoot
photons

Initial
guess Render

Build
Hierarchy

Saturday, August 4, 12

Pipeline diagram of the entire method. Input: photon map + initial guess

Progressive EM is executed until convergence (and further photons may be traced to improve
quality). Finally, a level of detail representation is created for rendering.

Rendering

...

Saturday, August 4, 12

In theory, we could write a brute-force rendering algorithm, that just sums over the
contributions of every single Gaussian to a camera ray. For homogeneous media, we have
derived an analytic solution that gives the exact result in this case.
The problem with this brute-force summation is that when k is large, each pixel takes a
long time to render.

Level of detail hierarchy

1 2 3 4 5 6 7 8

Agglomerative construction:
• Repeatedly merge nearby Gaussians based

on their Kullback-Leibler divergence

Saturday, August 4, 12

 To get better performance, we turn the mixture model into a hierarchical representation
similar to a MIP map.

Rendering Example
hierarchy:

Criterion 1: bounding box intersected?

Criterion 2: solid angle large enough?

 Tr ܭ��

Criterion 3: attenuation low enough?

Saturday, August 4, 12

Can use lower resolutions when one of these three criteria is satisfied. This leads to a
significantly shorter rendering times.

23

BRE: 1M Photons 23+192 = 215 s

Saturday, August 4, 12

Examples:

Bumpy sphere scene courtesy of Bruce Walter (BRE)

24

Our method: 4K Gaussians 35+24 = 59 s
("t to 1M photons) (3.6×)

Saturday, August 4, 12

4K Gaussian fit using 1M photons as an input

25

BRE: 18M Photons 507+609 = 1116 s

Saturday, August 4, 12

BRE rendering with 18 million photons.

26

Our method: 64K Gaussians 868+66 = 934 s
("t to 18M photons) (1.2×)

Saturday, August 4, 12

64K Gaussian fit (to 18M photons)

27

BRE: 4M Photons 89 + 638 = 727 s

Saturday, August 4, 12

28

Our method: 16K Gaussians 330 + 127 = 457 s
(1.6×)

Saturday, August 4, 12

Temporal Coherence

E

M

Shoot
photons

Initial
guess

Build
Hierarchy

Render

Progressive EM

Re"ne
cut

Shoot more
photons

co
nv

er
ge

d?

yes

no

• Feed the result of the current frame into the next one
Faster "tting, no temporal noise

Saturday, August 4, 12

Temporal coherence: can pass the solution of one frame as the initial guess of the next frame
when rendering animations.

[Video]

Saturday, August 4, 12

Video showing the bumpy sphere scene with a rotating light source.

GPU-based rasterizer:

• Anisotropic Gaussian splat shader: 30 lines of GLSL

• Gaussian representation is very compact
(4096-term GMM requires only ~240KB of storage)

[Video]

Saturday, August 4, 12

Realtime visualization: It is possible to code up the contribution from an anisotropic Gaussian
in a simple GLSL shader so that large numbers of them can be drawn in realtime using
splatting.

The storage requirements are tiny -- might be useful for games.

Conclusion

Contributions

• Rendering technique based on parametric density estimation

• Uses a progressive and optimized variant of accelerated EM

• Compact & hierarchical representation of volumetric radiance

• Extensions for temporal coherence and real-time visualization

Saturday, August 4, 12

