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e |n this portion of the class we are interested in understanding how to render scattering media.

e so far we have assumed that photons can travel unobstructed between objects.

e |n reality, the “solid objects” in our world are embedded within a medium.

e |In fog for instance, the interaction of light with the tiny water particles in the air can create stunning effects such as the
volumetric shadow beams emanating from the trees in this image.
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e clouds are another example of this, and since we see them much further away, we can very easily see their heterogeneous
nature
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e |n fact, the concept of “solid objects” is really a simplification, and the boundary between media and surfaces is actually not
very easy to define.

e for instance, this iceberg may appear as a solid object, but really the light penetrates through it and you could also think of it as
a medium
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® |n reality its more accurate to think of solid objects as just the boundary between different media, in this case air and jade.

e And by generalizing photon mapping to account for this, we can get effects such as subsurface scattering of light past the
boundary
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e |ts also important to point out that we cannot consider surface illumination and media illumination in isolation.

e |n this photograph almost all illumination on the walls is indirect light that has either bounced off of the small illuminated
patches on the ground, or off of tiny dust particles in the air.

e There is a coupling between these two, which is quite easy to account for with photon mapping.
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» Theoretical background
» Extending photon mapping to media
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e Part. media can be thought of as a collection of particles suspended in a vacuum.

e As a photon travel through the scene, it may interact with the medium by hitting one of these particles.

e We will not model each of these particles individually, since this would be impractical, but instead assume the particles are
small and statistically model their aggregate properties.

e |f we consider an infinitesimal segment of media, when a photon travels through this segment, a number of possible
interactions might occur.
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e Part. media can be thought of as a collection of particles suspended in a vacuum.

e As a photon travel through the scene, it may interact with the medium by hitting one of these particles.

e We will not model each of these particles individually, since this would be impractical, but instead assume the particles are
small and statistically model their aggregate properties.

e |f we consider an infinitesimal segment of media, when a photon travels through this segment, a number of possible
interactions might occur.
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e Part. media can be thought of as a collection of particles suspended in a vacuum.

e As a photon travel through the scene, it may interact with the medium by hitting one of these particles.

e We will not model each of these particles individually, since this would be impractical, but instead assume the particles are
small and statistically model their aggregate properties.

e |f we consider an infinitesimal segment of media, when a photon travels through this segment, a number of possible
interactions might occur.
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e Part. media can be thought of as a collection of particles suspended in a vacuum.

e As a photon travel through the scene, it may interact with the medium by hitting one of these particles.

e We will not model each of these particles individually, since this would be impractical, but instead assume the particles are
small and statistically model their aggregate properties.

e |f we consider an infinitesimal segment of media, when a photon travels through this segment, a number of possible
interactions might occur.
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e Part. media can be thought of as a collection of particles suspended in a vacuum.

e As a photon travel through the scene, it may interact with the medium by hitting one of these particles.

e We will not model each of these particles individually, since this would be impractical, but instead assume the particles are
small and statistically model their aggregate properties.

e |f we consider an infinitesimal segment of media, when a photon travels through this segment, a number of possible
interactions might occur.
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e One possibility is an absorption event.

e This means that some portion of the photons that enter the infinitesimal segment become absorbed by the particles, which
means that less photons leave the segment.

e The amount of radiance loss depends on the absorption coefficient of the medium. This can be any non-negative value. If this
coefficient is 0, then no absorption happens, and the radiance remains unchanged. The larger the value, the denser and darker
the medium becomes.

e Media such as black smoke can be well approximated using only absorption events.
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e Another thing that can happen is that the photons entering the medium segment are scattered into some other directions
after hitting one of the particles.

e QOut-scattering produces a net loss in radiance along the original direction.

e The amount of loss is determined by the scattering coefficient of the medium. As with the absorption coefficient it can take on
any non-negative value, and if it is O, no scattering happens.

e The directional distribution of scattering is described by the phase function, which is basically the analog of the BRDF, but for
media
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e Another thing that can happen is that the photons entering the medium segment are scattered into some other directions
after hitting one of the particles.

e QOut-scattering produces a net loss in radiance along the original direction.

e The amount of loss is determined by the scattering coefficient of the medium. As with the absorption coefficient it can take on
any non-negative value, and if it is O, no scattering happens.

e The directional distribution of scattering is described by the phase function, which is basically the analog of the BRDF, but for
media
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e |t is also possible for a photon originally traveling in a different direction to get scattered into the direction we are considering.

e This is called in-scattering and produces a net increase in radiance along the ray.

e Out-scattering and in-scattering are really just two sides of the same coin. A photon that out-scatters, reduces radiance in the

original direction, but becomes the in-scattered photon in the new direction.

e \We will see that this in-scattering is really the most complex and interesting lighting interaction to account for, and photon

mapping will make this efficient
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e To account for media in the photon mapping algorithm, we will need to modify both the photon tracing stage, and also the
rendering or radiance estimation stage



_ Photon Tracing in Participating Me

M
St
ErALE
PG
'y '.:n“'.f-daf.

Thursday, August 23, 12

e For photon tracing, instead of emitted photons traveling directly to the surfaces, these photons now have some probability of
scattering or being absorbed by the medium along their path.

® SO0 we now trace paths that may have vertices within the medium, and at some point these paths will be probabilistically
terminated when absorption happens.
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scattering or being absorbed by the medium along their path.

® SO0 we now trace paths that may have vertices within the medium, and at some point these paths will be probabilistically
terminated when absorption happens.



_ Photon Tracing in Participating Me

M
St
ErALE
PG
'y '.:n“'.f-daf.

Thursday, August 23, 12

e For photon tracing, instead of emitted photons traveling directly to the surfaces, these photons now have some probability of
scattering or being absorbed by the medium along their path.

® SO0 we now trace paths that may have vertices within the medium, and at some point these paths will be probabilistically
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e For photon tracing, instead of emitted photons traveling directly to the surfaces, these photons now have some probability of
scattering or being absorbed by the medium along their path.

® SO0 we now trace paths that may have vertices within the medium, and at some point these paths will be probabilistically
terminated when absorption happens.
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e At the end of this process we will have a collection of photons both on surfaces, and also some suspended in the medium
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e At the end of this process we will have a collection of photons both on surfaces, and also some suspended in the medium
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e At the end of this process we will have a collection of photons both on surfaces, and also some suspended in the medium
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e |[n the most basic form, a surface photon tracing algorithm might look something like this.

e \We trace a ray to figure out the nearest surface hit in that direction, we then propagate the photon to the surface, store it, and
recursively scattering based on the BRDF
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e |[n the most basic form, a surface photon tracing algorithm might look something like this.

e \We trace a ray to figure out the nearest surface hit in that direction, we then propagate the photon to the surface, store it, and
recursively scattering based on the BRDF
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e |[n the most basic form, a surface photon tracing algorithm might look something like this.

e \We trace a ray to figure out the nearest surface hit in that direction, we then propagate the photon to the surface, store it, and
recursively scattering based on the BRDF
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e |[n the most basic form, a surface photon tracing algorithm might look something like this.

e We trace a ray to figure out the nearest surface hit in that direction, we then propagate the photon to the surface, store it, and
recursively scattering based on the BRDF
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e We can pretty easily generalize this to a volumetric photon tracer

e We will still need to perform the surface computation, but first, we will compute whats called the free flight distance.

e This is the random distance that a photon will travel before probabilistically interacting with the medium

e Now, if this distance d is less than the distance s to the nearest surface, then we have a medium event, and we propagate the
photon, and then simulate a recursive medium scattering event

e Only if the distance d is greater than s will the photon actually reach the surface, which is where we use our surface photon
scattering code
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e We can pretty easily generalize this to a volumetric photon tracer

e We will still need to perform the surface computation, but first, we will compute whats called the free flight distance.

e This is the random distance that a photon will travel before probabilistically interacting with the medium

e Now, if this distance d is less than the distance s to the nearest surface, then we have a medium event, and we propagate the
photon, and then simulate a recursive medium scattering event

e Only if the distance d is greater than s will the photon actually reach the surface, which is where we use our surface photon
scattering code
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e We can pretty easily generalize this to a volumetric photon tracer

e We will still need to perform the surface computation, but first, we will compute whats called the free flight distance.

e This is the random distance that a photon will travel before probabilistically interacting with the medium

e Now, if this distance d is less than the distance s to the nearest surface, then we have a medium event, and we propagate the
photon, and then simulate a recursive medium scattering event

e Only if the distance d is greater than s will the photon actually reach the surface, which is where we use our surface photon
scattering code
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e We can pretty easily generalize this to a volumetric photon tracer

e We will still need to perform the surface computation, but first, we will compute whats called the free flight distance.

e This is the random distance that a photon will travel before probabilistically interacting with the medium

e Now, if this distance d is less than the distance s to the nearest surface, then we have a medium event, and we propagate the
photon, and then simulate a recursive medium scattering event

e Only if the distance d is greater than s will the photon actually reach the surface, which is where we use our surface photon
scattering code
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e For rendering the final image, we also need to consider not just the rendering equation, but the volume rendering equation
e Which is shown below

e And this is really just the sum to two main terms
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e For rendering the final image, we also need to consider not just the rendering equation, but the volume rendering equation
e Which is shown below

e And this is really just the sum to two main terms
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e The right-hand term incorporates lighting arriving from a surface
e However, before reaching the eye, this radiance must travel through the medium and so is attenuated by a transmission term
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e The right-hand term incorporates lighting arriving from a surface

e However, before reaching the eye, this radiance must travel through the medium and so is attenuated by a transmission term,
which is really just a fractional visibility between the two points
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e However, light may also actually come from the medium
e The |left-hand term integrates the scattering of light from the medium along the whole length of the ray
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e And the main quantity that is integrated, Li, is inscattered radiance

e Liitself is an integral. it represents the amount of light that reaches some point in the volume (from any other location in the
scene), and then subsequently scatters towards the eye.

e This is similar to the reflection equation on surfaces, but using the phase function

e Computing this inscattered radiance is really what makes volume rendering expensive
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e And the main quantity that is integrated, Li, is inscattered radiance
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e This is similar to the reflection equation on surfaces, but using the phase function
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e And the main quantity that is integrated, Li, is inscattered radiance

e Liitself is an integral. it represents the amount of light that reaches some point in the volume (from any other location in the
scene), and then subsequently scatters towards the eye.

e This is similar to the reflection equation on surfaces, but using the phase function

e Computing this inscattered radiance is really what makes volume rendering expensive
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e But we have the photon map, and we can simply find photons within the local region, just like we did at surfaces

e However, instead of computing a density on a surface, we compute a volume density, so we divide by the volume of the
sphere
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e But we have the photon map, and we can simply find photons within the local region, just like we did at surfaces

e However, instead of computing a density on a surface, we compute a volume density, so we divide by the volume of the
sphere
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e But we have the photon map, and we can simply find photons within the local region, just like we did at surfaces

e However, instead of computing a density on a surface, we compute a volume density, so we divide by the volume of the
sphere
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e However, we still need to compute the outer integral
e And we can do this by using a simple Riemann sum, which results in ray marching
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e However, we still need to compute the outer integral
e And we can do this by using a simple Riemann sum, which results in ray marching
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e However, we still need to compute the outer integral

e And we can do this by using a simple Riemann sum, which results in ray marching

e Where we effectively march along the ray, and at each point we will estimate the integrand, and just add all these evaluations
together.
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e However, we still need to compute the outer integral

e And we can do this by using a simple Riemann sum, which results in ray marching

e Where we effectively march along the ray, and at each point we will estimate the integrand, and just add all these evaluations
together.
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e However, we still need to compute the outer integral

e And we can do this by using a simple Riemann sum, which results in ray marching

e Where we effectively march along the ray, and at each point we will estimate the integrand, and just add all these evaluations
together.
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e And by doing this, we can get really complex lighting effects like this volume caustic
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e Or, if we imagine the surface of this statue to just be the boundary of some participating medium, we get soft natural
subsurface scattering within this marble bust
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e \We can also simulate smoke, and we can see that
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