Progressive Photon Mapping Basics

Toshiya Hachisuka Aarhus University

State of the Art in Photon Density Estimation SIGGRAPH 2012 Course

Global Illumination Algorithms

- Path Tracing [Kajiya 86]
- Light Tracing [Arvo 86][Dutré 93]
- Bidirectional Path Tracing [Lafortune 93][Veach 95]
- Photon Mapping [Jensen 95]
- Density Estimation [Shirley 95]
- Instant Radiosity [Keller 97]
- Metropolis Light Transport [Veach 97]
- Lightcuts [Walter 05]
- Energy Redistribution Path Tracing [Cline 05]
- ..

Matte Surface

Specular-Diffuse-Specular Paths

Path Tracing

Bidirectional Path Tracing

Metropolis Light Transport

Specular-Diffuse-Specular Paths

- Existing methods are not robust for SDS paths
 - Path tracing
 - Bidirectional path tracing
 - Metropolis light transport
 - ...name your favorite

Specular-Diffuse-Specular Paths

- Existing methods are not robust for SDS paths
 - Path tracing
 - Bidirectional path tracing
 - Metropolis light transport
 - ...name your favorite
 - Photon mapping?

Photon Mapping

Photon Mapping

Convergence of Photon Mapping

More photons →

Convergence of Photon Mapping

$$L(x, \vec{\omega}) = \lim_{N \to \infty} \sum_{p=1}^{N^{\beta}} \frac{f_r(x, \vec{\omega}, \vec{\omega}_p) \phi_p(x_p, \vec{\omega}_p)}{\pi r^2}$$

- Infinite number of nearby photons $(N^{\beta} \rightarrow \infty)$
- Infinitely small radius $(r \rightarrow 0)$

Convergence of Photon Mapping

$$L(x, \vec{\omega}) = \lim_{N \to \infty} \sum_{p=1}^{N^{\beta}} \frac{f_r(x, \vec{\omega}, \vec{\omega}_p) \phi_p(x_p, \vec{\omega}_p)}{\pi r^2}$$

Infinite storage & photon tracing

- Infinite number of nearby photons $(N^{\beta} \rightarrow \infty)$
- Infinitely small radius (r→0)

Solution: Progressive Photon Mapping

Overview

Initial Pass

Initial Pass

Photon Statistics

- Each measurement point:
 - Accumulated flux times BRDF $au_i\left(x,\vec{\omega}
 ight)$
 - Search radius $R_i(x)$
 - Local photon count $N_i(x)$

- Global:
 - ullet Emitted photon count $N_e(i)$

Photon Pass

Photon Pass

Photon Pass

Next Photon Pass

Next Photon Pass

Rendering

Progressive Density Estimation

$$L_{i}\left(\vec{\omega}\right) = \sum_{p=1}^{N_{i}} \frac{f_{r}\left(\vec{\omega}, \vec{\omega}_{p}\right) \phi_{p}\left(\vec{\omega}_{p}\right)}{\pi R_{i}^{2}}$$

- Converges to the correct solution
 - Infinite number of photons
 - Infinitely small radius

Equal-time Comparisons

Path Tracing

Bidirectional Path Tracing

Metropolis Light Transport

Progressive Photon Mapping

Bidirectional Path Tracing

Progressive Photon Mapping

Metropolis Light Transport

Progressive Photon Mapping

Sample Code

smallppm - 128 lines of working PPM code

cs.au.dk/~toshiya/smallppm.cpp

Summary

- Infinite number of photons without storing them
 - "Path tracing" nization of photon mapping

- Robust to specular-diffuse-specular paths
- Converges to the correct solution
- Easy to implement

PPM in the Wild

