State of the Art in Photon Density Estimation:

From Photons to Beams

Wojciech Jarosz

THURSDAY, 9 AUGUST 2:00 PM - 5:15 PM | Room 408B

Volumetric Photon Mapping (VPM)
 [Jensen & Christensen 98]

Volumetric Photon Mapping (VPM)
 [Jensen & Christensen 98]

Query	X	Data
Point	X	Point

Volumetric Photon Mapping (VPM)
 [Jensen & Christensen 98]

Query	X	Data	Blur
Point	X	Point	(3D)

Volumetric Photon Mapping (VPM)
 [Jensen & Christensen 98]

Query	X	Data	Blur
Point	X	Point	(3D)

Volumetric Photon Mapping (VPM)
 [Jensen & Christensen 98]

Query	X	Data	Blur
Point	X	Point	(3D)

Query	X	Data
Beam	X	Point

Volumetric Photon Mapping (VPM)
 [Jensen & Christensen 98]

Query	X	Data	Blur
Point	X	Point	(3D)

Query	X	Data	Blur
Beam	X	Point	(2D)

Volumetric Photon Mapping (VPM)
 Beyond Photon Points:
 [Jensen & Christensen 98]

Query	X	Data	Blur
Point	X	Point	(3D)

Query	X	Data	Blur
Beam	X	Point	(2D)

Volumetric Photon Mapping (VPM)
 [Jensen & Christensen 98]

Query	X	Data	Blur
Point	X	Point	(3D)

Beyond Photon Points:

Query
Point/Beam

Query	X	Data	Blur
Beam	X	Point	(2D)

Volumetric Photon Mapping (VPM)

 Beyond Photon Points: [Jensen & Christensen 98]

Query	X	Data	Blur
Point	X	Point	(3D)

Query	Data
Point/Beam	Point/Beam

Query	X	Data	Blur
Beam	X	Point	(2D)

Beyond Photon Points:

Data

Query

Blur

 Volumetric Photon Mapping (VPM) [Jensen & Christensen 98]

Query	X	Data	Blur
Point	X	Point	(3D)

Point/Beam Point/Beam 1D/2D/3D

Query	X	Data	Blur
Beam	X	Point	(2D)

Density Estimator Options

Query	X	Data	Blur
Point	X	Point	(3D)
Beam	X	Point	(2D)

Density Estimator Options

Query	X	Data	Blur
Point	X	Point	(3D)
Beam	X	Point	(2D)
Beam	X	Point	(3D)
Point	X	Beam	(3D)
Point	X	Beam	(2D)
Beam	X	Beam	(3D)
Beam	X	Beam	(2D) ₁
Beam	X	Beam	(2D) ₂
Beam	X	Beam	(1D)

Photon Points

Photon Points

Photon Beams

Photon Beams

choose direction
 propagate photon
 deposit a photon

4) repeat

1) choose direction

2) propagate photon

3) deposit a photon

4) repeat

"Photon Marching"

"Photon Marching"

1) choose direction 2) propagate photon 3) deposit a photon 4) repeat **Could deposit more** than one photon by marching along each ray

$$L \approx \frac{1}{\mu_R(r^3)} \sum_i f(\theta_i) \Phi_i \int_{t_i^-}^{t_i^+} e^{-\sigma_t t} dt$$

$$L \approx \frac{1}{\mu_R(r^2)} \sum_i f(\theta_i) \Phi_i e^{-\sigma_t t_i}$$

$$L pprox rac{1}{\mu_R(r^2)} \sum_i f(\theta_i) \Phi_i e^{-\sigma_t t_i}$$

Radiometric Duality

Beam Query x Point Data (2D blur)

Point Query x Beam Data (2D blur)

$$L \approx \frac{1}{\mu_R(r^2)} \sum_i f(\theta_i) \Phi_i e^{-\sigma_t t_i}$$

"Beam Radiance Estimate"

[Jarosz et al. 08]

$$L \approx \frac{1}{\mu_R(r^2)} \sum_i f(\theta_i) \Phi_i e^{-\sigma_t t_i}$$

Photon Points vs. Photon Beams

Ground Truth

Photon Points vs. Photon Beams

100k Photon Points

Ground Truth

Photon Points vs. Photon Beams

100k Photon Points

Ground Truth

5k Photon Beams

Beam Queries with Photon Beams

- Beam Query x Beam Data (3D)
- Beam Query x Beam Data (2D)₁
- Beam Query x Beam Data (2D)₂
- Beam Query x Beam Data (1D)

Beam Query × Beam Data (2D blur)

Beam Query × Beam Data (2D blur)

$$L \approx \frac{\sigma_s}{\mu_R(r^2)} \sum_i f(\theta_i) \Phi_i \int_{t_i^-}^{t_i^+} e^{-\sigma_t t_c} e^{-\sigma_t t_b} dt_c$$

Beam Query × Beam Data (2D blur)

Beam Query × Beam Data (1D blur)

Beam queries remove ray marching

- Beam queries remove ray marching
- Beam data increases data density

- Beam queries remove ray marching
- Beam data increases data density
- Lower blur dimension reduces bias and computation

- Beam queries remove ray marching
- Beam data increases data density
- Lower blur dimension reduces bias and computation
- use: Beam Query x Beam Data (1D)

Basic Volumetric Photon Tracer

```
void vPT(o, \omega, \Phi)
    s = nearestSurfaceHit(o, \omega)
    d = freeFlightDistance(o, \omega)
    if (d < s) // media scattering
        o += d*\omega // propagate photon
        storeVolumePhoton(o, \omega, \Phi)
        return vPT(o, samplePF(), \Phi * \sigma_s / \sigma_t)
                      // surface scattering
    else
        o += s*\omega // propagate photon
        storeSurfacePhoton(o, ω, Φ)
        (\omega_i, pdf_i) = sampleBRDF(o, \omega)
        return vPT(o, \omega_i, \Phi * BRDF(o,\omega,\omega_i) / pdf<sub>i</sub>)
```


Basic Volumetric Photon Tracer

```
void vPT(o, \omega, \Phi)
    s = nearestSurfaceHit(o, \omega)
    storeVolumePhoton(o, \omega, \phi)
    d = freeFlightDistance(o, \omega)
    if (d < s) // media scattering
        o += d*\omega // propagate photon
        return vPT(o, samplePF(), \Phi * \sigma_s / \sigma_t)
    else
                // surface scattering
        o += s*\omega // propagate photon
        storeSurfacePhoton(o, ω, Φ)
        (\omega_i, pdf_i) = sampleBRDF(o, \omega)
        return vPT(o, \omega_i, \Phi * BRDF(o,\omega,\omega_i) / pdf<sub>i</sub>)
```


Basic Volumetric Photon Tracer

```
void vPT(o, \omega, \Phi)
    s = nearestSurfaceHit(o, \omega)
    storePhotonBeam(o, \omega, s, \phi)
    d = freeFlightDistance(o, \omega)
    if (d < s) // media scattering
        o += d*\omega // propagate photon
        return vPT(o, samplePF(), \Phi * \sigma_s / \sigma_t)
    else
                // surface scattering
        o += s*\omega // propagate photon
        storeSurfacePhoton(o, ω, Φ)
        (\omega_i, pdf_i) = sampleBRDF(o, \omega)
        return vPT(o, \omega_i, \Phi * BRDF(o,\omega,\omega_i) / pdf<sub>i</sub>)
```


Photon Differentials [Igehy 99, Schjøth et al. 07]

Photon Differentials [Igehy 99, Schjøth et al. 07]

Photon Differentials [Igehy 99, Schjøth et al. 07]

Adaptive-width Beams

Rendering

Rendering

 Need to intersect each ray with all photon beams (expensive!)

Rendering

- Need to intersect each ray with all photon beams (expensive!)
- Place photon beams in an acceleration structure

Rendering

- Need to intersect each ray with all photon beams (expensive!)
- Place photon beams in an acceleration structure
- Rasterization (beams are just axial billboards!)

Ground Truth

90k Photon Points

courtesy of Bruce Walter

Rendered at 512x512 with up to 16 samples/pixel

Equal Photon Count

Photon Points

Photon Beams

90K Photon **Points** ~ 40 seconds/frame

90K Photon **Beams** ~ 103 seconds/frame

Equal Render Time

Photon Points

Photon Beams

1.3M Photon **Points** ~ 101 seconds/frame

90K Photon **Beams** ~ 103 seconds/frame

Lighthouse

Photon Points

10K Photon **Points** ~ 31 seconds/frame

Roughly Equal Time

Photon Beams

700 Photon **Beams** ~ 25 seconds/frame

Lighthouse

Underwater Sun Beams

Rendered at 1024x576 with up to 16 samples/pixel

1M Photon **Points** 226 seconds/frame

9x Render Time

700 Photon **Beams** ~ 25 seconds/frame

Underwater Sun Beams

Photon Points

Photon Beams

100K Photon **Points** ~ 204 seconds/frame

Roughly Equal Time

25K Photon **Beams** ~ 200 seconds/frame

Combine benefits of:

- Combine benefits of:
 - photon beams

- Combine benefits of:
 - photon beams
 - progressive photon mapping

- Previous derivations not directly applicable
 - beam density vs. point density

- Previous derivations not directly applicable
 - beam density vs. point density
- Reduction factor: $f_i = \frac{i + \alpha}{i + 1}$

- Previous derivations not directly applicable
 - beam density vs. point density
- Reduction factor: $f_i = \frac{i + \alpha}{i + 1}$
- Application of factor depends on blur dimensionality
 - Surfaces (2D): $r_{i+1}^2 = f_i \cdot r_i^2$

- Previous derivations not directly applicable
 - beam density vs. point density
- Reduction factor: $f_i = \frac{i + \alpha}{i + 1}$
- Application of factor depends on blur dimensionality
 - Surfaces (2D): $r_{i+1}^2 = f_i \cdot r_i^2$
 - Volumetric photon mapping (3D): $r_{i+1}^3 = f_i \cdot r_i^3$

- Previous derivations not directly applicable
 - beam density vs. point density
- Reduction factor: $f_i = \frac{i + \alpha}{i + 1}$
- Application of factor depends on blur dimensionality
 - Surfaces (2D): $r_{i+1}^2 = f_i \cdot r_i^2$
 - Volumetric photon mapping (3D): $r_{i+1}^3 = f_i \cdot r_i^3$
 - Beam × Beam (1D): $r_{i+1} = f_i \cdot r_i$

Step 1:

- Photon tracing: emit, scatter, store beams
- Scale beam widths by global factor r_i

Step 1:

- Photon tracing: emit, scatter, store beams
- Scale beam widths by global factor r_i

Step 2:

 Trace random camera path, evaluate radiance estimate along each ray using beams

Step 1:

- Photon tracing: emit, scatter, store beams
- Scale beam widths by global factor r_i

Step 2:

- Trace random camera path, evaluate radiance estimate along each ray using beams
- Display running average

Step 1:

- Photon tracing: emit, scatter, store beams
- Scale beam widths by global factor r_i

Step 2:

- Trace random camera path, evaluate radiance estimate along each ray using beams
- Display running average
- Reduce global factor r_i and repeat

Trivially Parallelizable

Evaluating the Transmittance

 Need to compute transmittance: along photon beam, along camera ray

Evaluating the Transmittance

- Need to compute transmittance: along photon beam, along camera ray
- Homogeneous: analytic

Evaluating the Transmittance

- Need to compute transmittance: along photon beam, along camera ray
- Homogeneous: analytic
- Heterogeneous: use progressive deep shadow maps

Results & Implementation

- 3 implementations:
 - GPU-only OptiX ray-tracer
 - GPU-only rasterization
 - General: Hybrid CPU/GPU

Results & Implementation

- 3 implementations:
 - GPU-only OptiX ray-tracer
 - GPU-only rasterization
 - General: Hybrid CPU/GPU

BUMPYSPHERE

OPTIX IMPLEMENTATION

2x speed

Results & Implementation

- 3 implementations:
 - GPU-only OptiX ray-tracer
 - GPU-only rasterization
 - General: Hybrid CPU/GPU

www.fraps.com

OCEAN OPENGL RASTERIZATION-ONLY IMPLEMENTATION

B

 $\alpha = 0.5$

alpha = 0.5 R = 0.037695 Shadow map resolution; 64 × 64 pass number; 14 average render time per pass;

2x speed

Results & Implementation

- 3 implementations:
 - GPU-only OptiX ray-tracer
 - GPU-only rasterization
 - General: Hybrid CPU/GPU

CARS

1280x720, Depth-of-Field

Pass 1

Homogeneous

Heterogeneous

Pass 1

Pass 2

Pass 4

Average of Passes 1..4

Pass 8

Pass 16

Average of Passes 1..16

Pass 32

Average of Passes 1..32

Pass 64

Pass 256

CARS 1280x720, Depth-of-Field

Homogeneous
14.55M Photon Beams
9.5 minutes

Heterogeneous
15.04M Photon Beams
16.8 minutes

CARS 1280x720, Depth-of-Field

Homogeneous
14.55M Photon Beams
9.5 minutes

Heterogeneous
15.04M Photon Beams
16.8 minutes

FLASHLIGHTS

1280x720, Depth-of-Field

Pass 1

Average of Passes 1..1

Pass 1

Pass 2

Pass 4

Average of Passes 1..4

Pass 8

Pass 16

Average of Passes 1..16

Pass 32

Average of Passes 1..32

Pass 64

Average of Passes 1..64

FLASHLIGHTS

1280x720, Depth-of-Field

Homogeneous
2.1M Photon Beams
8 minutes

Heterogeneous

2.1M Photon Beams

10.8 minutes

FLASHLIGHTS

1280x720, Depth-of-Field

Homogeneous
2.1M Photon Beams
8 minutes

Heterogeneous

2.1M Photon Beams

10.8 minutes

DISCO

1280x720, Depth-of-Field

Pass 1

Pass 1

Pass 2

Pass 4

Average of Passes 1..4

Pass 16

Average of Passes 1..16

Pass 64

Average of Passes 1..64

DISCO1280x720, Depth-of-Field

Homogeneous
19.67M Photon Beams
3 minutes

Heterogeneous

16.19M Photon Beams

5.7 minutes

DISCO1280x720, Depth-of-Field

Homogeneous
19.67M Photon Beams
3 minutes

Heterogeneous

16.19M Photon Beams

5.7 minutes

USER INTERACTION Hybrid CPU/GPU Implementation

Homogeneous

Heterogeneous

Real-time capture

