
Stochastic Progressive Photon Mapping

Toshiya Hachisuka Henrik Wann Jensen

UC San Diego

Figure 1: Tools with a flashlight. The scene is illuminated by caustics from the flashlight, which cause SDS paths on the flashlight and highly
glossy reflections of caustics on the bolts and plier. The flashlight and the plier are out of focus. Using the same rendering time, our method
(right) robustly renders the combination of the complex illumination setting and the distributed ray tracing effects where progressive photon
mapping is inefficient (left).

Abstract

This paper presents a simple extension of progressive photon map-
ping for simulating global illumination with effects such as depth-
of-field, motion blur, and glossy reflections. Progressive photon
mapping is a robust global illumination algorithm that can handle
complex illumination settings including specular-diffuse-specular
paths. The algorithm can compute the correct radiance value at
a point in the limit. However, progressive photon mapping is not
effective at rendering distributed ray tracing effects, such as depth-
of-field, that requires multiple pixel samples in order to compute
the correct average radiance value over a region. In this paper, we
introduce a new formulation of progressive photon mapping, called
stochastic progressive photon mapping, which makes it possible to
compute the correct average radiance value for a region. The key
idea is to use shared photon statistics within the region rather than
isolated photon statistics at a point. The algorithm is easy to imple-
ment, and our results demonstrate how it efficiently handles scenes
with distributed ray tracing effects, while maintaining the robust-
ness of progressive photon mapping in scenes with complex light-
ing.

1 Introduction

Efficiently computing global illumination is an active areas of re-
search in computer graphics. The types of lighting can vary signifi-
cantly in different scenes, and it is important to develop algorithms
that can handle this variation robustly.

Global illumination algorithms solve the rendering equation intro-
duced by Kajiya [1986]. Unbiased Monte Carlo methods have been
a popular approach for computing global illumination without any
approximations in the past few decades [Dutré et al. 2006]. How-
ever, unbiased methods are not robust under all illumination set-
tings. There are certain light paths that are problematic. For ex-
ample, path tracing [Kajiya 1986] works well for a scene with dif-
fuse materials, however, it cannot efficiently handle caustics from a
small light source.

Hachisuka et al. [2008] observed out that specular-diffuse-specular
paths (SDS paths in the light path notation) are particularly prob-
lematic for the existing unbiased methods. An example of an SDS
path is a light path due to the combination of specular materials
and a light bulb. Photon mapping [Jensen 1996] is a biased method
which is robust in the presence of SDS paths. However, the results
suffer from bias, which appears as low frequency noise in the ren-
dered images. Moreover, computing the correct solutions requires
storing an infinite number of photons in the limit. Progressive pho-
ton mapping [Hachisuka et al. 2008] solves this issue by using pro-
gressive refinement, and makes it possible to compute a correct so-
lutions without storing any photons. Moreover, the method retains
the robustness of photon mapping.

Although each radiance estimate in progressive photon mapping
converges to the correct radiance, the algorithm is restricted to com-
puting the correct radiance value at a point. This property limits the
applications of progressive photon mapping because we often need
to compute the correct average radiance value over a region. For
example, anti-aliasing in ray tracing requires the average radiance
value for a pixel footprint. Depth-of-field is another example where
each pixel value is the average radiance value for the part of a scene
that is visible through the lens. In general, all the effects that can
be achieved by distributed ray tracing [Cook et al. 1984] require
computing the average radiance over some domain.

In this paper, we present a new formulation of progressive pho-
ton mapping that enables computing the correct average radiance
value over a region. Our formulation requires a simple algorith-
mic modification, which consists of adding a distributed ray tracing
pass after each photon pass in progressive photon mapping. The
main contribution is this new formulation that allows simple, yet
effective improvement of the robustness of the progressive photon
mapping. We show that our modification allows us to render scenes
with distributed ray tracing effects in combination with complex
illumination scenarios.

2 Related Work

Global illumination is simulated by solving the rendering equa-
tion [Kajiya 1986]. The most popular approaches for solving the
rendering equation are based on Monte Carlo sampling, and these
methods can further be classified as either unbiased methods or bi-
ased methods. Path tracing [Kajiya 1986] is one of the unbiased
methods that solves the rendering equation by constructing light
paths starting from the camera. Since a light path starting from the
camera has to probabilistically reach a light source in order to pro-
duce caustics, path tracing is not robust in scenes with a small light
source and specular materials.

Bidirectional path tracing [Lafortune and Willems 1993; Veach and
Guibas 1995] avoids this issue by constructing a light path starting
from both the camera and light sources at the same time. If a path
from a light source hits a diffuse surface, bidirectional path tracing
directly connects the hit point with the camera in order to com-
pute the contribution to the image, which efficiently handles caus-
tics from a small light source. However, bidirectional path tracing
still fails to render specular reflections/refractions of caustics. This
is because directly connecting a point on a specular surface to the
camera always results in zero contribution to the image.

The application of Markov Chain Monte Carlo have been shown to
improve the efficiency of the path construction [Veach and Guibas
1997; Cline et al. 2005]. The key observation is that a path sim-
ilar to the existing path with a large contribution tends to have a
large contribution as well. A new light path is constructed from a
mutation (perturbation) of the existing path, thus forming Markov
Chain of paths. Unfortunately, this class of methods still fails to
render specular reflections/refractions of caustics. The reason is
that even a small mutation from the existing path with specular re-
flections/refractions often result in a path with zero contributions to
the image.

Photon mapping [Jensen 1996] is a biased two-pass method that
solves the rendering equation by estimating the density of photons.
In the first pass, photons are traced from light sources and the re-
sulting hit points on non-specular materials are stored as a photon
map. In the second pass, rays are traced from the camera until they
hit a non-specular material. The radiance value at the camera-ray
hit point is then computed using density estimation. Since pho-
ton mapping loosely connects paths from light sources with paths
from the camera by means of density estimation, it is robust in the
presence of specular reflections/refractions of caustics. One critical
issue is that it is necessary to store an infinite number of photons in
order to compute the correct solution to the rendering equation. In
other words, the accuracy of photon mapping is both memory and
computationally bounded, whereas accuracy of unbiased methods
is only computationally bounded.

Progressive photon mapping [Hachisuka et al. 2008] removed the
memory bound of photon mapping, which makes the results con-
verge to the correct solutions (i.e., bias goes to zero in the limit).
The key idea is using progressive refinement of photon statistics
at a point where the radiance value is computed. Those points are
generated by the ray tracing similar to the second pass of photon
mapping. The progressive refinement of statistics is achieved by a
new progressive radiance estimate, which uses a new progressive
density estimation technique. Progressive photon mapping ensures
convergence to the correct radiance values with bounded memory
consumption, and still retains the robustness of photon mapping.
Our work is an extension of progressive photon mapping that im-
proves its robustness to an even wider class of scene settings.

The problem we are dealing with in this paper is the computation of
the average radiance value over an unknown region (i.e., unknown

before computation). Such a problem arises when distributed ray
tracing [Cook et al. 1984] is used for adding depth-of-field, motion
blur, and glossy reflections/refractions. Unbiased methods can in-
clude these effects without changing the algorithms; however, this
class of methods is not robust to complex illumination settings. In
this paper, we extend progressive photon mapping in order to de-
velop a new rendering algorithm that is robust to the combination
of complex illumination settings and distributed ray tracing effects.

Computing the average radiance (density) over an unknown region
is not a typical problem setting in density estimation methods out-
side graphics. We are not aware of existing work in density estima-
tion literatures outside graphics (refer to [Silverman 1986; Wasser-
man 2006] for example). In computer graphics, there are few re-
lated methods that extend the radiance estimation for computing
average radiance values. Time dependent photon mapping [Cam-
marano and Jensen 2002] computes the average radiance value over
time by extending the space of photon mapping into 4D (3D posi-
tion and time). The beam radiance estimate [Jarosz et al. 2008]
computes the integration (weighted average of the radiance values)
on a line of sight in order to accelerate rendering of participating
media. These methods still store photons in a photon map simi-
lar to the standard photon mapping, thus suffering from unbounded
memory consumption for the correct solutions. On the other hand,
our method enables to compute the correct average radiance values
with bounded memory consumption.

3 Overview

3.1 Progressive Photon Mapping

Progressive photon mapping [Hachisuka et al. 2008] is a multi-pass
method that solves the rendering equation by accumulating statis-
tics of photons. The initial eye pass traces rays from the camera
and stores all the non-specular hit points. The following photon
passes trace photons from light sources and update statistics on the
hit points using those photons. The photon statistics include posi-
tion of a hit point ~x, accumulated (unnormalized) flux times BRDF
τi(~x, ~ω), search radius Ri(~x), and the local accumulated photon
count within the radius Ni(~x). Here, i is the number of photon
tracing passes so far.

At the i-th pass, the radiance value at the position ~x toward the
direction ~ω is estimated as:

L(~x, ~ω) ≈ τi(~x, ~ω)

Ne(i)πRi(~x)2
, (1)

where Ne(i) is the number of emitted photons after i passes and
usually Ne(i) ∝ i (i.e., the number of emitted photons per pass is
fixed). The photon statistics are updated with a new set of photons
at each photon tracing pass. If Mi(~x) photons are found within
the search radius Ri(~x) during the pass i, the progressive radiance
estimate updates the statistics as:

Ni+1(~x) = Ni(~x) + αMi(~x) (2)

Ri+1(~x) = Ri(~x)

s
Ni(~x) + αMi(~x)

Ni(~x) + Mi(~x)
(3)

Φi(~x, ~ω) =

Mi(~x)X
p=1

fr(~x, ~ω, ~ωp)Φp(~xp, ~ωp) (4)

τi+1(~x, ~ω) = (τi(~x, ~ω) + Φi(~x, ~ω))
Ri+1(~x)2

Ri(~x)2
, (5)

where α ∈ (0, 1) is a user-defined parameter, fr is the BRDF,
Φp(~xp, ~ωp) is the flux of photon p, and ~ωp is the incoming direc-

Distributed Ray Tracing PassEye Pass Photon Pass

PPM

SPPM

Figure 2: Difference between the algorithms of progressive photon mapping (PPM) and stochastic progressive photon mapping (SPPM). In
order to compute the average radiance values, SPPM adds a new distributed ray tracing pass after each photon tracing pass. The photon
tracing algorithm itself stays the same, but PPM uses a fixed set of hit points (shown as squares), whereas SPPM uses randomly generated
hit points by the distributed ray tracing pass.

tion of photon p. The progressive radiance estimate ensures that the
local photon count increases and the search radius decreases mono-
tonically at the same time. Since this updating procedure satisfies
the conditions of consistency [Silverman 1986], a radiance estimate
converges to the correct radiance value with an infinite number of
photon tracing passes:

L(~x, ~ω) = lim
i→∞

τi(~x, ~ω)

Ne(i)πRi(~x)2
. (6)

3.2 Stochastic Progressive Photon Mapping

In this paper, we propose a new formulation of the progressive ra-
diance estimate, called stochastic progressive radiance estimate,
which can compute the correct average radiance value over a re-
gion. The motivation is that we need to compute the average radi-
ance value over a region in order to render distributed ray tracing
effects. For example, motion blur requires computing the average
radiance value over a visible part of a scene for a given shutter time,
and depth-of-field needs the average radiance value over a part of
scene that is visible through a lens. As we have seen in Equation 6,
the original progressive radiance estimate is restricted to computing
the correct radiance value at a point ~x.

Our idea is to use shared statistics over a region that we would like
to compute the average radiance value for. Using the shared statis-
tics, the stochastic progressive radiance estimate approximates the
average radiance value L(S, ~ω) over the region S as:

L(S, ~ω) ≈ τi(S, ~ω)

Ne(i)πRi(S)2
, (7)

where i is the number of photon passes as before, τi(S, ~w) is the
shared accumulated flux over the region S, and Ri(S) is the shared
search radius. The updating procedure of the shared statistics is:

Ni+1(S) = Ni(S) + αMi(~xi) (8)

Ri+1(S) = Ri(S)

s
Ni(S) + αMi(~xi)

Ni(S) + Mi(~xi)
(9)

Φi(~xi, ~ω) =

Mi(~xi)X
p=1

fr(~xi, ~ω, ~ωp)Φp(~xp, ~ωp) (10)

τi+1(S, ~ω) = (τi(S, ~ω) + Φi(~xi, ~ω))
Ri+1(S)2

Ri(S)2
, (11)

where ~xi is a randomly generated position within S and Ni(S) is
the shared local photon count. Note that the updating procedure

is the same as before, except that our formulation uses a randomly
generated position ~xi in S. The next section describes why this
change allows to estimate the average radiance value over S. The
only algorithmic change from the original progressive photon map-
ping is that each hit point is randomly generated within the region S
by distributed ray tracing after each photon pass. Figure 2 summa-
rizes the difference between the algorithms of progressive photon
mapping and our algorithm. Even though the modification is sim-
ple, the stochastic radiance estimate converges to the correct aver-
age radiance over S for i → ∞ without the knowledge of S in
advance:

L(S, ~ω) = lim
i→∞

τi(S, ~ω)

Ne(i)πRi(S)2
. (12)

4 Stochastic Radiance Estimate

In order to explain our new formulation, we first describe how to
compute the average radiance value using the original progressive
radiance estimate. Suppose that we have n sampled positions over
the region S, ~x1, . . . , ~xn. Using a Monte Carlo estimation, the
original progressive radiance estimate can approximate the average
radiance value in the region S as:

L(S, ~ω) =
1

‖S‖

Z
S

L(~x, ~ω) d µ(S)

= lim
n→∞

1

n

nX
k=1

L(~xk, ~ω) ≈ 1

n

nX
k=1

L(~xk, ~ω)

=
1

n

nX
k=1

lim
i→∞

τi(~xk, ~ω)

Ne(i)πRi(~xk)2
.

(13)

We consider uniform sampling of ~xk for brevity of discussion
throughout the paper. Using non-uniform sampling follows the
same discussion with premultiplied weight for L(~xk, ~ω). This ap-
proach is not scalable for a large n because the progressive radiance
estimate needs to keep track of statistics at each radiance sample
(i.e., storing n sets of statistics in total). Moreover, the memory
requirement for computing the correct average radiance value is
unbounded because n needs to be infinite. The goal of stochas-
tic progressive radiance estimate is to compute the correct average
radiance value without storing infinite sets of photon statistics. The
rest of this section describes how our formulation achieves this goal.

Our formulation assumes that the initial radius R0 is constant
within S, and the value of α is also constant within S. R0 and
α can still vary between different S (e.g., different R0 per pixel).

In addition, we only consider non-adaptive photon tracing (i.e., the
photon tracing strategy is not affected by the photon statistics). Un-
der these assumptions, we obtain the following equation:

Ri+1(~x) = Ri(~x)

s
Ni(~x) + αMi(~x)

Ni(~x) + Mi(~x)

= Ri(~x)

s
CNL(~x)Ri(~x)2 + αCML(~x)Ri(~x)2

CNL(~x)Ri(~x)2 + CML(~x)Ri(~x)2

= Ri(~x)CP ,

(14)

where CN , CM , and CP are constants independent of ~x. This equa-
tion states that the rate of radius reduction is independent of the
position ~x in S, thus Ri(~x) itself is also independent of ~x if R0 is
constant. We used the property that the number of new photons and
local photon count Ni(~x) are both proportional to the search area
πRi(~x)2 and its true radiance L(~x) (or true photon density in gen-
eral). In practice, this equation is only approximately true because
Ni(~x) and Mi(~x) are stochastic variables. However, we found that
it is reasonably true as we see that the reduction rate of the radius is
almost constant in the corresponding graph of radius in the original
PPM paper [Hachisuka et al. 2008].

4.1 Shared Radius

Based on the observation above, we can use a single radius value
Ri(~x0) instead of Ri(~xk), in order to compute the average.

1

n

nX
k=1

lim
i→∞

τi(~xk, ~ω)

Ne(i)πRi(~xk)2
=

1

n

nX
k=1

lim
i→∞

τi(~xk, ~ω)

Ne(i)πRi(~x0)
2 .

(15)
This formulation removed the dependency of R(~x) on ~x. This sec-
tion describes how the dependency on an arbitrary location ~x0 can
be further removed by using the shared radius Ri(S) from Equa-
tion 9. Using the shared radius, the average radiance value is com-
puted as:

L(S, ~ω) = lim
n→∞

1

n

nX
k=1

L(~xk, ~ω)

= lim
n→∞

1

n

nX
k=1

lim
i→∞

τR(S),i(~xk, ~ω)

Ne(i)πRi(S)2
.

(16)

where τR(S),i(~xk, ~ω) is modified accumulated flux by changing the
radius to Ri(S). We show how this equation is derived in the fol-
lowing. Since accumulated flux is proportional to the area of the
search region πRi(~x0)

2, τR(S),i(~xk, ~ω) is defined as:

τR(S),i(xk, ~ω) =
Ri(S)2

Ri(x0)
2 τi(~xk, ~ω). (17)

Using this equation, we obtain:

lim
i→∞

τR(S),i(~xk, ~ω)

Ne(i)πRi(S)2
= lim

i→∞

Ri(S)2

Ri(~x0)
2

τi(~xk, ~ω)

Ne(i)πRi(S)2

= lim
i→∞

Ri(S)2

Ri(~x0)
2

Ri(~x0)
2

Ri(S)2
τi(~xk, ~ω)

Ne(i)πRi(~x0)
2

= CR
1

CR
L(~xk, ~ω) = L(~xk, ~ω).

(18)

The last step is valid only if limi→∞ Ri(S)2/Ri(~x0)
2 = CR with

a non-zero constant CR. In other words, Ri(S) should be reduced

on the same order of Ri(~x0) in order this step to be valid. We
provide the derivations that show this is true in Appendix A. Note
that an arbitrary Ri(S) does not necessarily satisfy this condition,
and our choice of Ri(S) is crucial in this step. As a result of this
derivation, we can replace each radius Ri(~xk) by a single shared
radius Ri(S), and its estimated radiance value still converges to the
correct radiance value at ~xk. The shape of search region is still a
sphere but its radius is defined by the shared radius Ri(S).

4.2 Shared Accumulated Flux

Equation 16 still requires storing τi(~xk, ~ω) at each ~xk in order to
compute the correct average radiance value over S. This approach
needs to keep track of an infinite number of accumulated flux values
and positions over S, which is infeasible. Approximation using a
fixed number of τi(~xk, ~ω) is possible, but this approach is not con-
sistent. The shared accumulated flux value in Equation 11 solves
this problem by storing a single accumulated flux value with a ran-
dom position ~xi at each photon pass. This section describes how
this can be achieved. Replacing τi(~xk, ~ω) by the shared accumu-
lated flux τi(S, ~ω), we obtain the following estimate:

L(S, ~ω)′ = lim
i→∞

τi(S, ~ω)

Ne(i)πRi(S)2
. (19)

In order to show L(S, ~ω)′ = L(S, ~ω), we take the difference as:

L(S, ~ω)− L(S, ~ω)′

= lim
n→∞

1

n

nX
k=1

„
lim

i→∞

τR(S),i(~xk, ~ω)

Ne(i)πRi(S)2

«
−

τR(S),i(S, ~ω)

Ne(i)πRi(S)2

= lim
n→∞

1

n

nX
k=1

lim
i→∞

τR(S),i(~xk, ~ω)− τi(S, ~ω)

Ne(i)πRi(S)2

= lim
n→∞

lim
i→∞

Ei

Ne(i)πRi(S)2
,

(20)

where we defined Ei = 1/n
Pn

k=1(τR(S),i(~xk, ~ω) − τi(S, ~ω)).
This difference converges to zero if the denominator
Ne(i)πRi(S)2 diverges with an infinite number of passes and |Ei|

is bounded. The former is true because limi→∞ Ne(i)πRi(~x0)
2

is divergent (one of the conditions of consistency) and
Ri(S)2/Ri(~x0)

2 is a non-zero constant as in Section 4.1.,
which shows that limi→∞ Ne(i)πRi(S)2 is also divergent. We
provide the details how |Ei| is bounded in Appendix B. Although
the final result looks simple, our choice of τi(S, ~ω) is again
crucial to bound |Ei|. Finally, we can estimate the correct average
radiance value as:

L(S, ~ω) = L(S, ~ω)′ = lim
i→∞

τi(S, ~ω)

Ne(i)πRi(S)2
. (21)

5 Results

In this section, we show results based on our implementation of
progressive photon mapping (PPM) and our stochastic progressive
photon mapping (SPPM). The implementation of SPPM is almost
the same as PPM. One change is generating a set of new hit points
by distributed ray tracing [Cook et al. 1984] after each photon pass.
Another change is to assign shared statistics to each pixel, not each
hit point. This is because the statistics are shared over the region S,
and S is usually assigned to each pixel (e.g., a pixel footprint).

All of our test scenes have been rendered on a 2.4GHz Intel Core 2
Q6600 using one core. The resolution of the images is 640 × 480,

Triangles Rendering time [min] PPM passes SPPM passes
Cornell Box (Figure 4) 38 50 899 742

Cornell Box with Wall lights (Figure 4) 7660 50 234 220
Furry Bunny (Figure 6) 371247 132 1722 1197

Transparent Dices (Figure 6) 370860 110 287 195
Alarm clocks (Figure 7) 119856 480 1101 1202

Tools (Figure 1) 56486 200 353 484

Table 1: Rendering statistics of our experiments. We show a single rendering time for each scene because both PPM and SPPM used the
same rendering time. PPM passes are the numbers of photon tracing passes, and SPPM passes are the numbers of photon tracing passes as
well as the numbers of distributed ray tracing passes. We used 500,000 emitted photons per pass in both methods. SPPM usually performs
a less number of passes in the same rendering time because of the additional cost of the distributed ray tracing pass. However, SPPM can
perform more passes in the alarm clocks scene and the tools scene, where PPM needed to use multiple hit points per pixel (16 hit points per
pixel) to achieve distributed ray tracing effects.

1 100 1000
0.002

0.01

0.05

Number of Photon Passes

R
el

at
iv

e
E

rr
or

step

pi
quadratic

linear

10

Figure 3: Error plot of 1D integration tests. We performed numer-
ical integration of functions using our method. The functions are
y0(x) = 0.75+0.25 sgn(x−0.5) (step), y1(x) = x2 (quadratic),
y2(x) = 4

√
1− x2 (pi), and y3(x) = x (linear), where the range

of integration is x ∈ [0, 1] for all functions. We compute the relative
error as E(y) =

˛̨
Y−y

Y

˛̨
, where Y is the analytical value of inte-

gration and y is a current estimate. The plot is using the average
over 10 different random number sequences. The errors converge
to zero as the number of photon passes increases.

except for the bunny scene and the Cornell box scenes which use
512 × 512. All rendering comparisons are equal time, except for
the progressive sequences in Figure 5. In all the scenes, each photon
pass traced 500,000 photons and α is set to 0.7. Table 1 summarizes
the statistics of our experiments.

Figure 3 shows a numerical validation of SPPM with a 1D function
integration. We used 1D functions where the results of integrations
over [0, 1] are known, and performed numerical integrations by es-
timating the average values over S = [0, 1] with SPPM. In each
photon pass, photons (samples) are generated using rejection sam-
pling so that they are distributed according to the function. We used
50,000 photons per pass and took the average error over 10 different
runs in this experiment. As we can see, errors of SPPM are converg-
ing to zero as the number of photon tracing passes increases.

In order to highlight the improvement over PPM, we rendered the
Cornell box with a glossy floor as in Figure 4. The floor uses the
modified Phong mode with a glossiness value of 25. Note that
the results with PPM have significant noise on the floor. PPM is
not efficient for glossy reflections because incoming directions of
photons that contribute to the viewer direction are narrow. SPPM
efficiency handles glossy reflections by tracing once bounce cam-
era rays according to the BRDF and computing the hemispherical
integration, similar to the final gathering step in standard photon
mapping [Jensen 1996].

Figure 5 shows a progressive sequences of renderings for the Cor-

PPM SPPM

Figure 4: Cornell box with a glossy floor. The BRDF of the floor is
the modified Phong model with a glossiness value of 25. The results
of PPM are noisy because glossy reflections cause large variations
of photon contributions to viewing directions. The bottom row re-
placed the area light source in the original Cornell box with two
wall lights. Even though this change is simple from a user’s per-
spective, it makes unbiased methods inefficient because of highly
glossy reflections of caustics from the wall lights. SPPM is still as
robust as PPM for this illumination setting, while rendering glossy
reflections with less noise in the same rendering time.

nell box scene and the RMS errors compared to a reference result.
For the reference result, we used the converged result generated us-
ing PPM with a large number of photon passes. We show images
from both PPM and SPPM using the same number of photon passes,
not equal time comparisons. Note that each pass of SPPM takes ap-
proximately 10 percent longer rendering time than PPM, because
of additional distributed ray tracing per pass. However, SPPM can
render visually pleasing results with a smaller number of photon
passes in comparison to PPM, which makes SPPM worth the addi-
tional computational cost per pass. In addition, the RMS errors of
SPPM are consistently lower than PPM as shown in the graph.

Figure 6 shows the applications to anti-aliasing and motion blur.
PPM used 1 sample per pixel to have equal memory consumption
with SPPM. In order to correctly render motion blur with PPM,
we sampled the time when hit points are generated (16 samples per
pixel are used). The sampled time value is assigned to each hit point

so that each photon contributes to hit points in the same time sam-
ple. Using the same rendering time, SPPM can include anti-aliasing
and motion blur with a constant amount of memory consumption
independent of the number of samples per pixel. PPM needs an
increasing amount of memory in order to increase the number of
samples per pixel.

Figure 7 shows a rendering with depth-of-field. PPM used 16 hit
points (i.e., 16 radiance samples) per pixel, which consumed ap-
proximately 1GB of memory in our implementation. Note that the
scene is dominated by SDS paths because all the illumination is due
to the desk lamp with a light bulb outside the view, and we observe
the scene through a lens to achieve depth-of-field. Although PPM
can handle SDS paths, the result is noisy because the number of
radiance samples per pixel is insufficient to remove noise due to
depth-of-field. SPPM renders the same scene with less noise using
16 times less memory consumption.

We also provide the comparison with bidirectional path tracing
(BDPT) with multiple importance sampling [Veach and Guibas
1995] in this scene. The comparison confirms that this scene can-
not be rendered efficiently by BDPT due to SDS paths. Since the
robustness of SPPM to SDS paths is the same as PPM, for more
comparisons with unbiased methods, readers might want to refer to
the PPM paper [Hachisuka et al. 2008].

Finally, we show a rendering of a scene with depth-of-field and
glossy reflections in Figure 1. PPM used 16 hit points per pixel as
before. The bolts and plier used the modified Phong model with
the glossiness value of 100. The entire scene is illuminated by the
flashlight in front, which causes highly glossy reflections of caus-
tics on the metallic parts of plier and bolts. The result with PPM
suffers from both noise due to glossy reflections and noise due to
depth-of-field. Again, note that PPM consumed approximately 16
times more memory than SPPM because PPM uses 16 samples per
pixel. In the same rendering time with smaller memory consump-
tion, SPPM renders this scene with less noise.

6 Conclusion

We have presented a new formulation of progressive photon map-
ping, called stochastic progressive photon mapping, that makes it
possible to compute the correct average radiance value over a re-
gion. We modify progressive photon mapping by adding a new
distributed ray tracing pass that generates new hit points after each
photon pass. The photon statistics of the new hit points is taken
directly from the previous hit point for each pixel, and this is
the key insight that makes it possible to compute the correct av-
erage radiance for a region rather than at a point. Our results
show that stochastic progressive photon mapping is robust in scenes
with complex illumination settings including distributed ray trac-
ing effects, such as depth-of-field, motion blur, and glossy reflec-
tions/refractions.

We believe that applications of stochastic progressive radiance esti-
mation outside rendering are possible because our formulation can
be thought as a general density estimation framework that can com-
pute the correct average density value. One limitation is that the
current formulation is restricted to the average radiance on a surface
as the method is based on PPM. Extending the method to the aver-
age radiance value from volume would be useful because it is re-
quired for rendering participating media. Although we have shown
that the additional errors of our formulation over progressive pho-
ton mapping are theoretically bounded and converging, establishing
more accurate error estimates would be interesting for future work.

Acknowledgments

We would like to thank Youichi Kimura (Studio Azurite) for provid-
ing the flashlight model, Will Chang, Wan-Yen Lo, Marios Papas,
and Iman Sadeghi (UCSD Graphics Lab) for discussions and com-
ments on the draft. We would also like to thank Antoine Bouthors
(Weta Digital), Wojciech Jarosz (Disney Research, Zürich), and
Leonhard Grünschloß (Nvidia) for further comments on the draft.
The clock, bolts, and plier models are from ShareCG.com. This
work was supported by ATI fellowship 2008.

References

CAMMARANO, M., AND JENSEN, H. W. 2002. Time dependent
photon mapping. In Rendering Techniques, Eurographics As-
sociation, S. Gibson and P. E. Debevec, Eds., vol. 28 of ACM
International Conference Proceeding Series, 135–144.

CLINE, D., TALBOT, J., AND EGBERT, P. 2005. Energy redistribu-
tion path tracing. ACM Trans. Graph. (SIGGRAPH Proceedings)
24, 3, 1186–1195.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. In Computer Graphics (SIGGRAPH Pro-
ceedings), vol. 3(18), 137–45.

DUTRÉ, P., BEKAERT, P., AND BALA, K. 2006. Advanced Global
Illumination (2nd edition). A K Peters.

HACHISUKA, T., OGAKI, S., AND JENSEN, H. W. 2008. Pro-
gressive photon mapping. ACM Transactions on Graphics (SIG-
GRAPH Asia Proceedings) 27, 5, Article 130.

JAROSZ, W., ZWICKER, M., AND JENSEN, H. W. 2008. The
beam radiance estimate for volumetric photon mapping. Com-
put. Graph. Forum 27, 2, 557–566.

JENSEN, H. W. 1996. Global illumination using photon maps. In
Proceedings of the Eurographics Workshop on Rendering Tech-
niques ’96, Springer-Verlag, London, UK, 21–30.

KAJIYA, J. T. 1986. The rendering equation. Computer Graphics
(SIGGRAPH Proceedings) 20, 4, 143–150.

LAFORTUNE, E. P., AND WILLEMS, Y. D. 1993. Bi-directional
path tracing. In Proceedings of Third International Conference
on Computational Graphics and Visualization Techniques (Com-
pugraphics ’93), H. P. Santo, Ed., 145–153.

SILVERMAN, B. 1986. Density Estimation for Statistics and
Data Analysis. Mongraphs on Statistics and Applied Probability.
Chapman and Hall, New York, NY.

VEACH, E., AND GUIBAS, L. J. 1995. Optimally combining sam-
pling techniques for monte carlo rendering. In Computer Graph-
ics (SIGGRAPH Proceedings), 419–428.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In Computer Graphics (SIGGRAPH Proceedings), 65–76.

WASSERMAN, L. 2006. All of Nonparametric Statistics (Springer
Texts in Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

1 8 64 512 4096

P
P
M

S
P
P
M

1 4 16 64 256 1024 4096 16384
1E-3

1E-2

1E-1

1E-0

Number of Photon Passes

R
M

S
 E

rr
or

PPM
SPPM

Figure 5: Progressive sequences of rendering of Cornell box and the RMS errors. The number of photon passes of the images is 1, 8, 64, 512,
and 4096 correspondingly. The graph shows the RMS errors from the converged result with PPM. The result with SPPM converges visually
pleasing results with a smaller number of photon passes, and the RMS errors are consistently lower than the result with PPM. The rendering
time of SPPM is approximately 10 percent longer than that of PPM for the same number of photon passes.

Figure 6: Furry bunny illuminated by the skylight and moving transparent dices with motion blur. The dices are illuminated by the sunlight,
and blur of caustics and shadows is due to motion blur of the dices. The close-ups compare the results with PPM (left columns) and SPPM
(right columns), and we show the entire rendered images with SPPM. The comparisons are equal time and equal memory consumption (i.e.,
PPM used 1 sample per pixel).

Figure 7: Alarm clocks illuminated by a desk lamp. The desk lamp with a light bulb is outside the view and illuminates the clocks. The scene
is rendered using a thin lens model for depth-of-field. The images are rendered with BDPT (left), PPM (middle), and SPPM (right) using
the same rendering time. The combination of the lens for depth-of-field and caustics from the desk light makes the entire scene dominated by
SDS paths, which is difficult to render with unbiased methods such as BDPT. BDPT used 11406 paths per pixel, but the image is dark and
contains noisy bright pixels. PPM can handle such an illumination setting, but the close-ups show rendering of depth-of-field causes visually
noticeable noise due to the fixed number of samples per pixels. SPPM robustly handles illumination by the desk lamp as well as depth-of-field
in the same rendering time with less memory consumption.

A Convergence of Ratio of Radius

We show that the ratio limi→∞ Ri(S)2/Ri(~x0)
2 is convergent and

non-zero in the following. We first expand the ratio using its defi-
nition:

lim
i→∞

Ri(S)2

Ri(~x0)2
=

∞Y
j=0

(Nj(S) + αMj(~xj))(Nj(~x0) + Mj(~x0))

(Nj(S) + Mj(~xj))(Nj(~x0) + αMj(~x0))

(22)

In the following derivations, we use the notations NS = Nj(S),
N0 = Nj(~x0), Mj = Mj(~xj), and M0 = Mj(~x0) for readability.
Using these notations, we further expand the equation and obtain
the upper bound as:

=

∞Y
j=0

(NS + αMj)(N0 + M0)

(NS + Mj)(N0 + αM0)

=

∞Y
j=0

„
1 +

(1− α)(NSM0 −N0Mj)

NSN0 + αNSM0 + MjN0 + αMjM0

«

=

∞Y
j=0

1 +

(1− α)N0M0(
NS
N0
− Pj)

NSN0 + αNSM0 + MjN0 + αMjM0

!

=

∞Y
j=0

(1 + Qj) .

(23)

where Pj =
Mj

M0
and we defined Qj as:

Qj =
(1− α)N0M0(

NS
N0
− Pj)

NSN0 + αNSM0 + MjN0 + αMjM0
. (24)

Taking the logarithm of both sides, this infinite product converges
if and only if the infinite sum

Q =

∞X
j=0

Qj (25)

converges as each term of the infinte product is always positive.
Note that Qj is a random variable. Assuming non-adaptive photon
tracing, we can consider M0 = Mj(~x0) = 1 for a large enough j.
We thus obtain

lim
j→∞

NS

N0
= lim

j→∞

α
P

j Mj

α
P

j M0
= lim

j→∞

P
j M0PjP

j M0
= E[Pj], (26)

so the numerator NS
N0

− Pj is symmetric around zero, therefore,
E[Qj] = 0. Furthermore, we obtain the following:

∞X
j=0

Var[Q2
j] =

∞X
j=0

E[Q2
j] <

∞X
j=0

C1

(j + 1)2
< ∞, (27)

where C1 is a constant because the numerator of Qj is bounded.
This derivation also uses the fact that the lower bound of NS is
α(j + 1) (i.e., only one photon is captured), and the upper bound
of M0 is Ne(1) (i.e., all the emitted photons are captured).

Using E[Qj] = 0 and
P∞

j=0 Var[Q2
j] < ∞ with Kolmogorov’s

one series theorem, the infinite sum Q almost surely converges.
Therefore, the infinite product also almost surely converges. We
then show that the ratio is non-zero by showing the reciprocal of the

ratio is bounded. Namely, we show that limi→∞ Ri(~x0)
2/Ri(S)2

is convergent. Similar to before, we expand the ratio as follows:

lim
i→∞

Ri(~x0)
2

Ri(S)2
=

∞Y
j=0

(NS + Mj)(N0 + αM0)

(NS + αMj)(N0 + M0)

=

∞Y
j=0

„
1 +

(1− α)(N0Mj −NSM0)

NSN0 + NSM0 + αMjN0 + αMjM0

«

=

∞Y
j=0

`
1 + Q′

j

´
.

(28)

The rest of the derivation is the same as before, but with the opposite
sign of random variables and use Q′

j instead of Qj .

B Bound of |Ei|
We show that |Ei| is bounded by a constant. In the follow-
ing derivation, we first consider n|Ei| for the purpose of dis-
cussion. We expand n|Ei| using the definition of τi(S, ~ω) and
τR(S),i(~xk, ~ω):

n|Ei| =

˛̨̨̨
˛

nX
k=1

`
τR(S),i(~xk, ~ω)− τi(S, ~ω)

´˛̨̨̨˛
=

˛̨̨̨
˛

nX
k=1

iX

j=0

Φj(~xk)−
iX

j=0

Φj(~xj)

!˛̨̨̨
˛ .

(29)

Note that we can use the same Φj(~x) to expand both τR(S),i(~xk, ~ω)
and τi(S, ~ω) because both accumulated flux values use the same
search radius R(S) as a result of Section 4.1. Since photon flux
Φj(~x) is proportional to the radiance value L(~x) (i.e., Φj(~x) di-
vided by the area is radiance) and radius is the same everywhere in
S (Equation 14), we can further expand the above equation into:

=
1

L(~x0)

˛̨̨̨
˛

nX
k=1

iX

j=0

L(~xk)Φj(x0)−
iX

j=0

L(~xj)Φj(x0)

!˛̨̨̨
˛

=
1

L(~x0)

˛̨̨̨
˛

nX
k=1

iX
j=0

Φj(~x0)(L(~xk)− L(~xj))

˛̨̨̨
˛

=
1

L(~x0)

˛̨̨̨
˛

iX
j=0

Φj(~x0)

nX
k=1

(L(~xk)− L(~xj))

˛̨̨̨
˛ .

(30)

Φj(~xk) =
L(~xk)Φj(x0)

L(~x0)
is only approximately true because Φj(~xk)

is estimated using a finite number of photons per pass. However,
this error does not diverge as j → ∞ (i.e., we at least have one
photon per pass), so we can ignore this error in this derivation.
Since photon flux Φj(~x) is monotonically decreasing as j → ∞
and i = n in our formulation, we obtain the upper bound as:

n|Ei| ≤
Φ0(~x0)

L(~x0)

iX
j=0

˛̨̨̨
˛

nX
k=1

(L(~xk)− L(~xj))

˛̨̨̨
˛

=
Φ0(~x0)

L(~x0)

nX
j=0

˛̨̨̨
˛

nX
k=1

L(~xk)− nL(~xj)

˛̨̨̨
˛

(31)

Assuming the variation of L(~x) is bounded (i.e., 0 ≤ L(~x) < ∞),
the double summation above can be written as C2n, where C2 is a
constant. Dividing the both side by n, we obtain:

|Ei| ≤
Φ0(~x0)

L(~x0)

1

n
C2n =

Φ0(~x0)

L(~x0)
C2, (32)

Therefore, |Ei| is bounded by a constant.

