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Abstract
We propose a novel surface-only method for simulating dynamic deformables without the need for volumetric meshing or
volumetric integral evaluations. While based upon a boundary element method (BEM) for linear elastodynamics, our method
goes beyond simple adoption of BEM by addressing several of its key limitations. We alleviate large displacement artifacts due
to linear elasticity by extending BEM with a moving reference frame and surface-only fictitious forces, so that it only needs
to handle deformations. To reduce memory and computational costs, we present a simple and practical method to compress
the series of dense matrices required to simulate propagation of elastic waves over time. Furthermore, we explore a constraint
enforcement mechanism and demonstrate the applicability of our method to general computer animation problems, such as
frictional contact.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Physical simulation of dynamically deforming elastic objects (elas-
todynamics) is now widely deployed for computer animation. Most
such simulation methods rely on discretizing an object into a volu-
metric mesh of tetrahedral or cubic elements. The simulation then
processes both the exterior (surface) and the interior of the the ob-
ject. Computer animation, however, is often concerned only with
the visible motion of the object’s surface. We propose a practi-
cal surface-only dynamic deformables simulation method (Fig. 1)
suitable for computer animation. Being a surface-only method, our
method does not need any volumetric discretization.

Our method builds upon advances in the boundary element
method (BEM) [LMN*12]. BEM can solve partial differential
equations (PDEs) while discretizing only the boundary (surface)
of the domain. James et al. [JP99] applied BEM for the first time to
computer animation based on linear elastostatics. Although BEM
is becoming increasingly popular in computer animation [HW15;
HW16; DHB*16], we are the first to solve elastodynamics simula-
tion with BEM in computer animation.

BEM for elastodynamics is an active area of research even in
computational mechanics [LMN*12]. The intuition behind elasto-
dynamics BEM is that we can express deformation at a point on
a surface by considering a superposition of elastic waves propa-
gated from all surface points over time. Mathematically, we achieve
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Figure 1: Dynamic elastic fish falling into a bowl and colliding
(left), simulated with our surface-only approach that requires no
interior meshing (right).

this by solving a boundary integral equation (BIE) derived from
the Navier-Cauchy equations of linear elasticity. Since this BIE is
an integral over the object’s surface, only the surface needs to be
discretized. Unlike the BIE for elastostatics [JP99], this BIE for
elastodynamics involves convolution over time to account for the
influence of the past motion, leading to a recursive matrix equation
after discretization.
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We observed that simply employing BEM for elastodynamics
would not result in a practical method. The first problem is that
directly solving the BIE in a static frame results in artifacts due
to the limitations of linear elasticity, such as volume gain under
large rotations. We introduce a moving frame of reference and ad-
ditional fictitious forces in BEM. This approach ensures that BEM
only needs to handle local deformations, enabling large translation
and rotation and leading to better numerical stability. Even com-
pared to elastostatic methods that incorporate a moving rigid frame
[HW16; JP02], adding dynamics requires we pay additional atten-
tion to ensure the method’s stability. The second problem is that,
unlike sparse matrices in volumetric simulations, the matrices in
BEM are dense. In general, the computation and storage costs for
dense matrices exhibit worse scaling compared to sparse matrices.
We propose a compression method tailored to the dense matrices in
BEM for elastodynamics. This compression method significantly
reduces both the computational and storage costs by exploiting the
smoothness of the integrands in the BIE. Lastly, we incorporate a
constraint enforcement strategy that enables frictional contact and
domain decomposition in order to support more complex scenar-
ios. Our method thus goes beyond a simple application of BEM to
elastodynamics animation. To summarize, our contributions are;

• an application and adaptation of elastodynamics BEM to com-
puter animation problems,

• support for large global displacements for elastodynamics BEM
using a moving body frame and fictitious forces,

• a simple matrix compression technique to reduce memory cost
and computational cost.

• a constraint-based treatment of joints, frictional contact, and do-
main decomposition for our BEM scheme.

2. Related Work

Physics-based deformable body simulation. Physics-based sim-
ulations of deformable bodies typically solve partial differential
equations with volumetric spatial discretizations. The pioneer-
ing work of Terzopoulos et al. [TPBF87] uses a finite difference
method to discretize the space, whereas Teran et al. [TBNF03]
applied the finite volume method. The finite element method
(FEM) [SB12] later became increasingly popular due to its gen-
erality and strong theoretical foundations. Smoothed particle hy-
drodynamics [KBST19] and the material point method [JST*16;
HZGJ19] have also been applied to deformable body simulation.
All of the above methods require discretization of and computation
over the interior of the volumetric domain; we avoid this interior
discretization via BEM.

Geometry-based deformable body animation. Geometry-based
(or position-based) methods are common alternatives to physics-
based simulations. These methods often have attractive properties
for computer animation, such as computational efficiency and un-
conditional stability. Early work in this direction includes shape
matching [MHTG05] and position-based dynamics [MHHR07].
These methods have been extended in many ways, and we refer
to the survey by Bender et al. [BMM17] for an overview. In their
basic forms, such methods often lack the accuracy and realism of
physics-based methods. Furthermore, these approaches also often

rely on volumetric meshes. Our BEM method is physics-based and
does not assume having any volumetric meshes.

BEM in graphics. In contrast to the methods above, BEM solves
linear partial differential equations with only a surface discretiza-
tion. The potential benefits of BEM in computer animation were
first recognized by James et al. [JP99] for elastostatics simula-
tion. Several applications in geometry processing and physics-
based simulation have subsequently been explored. For example,
James et al. [JBP06] and Umetani et al. [UPSW16] used BEM for
acoustic transfer problems by solving the Helmholtz equation. Sev-
eral authors have used elastostatics BEM to simulate brittle frac-
tures [ZBG15; HW15; HW16]. Da et al. [DHB*16] and Huang et
al. [HM20] explored BEM for surface-only liquid animation. They
solve the Laplace equation with a mixed boundary condition to per-
form the pressure solve. A range of applications of BEM to geom-
etry processing tasks have also been studied [SVB17; WSSK13;
LW16]. A key distinction of our work compared to prior graph-
ics work is that we consider, for the first time, solving a dynamic
problem with BEM. For example, while the surface-only liquids
method [DHB*16] is overall solving a dynamic problem, its BEM
step is applied only to solve the static Laplace problem. Our method
directly solves a hyperbolic PDE with BEM, whereas prior work
uses BEM to solve only elliptic PDEs.

Elastodynamics BEM. The first time-domain elastodynamics
BEM for 3D transient problems was proposed by Banerjee et
al. [BAM86] and Manolis et al. [MB88]. They solve the bound-
ary integral equation using analytical integration over time, as-
suming constant nodal displacements and tractions over each time
step. This early work suffered from "intermittent instability" effects
[PS97], meaning that the solution becomes unstable in a manner
that depends on the time step size in an erratic and unpredictable
way. Several researchers proposed approaches to alleviate this is-
sue, for example by employing different fundamental solutions or
using higher order interpolation functions. Among them, Schanz
and Antes [SA97; Sch01] claim that their formulation called con-
volution quadrature BEM (CQBEM) is less sensitive to the choice
of time step size compared to the classical counterpart. Our initial
experiments supported this claim, and we base our method upon
CQBEM. Li et al. [LZ13] give a summary on this topic and also
conclude that CQBEM numerically outperforms other representa-
tive options in terms of stability and accuracy. There exist more
recent methods [BMS12; ADFG12], but with increased implemen-
tation complexities and we leave exploring them as future work.

Fundamental solutions. For a time-dependent differential equa-
tion, a fundamental solution is an analytical solution to the prob-
lem in the case of a source (or load) that is concentrated in both
space and time. A fundamental solution assumes an infinite domain
without any specific boundary conditions. De Goes et al. [DJ18]
use elastodynamics fundamental solutions directly on the infinite
ambient volume containing an object in order to approximate sim-
ple secondary motions. This approach, however, cannot handle the
boundary conditions necessary for general elastodynamics simula-
tions. Our method instead relies on BEM, which uses fundamental
solutions in its derivation, but supports finite domains and general
boundary conditions needed for elastodynamics simulations.
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Figure 2: Overview of our method.

Linear elasticity and rotation effects. Currently, elastodynamics
BEMs that avoid the need for computation over volumetric do-
main are based only on linear elasticity and thus cannot naturally
handle large displacements. This fact has limited the type of dy-
namic motions one can simulate with BEM. James et al. [JP99]
did not address this problem, nor has the computational mechanics
community. In computer graphics, similar problems have been ad-
dressed (for non-BEM schemes) by coupling linear elasticity and
rigid body dynamics [TW88] or a corotated linear strain measure
for FEM [MDM*02; MG04]. Hahn et al. [HW16] augment a rigid
body simulator with fracture effects due to collisions by solving
instantaneous elastostatic BEM problems upon contact, assuming
that deformations due to elasticity are almost negligible. The BEM
traction field is computed from rigid body contact impulses. This
method is not applicable to elastodynamics because it does not con-
sider time-history effects. We address this issue by solving an elas-
todynamics BEM problem on a moving rigid frame.

3. Surface-Only Dynamic Deformables

Our surface-only dynamic deformables formulation begins by aug-
menting an elastodynamics BEM with a moving frame of reference
undergoing rigid body dynamics. This moving reference frame can
absorb effects due to large global rotational and translational dis-
placements and the BEM needs to handle only the remaining local
deformations. The motion of the frame imposes fictitious forces in
the frame, which we can include as external forces in the BEM. In
the following, we first introduce basic elastodynamics BEM along
with our new fictitious forces (Section 3.1), and then describe how
to apply the BEM within a moving frame (Section 3.2)

With this framework laid out, we introduce two further exten-
sions to handle diverse animation scenarios. We discuss how to
compress the dense matrices in our BEM method to reduce its
computation and storage costs (Section 3.3). We then propose our
constraint enforcement method to support joints, frictional contact
effects, and domain decomposition for even larger deformations
(Section 3.4). Fig. 2 shows the relation between the building blocks
of our method. Our method consists of precomputation steps, which
amortize costs for the simulation loop, and runtime steps, which
carry out the simulation itself. We use a bold face font (i.e., u) to
denote vectors and matrices in the continuous setting and use a sans
serif font (i.e., u) to denote vectors and matrices after discretization.

3.1. Elastodynamics BEM

Below we describe our chosen baseline time-domain elastodynam-
ics BEM [SA97; Sch01], emphasizing differences with respect to

elastostatics [JP99]. The most fundamental of these differences is
the introduction of temporal convolutions. The original work by
Schanz et al. [SA97] does not explain how to handle body forces
such that the resulting BIE contains only surface integrals. If vol-
ume integrals remain, they might necessitate interior discretization
which would defeat the purpose of BEM. We therefore explain how
gravity and two types of fictitious forces from a moving frame can
be incorporated into BEM as body forces using only surface inte-
grals.

3.1.1. Boundary integral equation

Suppose that we have a homogeneous, isotropic, linearly elastic
material with undeformed volumetric domain Ω having boundary
Γ = ∂Ω. The displacement field for the material, u(x, t), follows the
Navier-Cauchy equations,

µ∇2u+ (µ+λ)∇(∇ ·u)+b = ρü, (1)

where λ and µ are Lamé parameters, ρ is a constant mass density,
and b(x, t) is the external forces applied to the body, e.g., gravity.
We omit the dependency on variables x and t for brevity in the
equation above. We can also derive the traction (i.e., force per unit
area) applied on the surface, p(x, t), from u(x, t) by Cauchy’s the-
orem [Sch01]. The presence of the second order time derivative of
displacement (indicated by double overdots), absent for elastostat-
ics, makes the equation a hyperbolic PDE.

The problem is to solve Eq. (1) for x ∈ Ω, t ≥ 0 under time-
dependent traction boundary conditions and zero initial displace-
ments and velocities:

p(x, t) = p(x, t) for x ∈ Γ, t ≥ 0
u(x,0) = u̇(x,0) = 0 for x ∈Ω, (2)

where the overline indicates the prescribed boundary function.
Other boundary conditions, such as displacements specified at ver-
tices, can be handled using a constraint solver (see Section 3.4) or
penalty springs [MZS*11]. A fundamental solution for displace-
ments u∗(x,y, t) and traction p∗(x,y, t) to Eq. (1) can be derived
analytically as responses at (x, t) to a unit impulsive load at (y, τ) in
an infinite medium.

With zero initial displacements and velocities, these fundamental
solutions allow us to transform Eq. (1) into a BIE in the form of

c(x)u(x, t) = −
∫ t

0

∫
Γ

p∗(x,y, t−τ)u(y, τ) dΓy dτ

+

∫ t

0

∫
Γ

u∗(x,y, t−τ)p(y, τ) dΓy dτ

+

∫ t

0

∫
Ω

u∗(x,y, t−τ)b(y, τ) dΩy dτ,

(3)

where c(x) is called the integral free term and is associated with the
smoothness of the boundary in the undeformed configuration.

The main difference from the elastostatic case [JP99] is the in-
troduction of a time integral from the beginning of the simulation
to the current time. Intuitively, this integral expresses that elastic
waves that propagate through the body from any boundary point
y are superposed in space and time and affect the displacement at
x at the current time. The last term in Eq. (3) expresses body force
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effects and it involves a volume integral. We need to avoid discretiz-
ing this volume integral to have a surface-only method. This term
is typically ignored in the computational mechanics literature.

When we use this boundary integral equation within a mov-
ing, non-inertial frame of reference, such a frame introduces ad-
ditional forces on objects, called fictitious forces. Let us denote
the translational acceleration of the frame by a, the rotational ac-
celeration of the frame by α, the gravitational acceleration by g′,
expressed in the moving frame, respectively. We further denote
a skew-symmetric cross-product matrix by [·]×, and the center of
mass of the body in the undeformed configuration by x̄. With this
notation, we can introduce forces due to translational acceleration
−ρa(τ) and rotational acceleration (the latter known as the Euler
force) −ρ[y− x̄]T

×α(τ), omitting the centrifugal and Coriolis forces
for simplicity. We explain more details regarding fictitious forces in
a later subsection. We further include the gravitational force ρg′(τ).
We incorporate these three forces into the BEM system as body
force terms, i.e. b(y, τ)=−ρa(τ)−ρ[y− x̄]T

×α(τ)+ρg′(τ), computed
based on the body’s undeformed shape. Fortunately, we can analyt-
ically convert the volume integral in these body force terms into
surface integrals as:∫ t

0

∫
Ω

u∗(x,y, t−τ)b(y, τ) dΩy dτ

=

∫ t

0

(∫
Γ

d∗(x,y, t−τ)dΓy

)
(a(τ)−g′(τ)) dτ

+

∫ t

0

(∫
Γ

q∗(x,y, t−τ) dΓy

)
α(τ) dτ.

(4)

A general approach to convert volume integrals to boundary inte-
grals in the context of BEM, called the multiple reciprocity method
(MRM), is available for elastostatics [NB89] and applied in the
work by James et al. [JP99]. To our knowledge, MRM has not been
applied to elastodynamic problems, possibly due to its mathemati-
cal complexity. We instead applied a series of calculus identities to
derive the expressions for d∗ and q∗. See the supplementary note
for details.

3.1.2. Convolution quadrature BEM

We discretize Eq. (3) after substituting its last integral with Eq. (4).
We use CQBEM which employs time-discretization based on the
convolution quadrature method (CQM) [Lub88a; Lub88b]. CQM
is a general numerical integration method that approximates a con-
volution integral of the form

y(t) = f (t)∗g(t) =
∫ t

0
f (t−τ)g(τ) dτ, (5)

where the quadrature weights are determined using the Laplace
transform and a linear multistep method. Specifically, given the
closed-form expressions for the time-domain function g(t) and the
Laplace transformed function of f (t), f̂ (s), the function y at time
n∆t then can be approximated as

y(n∆t) ≈
nmax∑
k=0

ψk( f̂ ) g((n− k)∆t), (6)

where nmax is the maximum number of time steps considered in
the underlying linear multistep method, which is computed based

on the input geometry and the input parameters, and ψk( f̂ ) is an in-
tegration weight computed using f̂ . Section 4 discusses the details
for nmax and this integration weight.

We assume that the input object is a triangle mesh with N ver-
tices and M triangles, and discretize time with constant step size ∆t.
Using piecewise linear interpolation for the displacement and trac-
tion at each vertex, we have

u(x,k∆t) = Φ(x)uk

p(x,k∆t) = Φ(x)pk
for x ∈ Γ, (7)

where Φ(x) is a piecewise linear interpolation matrix and uk and
pk are 3N-vectors consisting of the nodal displacements and trac-
tions at the kth time step, respectively. We observed that piecewise
linear interpolation offers better stability than piecewise constant
interpolation.

We then apply CQM (Eq. (6)) for temporal discretization and in-
tegration, and piecewise linear interpolation for spatial discretiza-
tion (Eq. (7)) to each term in Eq. (3) with the body force terms
described in Eq. (4). At the ith vertex, x = xi, at time t = tn, we get

c(xi)un,i =

nmax∑
k=0

{
−

(∫
Γ

ψk(p̂∗)(xi,y) Φ(y) dΓy

)
un−k

+

(∫
Γ

ψk(û∗)(xi,y) Φ(y) dΓy

)
pn−k

+

(∫
Γ

ψk(d̂∗)(xi,y) dΓy

)
(an−k −g′n−k)

+

(∫
Γ

ψk(q̂∗)(xi,y) dΓy

)
αn−k

}
,

(8)

where ˆ(·) denotes a Laplace transformed function, (·)n−k = (·)((n−
k)∆t), and un,i is the nodal displacement 3-vector for the ith vertex
at time t = n∆t. The ordering of terms in Eq. (3) after substitution
of Eq. (4) is retained in Eq. (8) to expose how the CQM and inter-
polation were applied. We provide expressions for p̂∗, û∗, d̂∗ and
q̂∗ in Appendix A. .

We can precompute the boundary integrals in Eq. (8) by taking
the sum of integrals over triangles. See Section 4 for implementa-
tion details. By assembling the equations for all vertices xi into a
matrix equation and reordering terms, we get

H0un = G0pn +D0(an −g′n)+Q0αn

+

nmax∑
k=1

(
−Hkun−k +Gkpn−k +Dk(an−k −g′n−k)+Qkαn−k

)
︸                                                                ︷︷                                                                ︸

time history effects

. (9)

The matrices Hk,Gk (∈ R3N×3N ) and Dk,Qk (∈ R3N×3) correspond
to the terms with p̂∗, û∗, d̂∗, and q̂∗ in Eq. (8), respectively. The in-
tegral free term c(xi) is absorbed into H0. Unlike matrices in FEM,
these matrices are dense.

This equation shows that, as a result of discretizing the convo-
lution integrals, finding the unknown current displacement un re-
quires data both from past steps and the current one. From the cur-
rent time step, we require the traction and body acceleration vec-
tors; from the past nmax time steps, we require the displacement,
traction, and body acceleration vectors. Thus it is a recursive matrix
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equation. This structure lets us store information in a surface-only
manner, in contrast to volumetric elasticity formulations. Unlike
elastostatics BEM [HW16], the H0 matrix is full-rank in general
(i.e., no null space) implying that we can straightforwardly solve
problems with pure traction boundary conditions.

3.2. Local Deformation within a Moving Frame

One of our technical contributions is to use BEM within a moving
frame of reference to alleviate the limitations due to linear elastic-
ity, inspired by prior work outlined in Section 2. We approximate
the motion of the reference frame with rigid body dynamics based
on the elastic body’s undeformed shape, based on the linear elastic-
ity assumption of modest deformations. The traction applied on the
surface of the deformable body drives the frame’s motion and the
recursive matrix equation Eq. (9) updates the displacement vector
using the approximated frame’s accelerations.

At the beginning of the simulation, we compute the mass m, cen-
ter of mass x̄, and inertia tensor I of the body in its undeformed
configuration using boundary integrals [Mir96]. At the kth simula-
tion step, we compute the translational and rotational accelerations
due to surface traction with boundary integrals:

aext
k =

1
m

(∫
Γ

Φ(y) dΓy

)
pk C Apk,

αext
k = I

−1
(∫
Γ

(y− x̄)×Φ(y) dΓy

)
pk C Cpk.

(10)

We move the frame using these accelerations:

g′k = R⊤k−1 g (11a)

ak ≈ g′k +aext
k , (11b)

αk ≈ αext
k , (11c)

Ṫk = Ṫk−1 +∆tRk−1ak, (11d)

ωk = ωk−1 +∆tRk−1αk, (11e)

Tk = Tk−1 +∆tṪk, (11f)

Rk = e∆t[ωk]×Rk−1, (11g)

where ω is the angular velocity, R is the rotation of the frame, g
is gravitational acceleration in the inertial frame. The subscript de-
notes the simulation step. We evaluate the matrix exponential in the
rotation update equation using Rodrigues’ rotation formula. We ex-
press the accelerations in the body frame coordinate system and we
express the others in the inertial frame.

Additionally, we substitute Eq. (11b) and Eq. (11c) with Eq. (10)
into Eq. (9) and multiply both sides by H−1

0 to get an approximation
of the displacement vector,

un ≈ H0
−1G′pn +H0

−1hn, (12)

where hn represents the time history terms in Eq. (9) and G′ =G0+

D0A+Q0C. Note the gravitational acceleration g′n in Eq. (9) cancels
out with the one in Eq. (11b). This proposed displacement is then
corrected in the next step.

3.2.1. Error correction

These updates of the (moving) reference frame and displacement
vector can remove the majority of the global translation and rota-

tion from the displacement vector, yet there remains some global
drift due to the approximations involved; left untreated, this drift
can become a source of instability. Specifically, the motion of the
frame does not account for the momentum due to deformation, and
we have ignored some fictitious forces. In addition, the fact that
the frame update process is based on the undeformed configuration
may introduce additional error. To alleviate this problem, we ap-
ply a correction step at the end of each simulation step, in which
we transfer the translational and rotational errors remaining in the
displacement vector to the frame’s motion. It suffices to design a
strategy to extract the global translation and rotation remaining in
the body frame in a consistent way over consecutive time steps,
and we find the following simple geometry-based based approach
greatly improves the stability of the method.

We find the translation remaining in the displacement vector by
computing the difference between the current centroid and the ini-
tial centroid. We find the remaining rotation by applying shape
matching [MHTG05] with the mass weighting w ∈RN for each ver-
tex defined as w=

∫
Γ

y ·nΦ(y) dΓy, motivated by the surface integral
to derive the volume of the body [Mir96].

We subtract the translational error from all elements of un and
solve Eq. (9) for an in the least squares sense. We then remove the
rotational error from un by un ← R−1(x+un)− x, where x is a 3N-
vector for undeformed vertex positions and R is a rotation matrix
for the extracted rotational error. We solve Eq. (9) for αn in the
least squares sense with the updated an and un. As we only solved
Eq. (9) in the least squares sense, the equality is not satisfied exactly
in general. Therefore, we solve Eq. (9) for un with the updated an
and αn as a final step. The removed global translation and rotation
are then reintroduced to the system as rigid body frame motions by
updating the frame (Eq. 11) using the updated accelerations.

3.3. Compression of Matrices

Dense matrices in general require larger storage and computational
costs than sparse matrices. In Eq. (9), all H and G matrices are
dense, including the time history terms needed for dynamic effects.
Each has 3N × 3N entries, so the computational cost is quadratic
in the vertex count and thus, unfortunately, scales worse than FEM,
which scales linearly in the number of volumetric elements, in prac-
tice; we ignore the matrix inversion costs here since we perform
inversion in the precomputation step. The BEM community has
noticed this issue and proposed compression methods [LSSW12].
The existing methods [KS15; MS10] for elastodynamics simula-
tions do not yet show test cases with large deformations and high
compression ratios that we aim for. James et al. [JP03] used lifted
wavelet transforms on the input mesh for elastostatics BEM assum-
ing a multiresolution mesh as its input. We present a simple yet
effective compression method based on wavelet transforms, which
works on a general triangle surface mesh.

The time-domain fundamental solutions u∗ and p∗ are spatially
smooth except at the wavefronts, and they decay smoothly as the
source point y and target point x move apart. H and G matrices in
Eq. (9) generally retain this property; the (i, j) entries of the matrices
express how displacement or traction at the jth vertex affect the ith

vertex’s displacement. If the jth and kth vertices are spatially close
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without with

(a) vertex reordering

without with

(b) coordinate subblock reordering

Figure 3: The reordering step yields matrices with smoother struc-
ture. (a) compares the x-x subblock of H1 matrix for the fish in
Fig. 1 without or with applying the vertex reordering, with the co-
ordinate subblock reordering applied to both. (b) shows the top-left
50× 50 submatrices of matrix H1 without or with the coordinate
subblock reordering, with the vertex reordering applied to both.

to each other and have similar normals, the norm of the difference
between columns j and k will be small, and the same holds for rows.
We exploit this property in designing our compression scheme.

First, we reorder the vertices so their indices are more spa-
tially smooth across the surface, using cache-oblivious mesh lay-
outs [YLPM05]. We also order the matrix elements so that the x
coordinates of all vertices come first, followed by all y and then all
z coordinates, forming 3×3 = 9 subblocks. The reordered matrices
exhibit several smooth dense blocks (Fig. 3). We then compress the
matrices by applying the 2D (for row and column directions) Haar
wavelet transform [BCR91] on the matrix elements. Because the
transformation is linear, the transformed matrices support efficient
evaluations of operations such as general matrix-vector multiplica-
tion and multiplication between a row of the matrix and a vector
in the compressed form. We also tested other wavelet bases, but
among those tested, the Haar basis offered the best balance between
the compression ratio and the cost for multiplication operations.

We apply this compression method to the precomputed matrices
H−1

0 , H−1
0 G′, Hk and Gk for k = 1,2, ...,nmax, and use them for all

BEM solves, including constraint solves (Section 3.4). Note each D
and Q matrix in Eq. (9) has only 3N × 3 entries, making compres-
sion unnecessary.

3.4. Constraints, Friction, and Domain Decomposition.

To further extend the applicability of our method beyond prior
BEM work, we implemented a Gauss-Seidel-based iterative
position-level constraint solver. The previous methods solved con-
tact problems by either simply specifying displacements of ver-
tices [JP99] or using a rigid body contact method [HW16]. The
computational mechanics literature [GS18] does not handle global
motion of objects, to our knowledge. By contrast, we couple both
the global rigid frame motion and deformation to solve the con-
straints and can handle fixed-position constraints, non-penetration
constraints, friction constraints, and point-joint constraints.

We linearize the vertex position expressed in terms of the traction
vector pk at the current step as follows. The vertex position Vk at
the kth time step can be written as

Vi
k = Rk(xi +ui

k)+Tk, (13)

where (·)i denotes a 3-vector for the ith vertex. Notice that
Rk (Eq. (11g)) depends nonlinearly on pk, while uk (Eq. (12))
and Tk (Eq. (11f)) depend linearly on pk with the approximations
Eq. (11b) and Eq. (11c). We linearize this equation by consider-
ing the update of rotation by the rotational velocity from the last
time step and the additional rotational velocity ∆ω = ∆t Rk−1Cpk
separately:

Vi
k ≈ e∆t[ωk−1]×Rk−1(xi +ui)+∆t∆ω× (xi +ui

k−1)+Tk. (14)

With this approximation, Vk depends linearly on pk.

To handle positional constraints, we adopt a force-based con-
straint solve. For each constrained point, we distribute the force
to the triangle vertices with barycentric weights, and the force ap-
plied at each vertex is converted to traction by dividing the force
by the Voronoi area of the vertex. Then, for non-penetration and
friction constraints, we formulate complementarity problems with
Eq. (14) and solve for p with the projected Gauss-Seidel method
similarly to Duriez et al. [DAK04; DDKA06] with staggered pro-
jections [Löt84; KSJP08]. When a fixed-position constraint is im-
posed, we solve Eq. (14) for p with the standard Gauss-Seidel
method. When a point-joint constraint is imposed, we couple two
equations from Eq. (14) by specifying the positions of two points
to be the same and the force to be applied in the opposite directions
with the same magnitude, and solve them similarly with Gauss-
Seidel iterations. Formally, convergence of Gauss-Seidel is only
guaranteed if the matrix is symmetric positive definite, and the ma-
trices for our constraint solver are not positive definite because the
matrices H0 and G0 are asymmetric. However, we empirically ob-
served that the solver converges to a solution with constraints sat-
isfied for all the problems we considered.

Using the point-joint constraints, we can implement a domain
decomposition approach [BZ11; KJ11; JP02], allowing simula-
tion of larger local displacements in addition to large global dis-
placements. Each subdomain is simulated independently with our
method, and point joint constraints are applied between adjacent
subdomains to allow simulation of one large object. Since each
subdomain must be bounded by a closed surface, this approach re-
quires the addition of triangulated interfaces between the subdo-
mains, which may be undesirable. However, it makes each subdo-
main’s matrix and cutoff time step size nmax smaller, making it an
interesting alternative.

4. Implementation Details

In this section, we describe our choice of quadrature methods and
other details for implementation.

CQM weights and time history size. The time-domain funda-
mental solutions, u∗ and p∗, vanish after time rmax/c2, where rmax
is the maximum length between any two points on the surface mesh
and c2 =

√
µ/ρ is the shear wave speed. This is because the funda-

mental solutions vanish after the propagation of all elastic waves.
Since the numerical integration weights of the CQM represent dis-
cretization of the corresponding time-domain functions, they also
vanish after a certain number of steps, leaving only nmax +1 terms
each in Eq. (8). In our implementation, we set the maximum num-
ber of time history steps to be nmax = ⌊rmax/(c2∆t)+2⌋. Then, we
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let L = nmax and R = ϵ
1

2nmax where ϵ = 10−10, following the work of
Schanz et al. [SA97], and define the integration weight as

ψk( f̂ ) =
R−k

L

L−1∑
l=0

f̂

γ(Reil 2π
L )

∆t

e−ikl 2π
L , (15)

where γ is a characteristic function for the linear multistep method.
We tested two different underlying linear multistep methods for
CQM: the backward differentiation formulas of first order (BDF1)
and second order (BDF2). We observed BDF2 gives too much os-
cillation, so we use BDF1 for all examples presented in this paper.
The characteristic function for BDF1 is γ(s) = 1− s.

Spatial quadrature method on the surface. For each vertex xi, in
order to evaluate all the surface integrals in Eq. (8), we evaluate the
integrals over each triangle on the surface and take a sum of them,
i.e.,

∫
Γ
(·)dΓy =

∑M
m=1

∫
Γm

(·)dΓy, where Γm denotes mth triangle. The
Laplace domain fundamental solutions û∗(x,y, s) and p̂∗(x,y, s) and
the Laplace domain functions for body force terms d̂∗(x,y, s) and
q̂∗(x,y, s) have singularities at y= x. Thus, for each Γm, if the vertex
xi corresponds to one of the vertices of the triangle, the integrand
is singular there. We evaluate all non-singular integrals with a 9-
point Gaussian quadrature formula that is exact up to fifth degree
polynomials [Cow73], after dividing the triangle into four subtri-
angles. We observed that the use of lower degree formulae causes
instabilities. We evaluate the singular integrals in different manners
depending on the order of singularity. The terms û∗, d̂∗ and q̂∗ be-
have like û∗ ∼ 1/r as r→ 0, and we can remove their singularities
by performing integration in polar coordinate. The term p̂∗ behaves
like p̂∗ ∼ 1/r2 as r→ 0 and the integral needs to be evaluated in the
Cauchy principal value sense; we employ the numerical integration
method of Guiggiani et al. [GG90]. We evaluate non-singular inte-
grals of p̂∗ and all the singular integrals with double precision, and
use single precision for the rest.

Evaluation of the integral free term. The integral free term c(xi)
in Eq. (8) is a 3× 3-matrix associated with the smoothness of the
surface. If the surface is smooth at xi, c(xi) = 1

2 I, where I is an
identity matrix. Since xi corresponds to the positions of vertices of
input mesh, the surface is not necessarily smooth at xi in general.
Therefore, we employ a direct computation method proposed by
Mantic [Man93] to evaluate the integral free terms.

Precomputation of matrices. We can precompute the matrices
in Eq. (9) because they depend only on the undeformed in-
put mesh and the input parameters. The integration weights of
CQM (Eq. (15)) are the weighted sums of Laplace domain func-
tions. Therefore, we can first perform numerical integration of the
Laplace domain functions, multiplied by the interpolation matrix
if necessary, in space with all possible complex parameters to get
Laplace domain matrices and form the final time-domain matrices
by taking weighted sums of them. Note we can compute about half
of the Laplace domain matrices by taking the conjugate of the other
half of matrices. Also, we exploit the symmetry of û∗ to reduce the
precomputation time. The precomputation of all necessary matri-
ces took between a few minutes and a little under an hour in total
for the examples we tested using a GPU implementation; we have
not included the exact numbers in this paper simply because our

test machine had only 16GB of RAM and disk I/O to store some
temporary data was the bottleneck for large meshes.

Traction discontinuity. We use a piecewise linear interpolation
function over the surface, and therefore special care must be paid to
handle traction discontinuities (e.g., at geometric corners where the
applied tractions may differ on one side versus the other). We use
double nodes [BTW84] to handle this problem: we duplicate the
vertices when there are traction discontinuities and construct ma-
trices based on the modified mesh with discontinuous parts. With
this method, G0 becomes singular but H0 does not, which allows us
to use the constraint solver without modifications. For the sake of
compression, any duplicated vertex is given a vertex index next to
that of the original vertex. We apply this technique to compute the
matrices for the objects in Fig. 5 and Fig. 9.

5. Results

We implemented our method using C++ and performed bench-
marks on a desktop computer with an AMD Ryzen 2700X pro-
cessor and 16GB of RAM using a single thread, except the scene in
Fig. 1, for which we exploit object-level parallelism and a simple
batch processing for frictional contact solves. Further paralleliza-
tion such as matrix-vector multiplications for time history terms
using a low priority thread is possible. We use a simple spatial
hashing-based collision detection method. Other collision detection
methods or a penalty springs approach [MZS*11] could be easily
combined with our method.

Table 1 shows the computation time, memory consumption for
compressed matrix storage, and relevant parameters for the scenes
in this paper, and videos for all examples are available in the sup-
plementary video.

Elastostatics vs. elastodynamics. Elastodynamic simulation pro-
duces more realistic and lively animations compared to elastostatic
simulation. Fig. 4 shows how we simulate the secondary motions
using an elastodynamic formulation, making our method more vi-
sually plausible and suitable for general computer animation. The
elastostatic simulation is based on the work by James et al. [JP99]
and we replaced its interpolation function with linear interpolation
for consistency.

undeformed elastostatics
t

elastodynamics (ours)

Figure 4: Comparison between elastostatics and elastodynamics.
A torus is squished from both sides by specifying displacements.
Even after the boundary conditions become fixed, we obeserve the
dynamic secondary motions with our method. For consistency, the
body frame update is disabled for this scene because a similar
method is not available for elastostatics.
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Table 1: Performance and parameters. µ is the shear modulus (=Lamé’s second parameter), and ν is Poisson’s ratio. CR is the compression
ratio applied to matrices computed with (#entries before compression)/(#entries kept after compression), and MR is the total memory size
required to store the original or compressed matrices. When the compression ratio is not listed, the original dense matrices without com-
pression are used. The times listed are the average time in seconds for one simulation step. UNCNST is the time to compute unconstrained
motion, COLLD is the time taken for collision detection, CONST is the time required for the constraint solve, and ERRCR is the time taken
for correcting errors and for processing data for the next iterations.

scene Fig. N ∆t(s) nmax ρ(kg/m3) µ(Pa) ν CR MR(GB) UNCNST(s) COLLD(s) CONST(s) ERRCR(s)
fish 1 2843×25 0.001 3 103 107 0.4 5 1.4 4.78 ·10−1 2.42 ·10−1 1.82 ·102 1.90 ·10−1

torus 4 1152 0.001 32 5 ·102 5 ·104 0.48 − 6.3 2.37 ·10−1 − 2.03 ·10−2 3.98 ·10−3

beam (with frame update) 5 2818 0.005 8 103 3 ·105 0.5 2 9.0 5.28 ·10−1 − 3.05 ·100 9.38 ·10−2

beam (w/o frame update) 5 2818 0.005 8 103 3 ·105 0.5 2 9.0 5.30 ·10−1 − 2.51 ·100 3.16 ·10−2

bumpy cube (uncompressed) 6 3000 0.01 5 103 5 ·105 0.5 − 7.8 2.68 ·10−1 − 1.90 ·100 7.41 ·10−2

bumpy cube (8x compressed) 6 3000 0.01 5 103 5 ·105 0.5 8 1.5 8.55 ·10−2 − 2.72 ·100 2.40 ·10−2

bumpy cube (32x compressed) 6 3000 0.01 5 103 5 ·105 0.5 32 0.4 2.20 ·10−2 − 1.71 ·100 6.55 ·10−3

bumpy cube (128x compressed) 6 3000 0.01 5 103 5 ·105 0.5 128 0.1 6.75 ·10−3 − 1.15 ·100 2.49 ·10−3

bunny (friction=0.2) 8 3485 0.003 5 3 ·103 106 0.3 10 1.6 9.12 ·10−2 5.23 ·10−2 1.25 ·100 2.52 ·10−2

bunny (friction=0.4) 8 3485 0.003 5 3 ·103 106 0.3 10 1.6 9.06 ·10−2 5.55 ·10−2 6.96 ·100 2.50 ·10−2

bunny (friction=0.6) 8 3485 0.003 5 3 ·103 106 0.3 10 1.6 9.04 ·10−2 7.50 ·10−2 1.81 ·100 2.50 ·10−2

beam (with decomposition) 9 770×5 0.005 5 103 105 0.45 − 0.6 1.14 ·10−1 − 6.64 ·100 3.12 ·10−2

beam (w/o decomposition) 9 2818 0.005 12 103 105 0.45 2 13.0 7.82 ·10−1 − 3.05 ·100 9.45 ·10−2

Body frame update. Our body frame update effectively decou-
ples the global translation and rotation from the local deformation.
Fig. 5 shows the effectiveness of our method using the beam bend-
ing configuration. Our method alleviates the volume inflation prob-
lem significantly in this example.

Matrix compression. By applying our matrix compression
technique, we can lessen the memory and computational costs.
Fig. 6 gives a visual comparison between simulations with
different compression ratios. The compression ratio is given by
(#entries before compression)/(#entries kept after compression).
Our matrix compression method successfully preserves the visual
quality while significantly reducing the memory and computational
costs (Table 1). For instance, applying the compression ratio of 32
reduces the memory cost by a factor of 21 and the computational
cost by 22%. Fig. 7 shows that our method is most effective
when both of the reordering methods for matrices are enabled,
and is more efficient than naively pruning the smallest entries
without wavelet transforms except when an unreasonably high
compression ratio is applied.

undeformed w/o frame update with frame update

Figure 5: Beam under gravity. Starting from an initial configura-
tion (left), we apply gravity to the body. Without the frame update
(middle), we observe a maximum of 30.4% of volume inflation due
to linear elasticity’s limitations. With our frame update method, the
maximum volume inflation is only 1.91%. The faces are colored
by the triangle areas’ relative inflation rate. Red represents more
inflation.

Frictional contact. Unlike prior work [JP99; HW15; HW16], our
surface-only dynamic deformables method can handle more gen-
eral computer animation tasks. Fig. 8 shows how an object sim-
ulated with our method can interact with the floor with different
friction coefficients. The friction from the floor causes additional
dynamic motion of the object, and it comes to rest at different po-
sitions on the floor depending on the friction coefficient.

Domain decomposition. With domain decomposition, we can
separately extract the global displacement for each subdomain, as
illustrated in Fig. 9. Domain decomposition should be applied when
one expects large local displacements, so as to circumvent the lim-
itations of the linear model. The tradeoff is that the simulation with
domain decomposition is slower due to the constraints solve it-
erations, and applying domain decomposition deviates from our
surface-only philosophy due to the interior interfaces. Thus, all the
other results in this paper are without domain decomposition.

undeformed uncompressed 8x compressed

32x compressed 128x compressed

Figure 6: Matrix compression test. We pull the two sides of bumpy
cube sideways. The simulation results are shown using four differ-
ent compression ratios. The compression parameters and reduction
in memory and computational costs are listed in Table 1.
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Figure 7: Matrix reconstruction error with our compression
method. The compression method is applied to the H1 matrix of
the bumpy cube scene in Fig. 6. We denote the vertex reordering
by "v" and the coordinate reordering by "c" in the legends. The
naive method prunes the smallest entries in the input matrix without
wavelet transform. The compression errors are the smallest when
we enable both reordering methods.
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Figure 8: Frictional contact test. The same initial velocity is ap-
plied to the object in its initial position. The elastic body behaves
differently according to the friction coefficients. Transparent bun-
nies indicate the position at equally spaced times.

Shared matrices. When a scene consists of objects with identi-
cal base geometry and material parameters, we only need to store
one set of precomputed matrices for all the corresponding objects
and can amortize the storage cost. We apply this technique in the
decomposition example (Fig. 9) for its five subdomains and in the
teaser scene (Fig. 1) for its many fish.

6. Conclusions and future work

We have presented a novel surface-only dynamic deformables sim-
ulation method using an elastodynamics BEM. The method re-
quires no volumetric meshing or volumetric integral evaluations.
The precomputation of surface integrals yields a series of matrices
that encode the propagation of elastic waves through the body, and
the translational and rotational momenta are transferred between
the BEM in the moving frame and the rigid body frame to alle-
viate the linear elasticity artifacts. The computational and storage
costs related to dense matrices are reduced using a wavelet-based
compression scheme. We also demonstrated the generality of our

undeformed 180° twist 360° twist

Figure 9: Domain decomposition demonstration. We twist a beam
from its undeformed configuration (left) by gradually rotating both
ends. The simulation result without domain decomposition (top)
fails to simulate the scene due to the limitations of linear elasticity
model, and the object with domain decomposition consisting of five
cubes (bottom) alleviates the problem. (More elaborate continuity
constraints could help to smooth the transitions between subdo-
mains.)

method with several inter-element constraints. Our method still as-
sumes modest deformations due to the underlying linear elasticity
model and we omit effects due to centrifugal and Coriolis forces.
Nevertheless, our work represents the first exploration of BEM-
based dynamic deformable body simulation methods for animation,
and we are excited to explore the many new possibilities that it
raises, some of which we outline below.

Adaptive simulations. Our method precomputes a series of dense
matrices and compresses them before use. The memory and com-
putational costs for this precomputation are significant and grow
quadratically. When a high compression ratio is used, the com-
pression yields some errors in the simulation. In addition, the run-
time costs are not yet competitive with well-studied, state-of-the-art
real-time solutions. One promising direction would be to precom-
pute the matrices only for a coarse model at the beginning of the
simulation and dynamically update them according to a remesh-
ing strategy. Surface remeshing is generally more resource-efficient
than volumetric meshing; we believe this could be an efficient ap-
proach over adaptive volumetric simulation methods. The chal-
lenge would lie in keeping the time history vectors consistent when
a vertex is inserted or removed.

Nonlinearity. Our method is based on a linear elasticity con-
stitutive model. Global rigid body modes are captured by the
moving frame, but it cannot simulate large local deformations.
The limitation of the linear model has been recognized by the
boundary element method community and is an active area of re-
search [LMN*12]. We could incorporate additional nonlinear terms
into Eq. (1) to support some other constitutive models such as
a geometrically nonlinear model, but currently, when there exist
nonlinear terms in the equation, they are treated similarly to body
force terms and induce volumetric integrals [DRYG18]. An effi-
cient meshless volumetric quadrature method would be the key to
making the method practical.

Direct simulation on other surface representations. Due to our
truly surface-only formulation (in contrast to the shape matching
element method [TCL21], which uses interior quadrature points)
with boundary integrals and the manner in which BEM simulates
propagation of elastic waves from one point to another, it would be
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easy to extend the method to objects with other surface representa-
tions besides triangle meshes, including those with vaguely defined
boundaries. This includes surfaces defined with NURBS, triangle
meshes with holes or overlaps, triangle soups, and point clouds.
Evaluation of the boundary integrals given the available informa-
tion and ensuring stability would be the hurdles.
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Appendix A: Laplace domain fundamental solutions and
surface-only body force terms

The Laplace domain fundamental solutions û∗ and p̂∗ appear in the
work of Cruse et al. [CR68]. We present them here for the read-
ers’ convenience. We use a non-bold font with subscripts to denote
components of a vector or matrix in this appendix. The Laplace
domain displacement fundamental solution for elastodynamics is
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and the Laplace domain traction fundamental solution for elastody-
namics is:
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where r= y−x, r =
√

r2
1 + r2

2 + r2
3 , n is the outward unit normal at y,

δi j is Kronecker’s delta, and c1 and c2 are the longitudinal and shear
wave speeds, respectively, computed from the material parameters;

c1 =

√
λ+2µ
ρ

, c2 =

√
µ

ρ
. (18)

The newly derived surface-only body force terms are as follows,
and we provide the detailed derivations in the supplementary note.
The Laplace domain function for fictitious force term due to trans-
lational acceleration is
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and the Laplace domain function for the Euler force term is

q̂∗ = l̂∗ + d̂∗[x− x̄]T
× , (20)

where
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