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Figure 1: Our stratified MCMC shows less noise than primary sample space MLT (PSSMLT) [KSACO02] in the same rendering time (30
minutes). PSSMLT gets stuck exploring only a portion of the image while our technique produces more predictable results. This translates to
a lower mean absolute percentage error (MAPE) across the whole image.

Abstract

Markov chain Monte Carlo (MCMC) sampling is a powerful approach to generate samples from an arbitrary distribution. The
application to light transport simulation allows us to efficiently handle complex light transport such as highly occluded scenes.
Since light transport paths in MCMC methods are sampled according to the path contributions over the sampling domain
covering the whole image, bright pixels receive more samples than dark pixels to represent differences in the brightness. This
variation in the number of samples per pixel is a fundamental property of MCMC methods. This property often leads to uneven
convergence over the image, which is a notorious and fundamental issue of any MCMC method to date. We present a novel
stratification method of MCMC light transport methods. Our stratification method, for the first time, breaks the fundamental
limitation that the number of samples per pixel is uncontrollable. Our method guarantees that every pixel receives a specified
number of samples by running a single Markov chain per pixel. We rely on the fact that different MCMC processes should
converge to the same result when the sampling domain and the integrand are the same. We thus subdivide an image into
multiple overlapping tiles associated with each pixel, run an independent MCMC process in each of them, and then align all of
the tiles such that overlapping regions match. This can be formulated as an optimization problem similar to the reconstruction
step for gradient-domain rendering. Further, our method can exploit the coherency of integrands among neighboring pixels via
coherent Markov chains and replica exchange. Images rendered with our method exhibit much more predictable convergence
compared to existing MCMC methods.

1. Introduction

Research on how to handle complex light transport in Monte Carlo
(MC) rendering has received significant attention in recent years.
Markov chain Monte Carlo [VG97, KSAC02, HKD14] is particu-
larly a powerful concept which allows us to take all of the factors
(such as visibility and BSDFs) into account when sampling light
transport paths. It works by storing a current path and exploring the
path-space locally by mutating the stored path. MCMC is currently
the only approach that can generate a path according to its path
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throughput under an arbitrary scene configuration. This property
enables MCMC to handle difficult configurations such as strong
indirect illumination coming from a small gap.

Rendering an image using MCMC is fundamentally different
from MC. In MC, each pixel has an integral defined by the path
integral formulation, and the integral is estimated using random
samples per pixel. Since the integral of each pixel is estimated in-
dependently with the same number of samples for all of the pix-
els, the image converges in a predictable manner. In contrast, each
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pixel in MCMC is not estimated independently. Instead, an image
is rendered by a single sequence of samples which covers the entire
image according to the random walk defined by the Markov chain.

In other words, the number of samples in the image-space is not
stratified in MCMC. Each pixel thus does not receive the same
number of samples, especially when the total number of samples
is finite. This lack of image-space stratification results in unpre-
dictable convergence that can be commonly seen in MCMC render-
ing techniques. This behavior prevents a wider adoption of MCMC
techniques in the industry [CJ16] despite its powerful ability to han-
dle complex light transport paths.

We propose a MCMC method which achieves, for the first time,
perfect image-space stratification with a finite number of samples.
Just like path tracing, all the pixels receive exactly the same num-
ber of samples in our method. Our method is motivated by a naive
approach of stratifying MCMC: an independent Markov chain per
pixel. While this naive approach achieves stratification, it is not
useful since each pixel needs to be scaled by a constant which is
equal to the integral we want to solve in the first place. Our key
observation is that we can entirely remove this need for the scal-
ing factors by introducing overlapping regions around each pixel.
In those overlapping regions, different Markov chains should con-
verge to the same value.

This observation leads to a simple two-step algorithm: we run
many Markov chains in parallel at each pixel considering the over-
laps, and simply scale each pixel so that the overlapping pixel val-
ues from different Markov chains match. We show that this pro-
cess can be formulated as an optimization problem similarly to
the reconstruction step of gradient-domain rendering [LKL*13], at
the cost of negligible bias. Similar to shift mapping in gradient-
domain rendering, we use coherent Markov chains to estimate a
set of neighboring pixel values. We also take advantage of the co-
herency of neighboring pixels to perform replica exchange between
their chains with a high acceptance rate. This greatly helps facilitate
the exploration of the short chains of our method. To summarize,
our contributions are:

e First MCMC with guaranteed stratification in the image-space
even when the total number of samples is finite.

e Reconstruction of scaling factors as an optimization problem
using overlapping pixels.

e Improved mixing of chains via image-local replica exchange.

Figure 1 illustrates the performance of our method compared to a
classical MCMC approach [KSACO2]. The classical MCMC ap-
proach exhibits a high level of noise in under-sampled regions due
to uneven exploration in image-space. Moreover, as a natural con-
sequence of its exploration process, the classical MCMC approach
can get stuck in high contribution regions of image-space, result-
ing in unpredictable convergence. Our method does not suffer from
such fundamental issues of MCMC and achieves more predictable
convergence with perfect stratification in the image plane.

2. Stratification in MC and MCMC

We recapitulate light transport simulation using MC and MCMC to
clarify why stratification is missing in MCMC. Although stratifica-

tion in a high-dimensional space has been explored in the context
of MC integration [SNJ* 14, CKK 18], none of these methods are
applicable to MCMC to date. We thus focus on introducing image-
space (2D) stratification as the first step which is also important as
we explain later. Readers familiar with MC and MCMC in render-
ing can skip to Section 2.4 for the problem statement.

2.1. Monte Carlo Integration in Light Transport

The path integral formulation [Vea97] states that the intensity /; of
the pixel j is defined as

= [ h60redutx) m

where x = (xo,X,...) is a path, f is the measurement contribution
function, #; is a filter function which determines the contribution
of x to the pixel j, and P is the path-space. We used the notation
I; to clarify that [ is a function of the pixel index j. To simplify the
explanation below, we assume a box filter for A ;(x) where h(x) =
1 when x goes through the pixel j and /(x) = 0 otherwise.

MC integration estimates each integral /; by randomly sampling
N paths X; according to a user-defined probability density function
p(x). The resulting MC estimator /; is defined as

N 71.(X .
= L3 K0S o
N i=1 p (Xi )
In many MC rendering algorithms, we estimate each /; indepen-
dently from other pixels by generating samples X; that are dis-
tributed only to the pixel j. Note that the number of samples N for
each pixel is controllable independently of f, p, and A. It is com-
mon to use a constant N for all of the pixels to achieve a perfectly
stratified and uniform distribution of samples in the image-space.

2.2. Metropolis Light Transport

The expected squared error of the MC estimator [ ; is proportional
to the variance of h(x) f(x)/p(x). We thus generally want p(x) to
be close to proportional to /(x) f(x), but defining and generating
samples from such a probability density function is non-trivial.

Metropolis light transport [VG97] (MLT) allows us to gener-
ate samples directly according to a probability density function
proportional to /1j(x) f(x) based on the Metropolis-Hastings algo-
rithm [Has70]. Given an arbitrary positive scalar function T (x), the
algorithm generates a series of samples X, Xo, ... that follows the
distribution (often called a target distribution) p(x) o 7' (x) by iter-
ating the following steps:

1. Generates a proposal Y from a proposal distribution g(Y|X;)
given the current sample X;. For simplicity, we assume that the
proposal distribution is symmetric (g(Y|X;) = g(X;|Y)).

2. Accepts the proposal with probability min (1, %)

e If Y was accepted, it becomes the next sample X; .
e If Y was rejected, the current sample X; becomes the next

sample X |
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The probability density function p(x) of generated samples in this
algorithm converges to

(%) T(x) T(x)

= T b @
where b is called the normalization factor. In a typical application
of the Metropolis-Hastings algorithm, samples are assumed to be
well distributed according to p(x) after a certain number of itera-
tions (called burn-in). The probability density function p(x) is the
distribution of samples at such an equilibrium state.

Let us consider such a sequence of samples X;,Xj,... with
T(x) = hj(x)f(x). Since samples X1, X5, ... can be considered dis-
tributed according to p(x) o< T'(x) = hj(X) f(x), it is tempting to use
them in Equation 2. This estimator is not useful since

s _1 ihxxi)f(xi)

T N,‘:] p(Xi)
1Y m(X)f(Xa) 1Y

=_y 1Y Vp=p 4
N &5 (X)f(K) N & @

and b is exactly the path integral formulation (Equation 1) that we
are trying to solve in the first place. In the following, we use Z; for
MCMC to distinguish it from the MC estimator [ .

MLT in fact is not using such a target distribution, but gener-
ates samples according to the sum of all /;(X)f(X) as T(X) =
¥ hj (X) f(X) which is shared among all the pixels. Samples X;
can now visit any pixel in the image-space, not only the jth pixel.
Considering a pixelwise box-filter for /2;(X), the estimator becomes

L8 (X f(X)
L=yl Y hy (Xi) f(Xi

=1

1 N
“NvX
i=1

As a given state X; will contribute to one pixel at a time, we can sim-
plify the denominator. This estimator essentially counts the number
of samples that visit the pixel j among all of the N samples, and
scales it by the common normalization factor b. Unlike MC where
each pixel is estimated by its own sequence of samples, MLT esti-
mates all of the pixels using a single sequence of MCMC samples.

(&)

)
(X0 f(Xi .
% =b (X;in pixelj)

T XKD 0 (otherwise).

Due to this difference, each pixel in MLT receives a varying
number of samples which is decided by the target distribution
p(x) o< T(x) and the MCMC process. In other words, MCMC sam-
ples are not stratified at all in the image-space unlike the MC coun-
terparts. Since we rely on a single Markov chain to explore all of
the pixels, the convergence of an image in MLT depends on the
convergence of this Markov chain process, which unfortunately is
known to be quite unpredictable [CJ16].

2.3. Improved Stratification in MLT

Several previous work have attempted to improve the image-space
stratification in MLT. Veach and Guibas [Vea97] explained a cus-
tomized proposal distribution which sequentially proposes samples
in all the pixels in a fixed order. While this technique can make sure
that proposals to cover all of the pixels, the number of samples is
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Figure 2: Comparison of MC, MCMC, and our method for an
equal sample count. The scene is a diffuse plane lit by a constant
environment map. For this simple scene, it is easy to construct a
low-variance estimator, and the result of MC exhibits very little MC
noise. MCMC with the same estimator, however, produces a signif-
icant amount of noise due to its random-walk nature in the image-
space. Our MCMC method does not suffer from such random-walk
noise thanks to its perfect stratification in the image-space.

not stratified due to the accept/reject step and a Markov chain still
tends to get stuck at bright pixels.

Energy redistribution path tracing [CTEOS] aims to improve
stratification by starting a chain from each pixel and running many
of them simultaneously. While such a chain tends to explore a
neighboring region around each pixel, there is no guarantee of strat-
ification since each chain still freely visits bright pixels more often
than dark pixels due to the fundamental properties of MCMC.

Some previous work [Vea97, HH10, GRS*16] proposed to mod-
ify the target distribution 7' such that the number of samples in the
image-space is more uniform. While such a modified target distri-
bution achieves better stratification in the image-space, the funda-
mental correlation of samples in MCMC prevents any theoretical
guarantee of stratification with a finite number of samples. Quasi-
Monte Carlo sequences are known to provide guaranteed stratifica-
tion [CKK18]. While it is tempting to combine quasi-Monte Carlo
with MCMC, there is still limited success with no guarantee of
stratification in such a combination [OT05].

2.4. Problem Statement

To summarize, there is currently no method that achieves theoret-
ically guaranteed stratification in MCMC with a finite number of
samples, even if we just focus on stratification in the image-space.
The main difficulty of stratification in MCMC is that the distribu-
tion of the number of samples is not easily controllable. The dis-
tribution of samples is a consequence of running a Markov chain
process for many iterations, which is difficult to control compared
to independent sampling in MC integration. Since this behavior is
fundamental to any MCMC method, stratification in MCMC has
been an open problem.

Figure 2 shows a simple motivational example that highlights an
issue due to the lack of stratification in MCMC. This scene consists
of a diffuse plane lit by a constant environment map. We rendered
the scene with MC, MCMC, and our method, all based on the same
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Figure 3: To estimate a 1D function over a domain, we run sev-
eral independent MCMC estimation processes on overlapping tiles
(Step 1). During the reconstruction, the tiles are aligned such that
overlapping regions match (Step 2). The result of this reconstruc-
tion is our pixel estimates.

MIS estimator which combines BSDF sampling and emitter sam-
pling (i.e., sampling the environment map). The comparison here
is an equal sample-count. MC integration based on this estimator
produces very little noise coming only from the cosine term due to
emitter sampling. Based on the primary sample space [KSACO02],
we can build an MCMC sampler with the same estimator. Despite
using the same low-noise estimator, MCMC suffers from a signifi-
cant amount of noise compared to MC. It means that the source of
noise in this case is not the estimator itself, but the random-walk
nature of MCMC in the image-space. Achieving the stratification
of MCMC in the image-space should remove such random-walk
noise and recover low-noise estimates similar to MC.

Note that stratification in our work follows its definition in statis-
tics; the sampling domain is partitioned into strata, and a sample
is generated within each stratum. In our case, what we partition
is the image space, and it is partitioned into tiles, which overlap
each other. Our method achieves perfect stratification in the image
space, meaning that each pixel receives exactly the same number
of samples for a finite number of total samples.

3. Stratified Markov Chain Monte Carlo

We propose a novel stratification framework which enables
perfectly-stratified MCMC rendering in the image-space. Our strat-
ified MCMC method completely removes the random-walk noise
of MCMC in the image-space and produces more accurate re-
sults (see Figure 2). Unlike previous work [Vea97,HH10, GRS*16]
which modifies the target distribution to improve stratification in
the image-space, our work provides perfect stratification in the
image-space for any finite number of samples per pixel. In other
words, we can make sure that all pixels receive an exactly equal
number of samples at any point, just like MC integration.

We build upon the fact that MC methods achieve stratification by
solving a separate integral for each pixel. We take this approach to
achieve the stratification in MCMC by similarly reducing the do-
main of integration to the size of a pixel. As only the domain of
integration is modified, stratification in this manner will work for
any arbitrary target function. However, as the arbitrary target func-
tion is only defined on the smaller domain, each chain with have its
own normalization factor (Equation 3). As we discussed already,
this normalization factor is exactly equivalent to the integral we are

trying to estimate (Equation. 4). This naive stratification results in
MCMC methods providing no benefit over MC methods.

We propose to overcome this limitation by overlapping the do-
mains of each chain and then reconstructing a final result. We rely
on the fact that, for a given pixel, the estimates of two independent
chains will converge to the same value on the limit. Figure 3 illus-
trates this idea for a 1D image. Similar to 2D images, the domain
of this 1D integration example is discretized into several pixels. For
each pixel, we are interested in the expected value of the arbitrary
function, which is analogous to light transport simulation. Instead
of making the domain of a chain contained within each pixel, we
make them overlap by assigning two consecutive pixels for each
domain, which call a tile. Each tile has its own chain, and the two
pixel values in each tile are estimated using its own MCMC pro-
cess. Following Equation 4, the pixel values of each tile are scaled
by its unknown normalization factor (see Figure 3 (1) for illustra-
tion). Although those values seem not useful, using the fact that the
two overlapping estimates of the same pixel should converge to the
same value, we can align overlapping tiles. By scaling each tile to
minimize the difference between their overlapping regions, we can
recover their local normalization factor. The aligned tiles form a
global domain which allows us to efficiently estimate only a single
normalization factor (Equation 3) for all tiles.

Expanding this idea to light transport, we need to decide how to
split the 2D image plane into overlapping tiles and how we compute
the MCMC estimates efficiently. As the estimates might be noisy,
we will need a robust alignment process for the overlapping tiles.

Overlapping tiles. We choose a cross-shape centered on a pixel
with an overlap of one pixel in both the horizontal and vertical di-
rections. This tile shape is the simplest and smallest domain possi-
ble that still has uniform overlap with its neighbors in all directions.
Uniform overlap between tiles is essential for the reconstruction
step as it will spread the error uniformly. In theory, tiles can be of
any shape and size, and can share any overlap with their neighbors.
We have left such alternate tile configurations for future work and
have used cross-shaped tiles for simplicity. Tiles near the image
border do not extend beyond the image plane.

3.1. Sampling within a Tile

We index each tile by s, and the Markov chain of this tile will es-
timate all of the pixels in this tile, independently from other tiles.
Following MLT, we define the target function for this tile 75(x) as

L(x)= ) hj(x)f(x) (©6)
)

J EP(s
where P(s) is a set of pixel indices for the tile s. The measurement
contribution function f(x) is usually a vector of chromatic values

(e.g., RGB), thus we take the maximum of all the elements in this
vector. We, however, keep the notation f(x) for simplicity.

The corresponding normalization factor by and the pdf ps(x) are
defined similarly to Equation 3:
_ Ts (X)
bs

mzﬁﬂﬂ@&) ps(x) ™
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Note that Ty(x’) is zero outside the tile, thus the domain of integra-
tion P is effectively shrunk to the region of the tile.

Let us consider a sequence of samples X{,X>,...,Xy from the
Markov chain which are distributed according to ps(x) o< Ty(x).
Equation 5 gives us the estimator Z;(j) for the pixel j in the tile s

hi(Xi)f(Xi) ~in pixel i
by (X f(Xi) bs (Xl in pixel J) ()
0 =0 (otherwise).

| N
=1\ By Ty (X0 £(X0)

Unlike MLT, this estimator Z;(j) is not useful as we still need to
estimate by and the number of by terms is equal to the number of
pixels, due to the use of per-pixel Markov chains. We, however, do
not need to know by at this point, but we can reconstruct them later
using the overlapping regions. The Markov chain in each tile thus
estimates the unscaled intensity Gs(j) = Z:(j)/b, of the pixel j of
the tile s
h&)FX) _ (X, in pixel j)
Gs(j) =~ Z hj( i)({(xi) )

~ =0 (otherwise).

which does not require us to evaluate by and can be estimated lo-
cally within each tile independently.

Coherent sampling. Inspired by the use of shift mapping in
gradient-domain rendering [LKL*13], we found that estimat-
ing all of the pixels in the same tile s using a coherent set
of MCMC chains is effective. In other words, given a sam-
ple X;, we generate four other samples X},X?,X?,X? so that a
set of samples X[,X},X%,X?,X? always covers all the five pix-
els in each tile (see Figure 4). To incorporate this change in-
side MCMC sampling, we propose to use the maximal value of
To(Xp), To(X1), T (X3), T3 (X3), Ty (X}). We denote this target func-
tion as Ty(X;) for simplicity in the next equation. These two
changes modify the estimator Gy () to

hy(Xi) £(Xi) 1 pixel i
Gy(j) = 1 i I (X; in pixel j) (10)
VTN i= % (X¥ in pixel j).

Note that the pixel j is always sampled even when X; is not in this
pixel since there is always another coherent sample Xf that is in this
pixel. One can consider the sample X; as the base path and other
four samples Xll ,X%,X?,X? as offset paths in the terminology of
gradient-domain rendering. While it is conceivable to adopt exist-
ing shift mapping techniques [LKL™ 13] we chose to replay the ran-
dom numbers used for generating X; by offsetting the pixel index
for simplicity. The use of more advanced shift mapping algorithms
is possible and left for future work.

3.2. Reconstruction of b

The above sampling process gives us only G;(j) for all pixels in all
tiles. To obtain an estimator for each pixel, we need to reconstruct
bs. Inspired by gradient-domain rendering [LKL* 13], we formulate
the process of reconstructing b as an optimization problem. We in-
troduce two different approaches: one based on an iterative solver,
and the other based on the ratios of pixel values. They are both re-
lated to the reconstruction step of gradient-domain rendering from
different perspectives.
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(b) Random replay (a) Naive approach

Figure 4: Performance comparison with different approaches to es-
timate the unscaled pixel intensities inside tiles: (a) trace only one
path (Equation 9) (b) Coherent sampling by replaying the random
number generator (Equation 10).

Since each pixel j has multiple estimates Gs(j) from a set of
tiles that contain it, we denote this set of tile indices for the pixel
J as N(j). We further define all of the pairs of tiles s and ¢ that
contain this pixel j as M(j) = {(s,7),s € N(j),t € N(j),s # t}.
The reconstruction can be formulated as a minimization of the loss

2
+Y Y 20— an

2 J (s1)EM())

L=

YI()-1G)
J

where Z;(j) = bsGs(j) (Equation 9) and the final estimate Z(j) is

son 1 .
20 = gy X Gt (12

The first term is a regularization term based on the MCMC esti-
mate Z(j) and MC estimate f(j). Similar to primary sample space
MLT [KSAC02], the MC estimate /| (j) can be obtained by taking
samples only from large step mutations from the MCMC process.
The constant o is a user parameter that controls the influence of the
regularization term. The second term in Equation 11 accounts for
the mismatch of overlapping pixel estimates.

Weighted iterative solver. One approach to minimize Equation 11
is to use a Jacobi solver similarly to Rousselle et al. [RIN16] which
iteratively updates by as

o' (s) (IAV - Z) +Y Zke@(s,t) w(s, f)R",’t (k)
o (5)Gs + X Ykew(sy) W' (5:1)Gr (k)

where O(s,7) is a set of pairs of overlapping pixels between tiles
s and t. The terms G, fy and 7y are the averages of Gs(j), f(j),
and Z(j) within the tile s, respectively. We used b} to denote the
estimate of by at the nth iteration. The function Fy (k) is defined as

P = b 4 (13)

Fl, (k) = 0.5(Gi (k)b — Gs(k)bY) (14)

where its role is to penalize the difference between the estimates of
the pixel k for the overlapping tiles s and ¢ for each iteration n.
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Figure 5: To reconstruct bs, we can use the solver defined by Equa-
tion 20 (left) or Equation 13 (right). While the two approaches gen-
erate similar results, the log-domain solver results in some energy
loss around bright areas.

Inspired by the iteratively reweighted least squares solver
(IRLS) [CYO08], we define the weight for each tile w"(s) and the
weight for two overlapping tiles w” (s,7) as

1
e"(s)+ P13
where ; and 3, are user-defined parameters to regularize the esti-

mated weights [CYO08]. The function " (s) models the error intro-
duced by each tile s at the nth iteration:

"(s) = o(Zy — ) +Z Z (| F52 (k)

T keO(s1)

w'(s) = w(s,t) = min(w" (s),w"(£))  (15)

[ (16)

where 7" (s) is the estimate the nth iteration. Note that we have
L =Y, e"(s). Similarly to IRLS, we chose to update the weight
w' once per 50 iterations to improve the robustness of error esti-
mation. This weighted iterative solver is similar to L1 reconstruc-
tion [LKL*13] and weighted reconstruction [RIN16] in gradient-
domain rendering.

Ratio-based solver. Another solver we propose is based on the
ratios of pixel values. In this solver, the estimator of each pixel is
solely decided by the tile c that contains the pixel j in the center:

Z(j) = beGelj).- (17

Let us consider the ratio of two neighboring pixels (i) /I(j). If all
of the by are reconstructed correctly, the ratio of Z(i)/Z(j) should
be equal to the correct ratio 1(i)/I(j). It is thus reasonable to re-
place the first term of Equation 11 by the difference of ratios

3G I()

() 101,

where we used N(j) to denote a set of neighboring pixels to the
pixel j. In the following discussion, we ignore the regularization
term for brevity.

+ZZ

o J i€EN())

(18)

ol Y 2(j) 1
J

Taking advantage of the fact that all the pixels in the same tile
are scaled by a common normalization factor b¢, we can estimate

1(i)/1(j) without knowing b

I(i) _ Ze(i) _ beGe(i) _ Geli) (19)
) Ze(j)  beGe(f)  GelJ)

thus we can minimize Equation 18 with respect to b¢ for a given
estimate of 1(i)/1(j) =~ G¢(i)/Ge(j). Unlike Equation 11, however,
the loss above is nonlinear to by and it is difficult to minimize nu-
merically. We thus consider taking logarithms of each term in order
to utilize the relationship of logA/B = logA —log B:

Z(i) @ 2
L X ez el
—Z Z 1ogI —logf(j))—(logl()—logl Hz (20)
J ieN(j

This loss is easy to minimize by a linear solver for each logZ (i).
We then exponentiate the solution to obtain Z(i).

Let us compare Equation 20 with the loss for gradient-domain
rendering [LKL*13]:

ZZII

J ieEN(j

() - (@)~ 1|2

We can see that Equation 20 is just replacing each pixel value by its
logarithm. In gradient-domain rendering, the difference I(i) — I(})
is estimated using shift mapping between the pixel i and the pixel j
in order to have a low-variance estimate of /(i) — I(j). In our case,
the log difference log/(i) —logI(;) is estimated as log/(i)/1(j) =
log G(1)/G.(j) using coherent sampling of the plxel i and the plxel
j within each tile. In both cases, each pixel Z(i) is reconstructed
based on the difference by minimizing the loss as defined above.

Discussion. Figure 5 shows a comparison between the reconstruc-
tions based on Equation 13 and Equation 20. Overall, the two ap-
proaches work reasonably well, but we have found that Equation 20
tends to be numerically unstable due to logarithms and division.
After further experiments, we identified two issues that prevent us
from using Equation 20 in practice. The first issue is that adding the
regularization term based on the original pixel values makes Equa-
tion 20 nonlinear and challenging to minimize. We tested another
regularization term with the logarithms to keep it linear with re-
spect to the logarithms, but we found that such a log-domain regu-
larization term does not perform well in practice. The second issue
is that error in the log-domain is nonlinear in the primal domain.
Using more sophisticated reconstruction algorithms based on er-
ror estimation is thus difficult. For those two issues, we do not use
Equation 20 for the rest of the results in this paper. The connection
between Equation 20 and gradient-domain rendering, however, re-
mains informative and may lead to future work.

Similar to other reconstruction-based techniques, like L1 Pois-
son reconstruction [LKL*13, HGP*19], our method is robust
against outliers generated from low probability path densities (e.g.,
fireflies) in the initial normalization factor estimates. This robust-
ness comes at the cost of some bias inside the reconstructed image
that will vanish as the number of samples increases.
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Reference

Long chain init.

Uniform init.

Figure 6: Comparison of different chain initialization procedures
with the same number of initial samples. Left: Using only a limited
number of uniform samples to select the initial state cannot ensure
that the initial state is selected according to the target function,
which results in visible bias. Center: Our method uses on a properly
initialized global MCMC chain to perform initialization of many
chains, reducing the start-up bias.

3.3. Chain Initialization

A proper initialization of chains is essential to reduce the start-up
bias in MCMC. The start-up bias comes from initial states that start
in a low probability area. This start-up bias can result in color shift
or low frequency artifact in the final reconstructed image.

To reduce the start-up bias, initial states are often selected us-
ing re-sampling from a population of random samples according
to the target function [Vea97]. Since our approach uses one chain
per pixel, it is difficult to use a large enough population of initial
samples per chain, which can lead to artifacts (see Figure 6, left).
Discarding samples (burn-in) is also impractical as the number of
samples per chain is small compared to a chain exploring the entire
image-space as in MLT.

Instead, we propose to use a long chain in MLT to initialize our
short chains. This long chain, which we call the "global chain",
gets initialized using the re-sampling approach described above.
The global chain will use the same target function associated to
each tile. The only difference is that the global chain can explore
the whole set of tiles. When the global chain visits a tile, its state is
distributed according to the target distribution of the visited tile. A
chain in each tile is then initialized when the global chain visits the
tile for the first time. This initialization performs well and reduces
the start-up bias (Figure 6, center).

Note that this procedure does not guarantee that all chains will
be initialized. In this case, we will continue to draw a uniform state
until we find a state with a non-zero target function value. To reduce
the time that the chain is not initialized, we also use a state borrow-
ing procedure during the replica exchange step between neighbor-
ing tiles (Section 3.4).

3.4. Local Replica Exchange

MCMC chains are efficient at exploring the state space locally.
However, a chain might get trapped inside of a local mode of
the target distribution and explore only a small portion of the do-
main. In our method, the chain of each tile is significantly shorter
compared to previous techniques [VG97, KSAC02] and such short
chains are prone to this issue. To avoid this problem, we use the
replica exchange algorithm [SW86] to exchange the states of two
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Figure 7: We perform replica exchange between neighboring tiles
by alternating horizontal and vertical pairing. Doing replica ex-
change improves exploration and leads to better reconstruction
compared to only relying on independent MCMC mutations per tile.

neighboring chains Xy and X; with the probability

r(Xs,X;) = min (1%) on

where T; and 7; are the target function for the chain X; and X;
respectively. This exchange is done by alternating the exchange be-
tween vertical and horizontal neighboring tiles (see Figure 7).

We chose to perform replica exchange between neighboring tiles
since they are likely to have similar target functions. This similarity
leads to a high exchange probability and thus efficiently improves
exploration. This replica exchange operator is done in addition to
independent MCMC mutations per tile. Our application of replica
exchange is different from the existing work [KKKO09,HJ11,SK16]
in that we propose to perform replica exchange in the image-space
while keeping the target distribution unmodified.

A large step in the primary sample space MLT [KSACO02] can
be seen as a particular form of replica exchange [HJ11] where one
of the target functions is constant and its state is drawn from the
uniform distribution. We thus rely on replica exchange with the
uniform distribution to compute the MC estimate for each tile. This
MC estimate is used as a regularization term in our reconstruction.

4. Results

We have implemented our stratified MCMC method on top of Mit-
suba [Jak13]. All of the results were generated on a dual-socket
Intel Core E5-2683 v4 Broadwell CPU at 2.1 GHz with 32 cores
and 32 GB of memory. We compared our method against path
tracing (MC), primary sample space MLT (PSSMLT) [KSACO02],
and energy redistribution path tracing (ERPT) [CTEOS5] using the
same rendering time. The path sampler for all the techniques is path
tracing with next-event estimation. The reference images were ren-
dered with bidirectional path tracing. The error metric is the mean
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Figure 8: Equal-time comparisons among path tracing (MC), primary sample space MLT (PSSMLT) [KSACO02], energy redistribution path
tracing (ERPT) [CTEOS], and our stratified MCMC. All of the scenes we tested feature complex light transport, making those challenging
to render efficiently with MC. Among the MCMC methods, both PSSMLT and ERPT tend to produce many erroneously bright pixels. Such
pixels are caused by Markov chains being stuck at the same pixels, which is due to the random-walk nature of those two MCMC methods.
While being designed to improve stratification in the image-space, ERPT does not work well in our experiments since such bright pixels erro-
neously consume many iterations of Markov chains, sacrificing the global exploration in the image-space. Our stratified MCMC significantly
reduces such erroneously bright pixels thanks to its perfect stratification in the image-space and efficient image-space exploration via replica

exchange.

absolute percentage error MAPE = (1/n)Y;|R; — I;|/(R; +¢€),
where R; is the reference and /; is the rendered pixel luminance
value with € = 0.01.

The small step mutation for all the MCMC methods is the Kele-
men’s mutation [KSACO02] with the minimum size of 1/1024 and
the maximum size of 1/32, and the large step probability is 0.3 for
both PSSMLT and our method. To conduct a fair comparison with
PSSMLT and our method, we have implemented a version of ERPT
that uses primary sample space mutations. The chain length for
ERPT is set to 100. We use cross-shape tile containing five pixels.
For the initialization step of our method, we used global Markov
chains to initialize the state of the Markov chain of each tile. This
initialization step is performed until either 30% of the pixels have
been initialized or the maximum computation budget is reached.

We allocated the maximum computational budget of an effective
32 samples per pixel.

Our reconstruction method uses B; = 0.05, B, = 0.5, and n =
1000 iterations to reconstruct the normalization factor of each tile
(Equation 13). This reconstruction only occurs once at the end of
the rendering process and takes few seconds with a CPU implemen-
tation. For the regularization term, we use ot = 0.05 as the unscaled
pixel intensity estimates are less noisy than the MC estimates.

Equal-time comparisons. Figure 1 and Figure 8 show the results
of equal-time comparisons among different methods. In Bookshelf
(Figure 1 and Figure 8, top row), the error of our stratified MCMC
is the lowest among all of the techniques. Path tracing does not
perform well due to the lack of a proper sample strategy for com-
plex paths. All the MCMC methods perform well since MCMC
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MC MCMC ERPT  Ours

= L1 0.817 0.317 0444 0.456
< L2 0.563 0.055 0.215 0.266
§ MAPE 1.859 1.604  1.793  0.877
@ relMSE 0.403 0.357 0.635 0.092
§ L1 0.511 0244 0.226 0.211
2 L2 0.066 0.013  0.011 0.014
§ MAPE 0.863 0.531 0.528 0.338
L reIMSE 0.114 0.046  0.047 0.022
g L1 0525 0353 0.711 0.429
g L2 0.145 0.136  0.226  0.978
g MAPE 2.350 2,135 3.516 1.598
A relMSE 0.447 0.531 1.705 0.377

Table 1: The different metric values (x 10~ ! ) for all results shown
in Figure 8. Our method outperforms previous works on relative
metrics consistently. However, MCMC usually achieves the best
score in absolute metrics due to its non-uniform sample distribu-
tion over the image plane.

can automatically perform importance sampling according to the
path throughput. This fundamental behavior of MCMC, however,
leads to different issues that are unique to MCMC. For PSSMLT,
the global chain visits bright pixels more often, making dark pix-
els generally under-sampled and noisy. While ERPT is designed to
balance the image-space exploration of bright and dark pixels, it
performs worse in this scene since bright pixels spawned too many
Markov chains, sacrificing the overall exploration under the same
computation time. Our stratified MCMC does not suffer from such
issues of MCMC since it guarantees stratification in the image-
space while maintaining the benefits of using MCMC over MC.
Veach-door scene (Figure 8, middle row) showcases difficult vis-
ibility due to all of the scene’s light coming from a narrow door
opening. The path tracing result shows significant noise since the
sampling strategy is unable to consider visibility. PSSMLT and
ERPT both perform equally well since MCMC can focus compu-
tation only on visible paths. Our method performs even better than
PSSMLT and ERPT. Note that the number of samples is the same
for all pixels for both path tracing and our method, yet our method
produces a significantly more accurate result since MCMC in our
method still performs importance sampling including visibility.

Bathroom scene (Figure 8, last row) is the most challenging
scene since the light is coming from areas where multiple light
bounces occur. The images rendered by PSSMLT and path tracing
both exhibit significant amount of noise with bright spikes. Simi-
lar to Bookshelf scene, while it is designed to avoid such issues,
switching to ERPT had a negative effect in this scene since bright
pixels again consumed too many MCMC iterations. Our method
produces significantly fewer spikes as it achieves perfect image-
space stratification without significantly sacrificing exploration.

Gradient-domain comparison. In addition to the comparisons
shown in the paper, the supplementary document shows re-
sults with gradient-domain path tracing [KMA™*15] and gradient-
domain Metropolis light transport [LKL*13]. To avoid introduc-
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ing a difference in performance due to a difference in path sam-
pling techniques, we employed primary sample space random-
replay [MKA™ 15, HGP* 19] for shift mapping in gradient-domain
techniques, and use the primary sample space for mutations in
MCMC techniques. The reconstruction for gradient-domain tech-
niques uses the L1 metric. In these comparisons, our MCMC
method outperforms all of the gradient-domain techniques.

Error metrics. Table 1 shows the different absolute and relative
metrics values for the Figure 8’s results. MCMC usually achieves
the best score with absolute metrics since brighter pixels received
more samples. However, MCMC has more noise in darker im-
age regions, which are not well captured by absolute metrics. Our
technique, by distributing the samples evenly on the image space,
achieves the best score in relative metric, at the cost of introduc-
ing more error in the brightest image regions. Visually inspecting
the rendered images, one can observe that our method tends to pro-
duce lower-frequency errors than the other methods do, especially
in Bathroom. It is similar to the fact that gradient-domain methods
tend to produce lower-frequency errors than the primal counter-
parts [HGP*19]. An error metric that can fully capture such a local
correlation of pixels is still an open problem even with recent work
by Celarek et al. [CJWL19], especially since it involves human per-
ception.

Remaining artifacts Residual errors on the wall and the teapots in
the Veach-door or glossy surfaces in the Bathroom are still visible
in our images. These low-frequency artifacts are mainly due to the
suboptimal performance of our coherent sampling (Section 3.1).
When a path hits a complex shape or goes through many scattering
events, the random number replay technique tends to generate inco-
herent paths. A more sophisticated coherent sampling [KMA*15]
can be implemented to ensure better path correlation when sam-
pling the tiles. Further studies on how to incorporate MIS and how
to handle failed shifts are left for future work.

5. Limitations and Future work

Path-space MCMC. In our current implementation, we have
chosen to use the primary sample space based formulation for
simplicity. However, it can be beneficial to use a path-based
formulation [VG97] to improve sampling efficiency. In partic-
ular, a path-based formulation would allow for several poten-
tial improvements including: more coherent mutation of samples,
highly coherent sampling within tiles using geometry-aware shift-
mapping [LKL*13], and a higher replica exchange acceptance rate
via shift-mapping.

MCMC with many chains. Dealing with many chains is chal-
lenging due to the length of each chain and how we initialize them.
For the same total number of samples, chains in our method have
significantly fewer samples than the global chain used in existing
MCMC rendering methods. Although replica exchange alleviates
this issue, in general, it is difficult to ensure proper exploration with
a low sample count. Our stratification of MCMC methods also re-
sults in the need to initialize a large number of chains. By using a
single, long chain over the entire image-space, we attempt to min-
imize the start-up bias of as many chains as possible. However, we
cannot guarantee that all chains are properly initialized.
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Figure 9: Some paths are still difficult to sample by path tracing or
PSSMLT. Our stratified MCMC shares the same limitation as our
chains are unlikely to be properly initialized in this case.

Artifacts due to difficult paths. Figure 9 shows renderings of a
faint caustic. Light paths for such a faint caustic are rarely sampled
by the unidirectional path sampler, which results in visible noise
in the results of both path tracing and PSSMLT. The chains in our
method are also unlikely to be initialized properly and do not ex-
plore such paths very well. The reconstruction thus fails to repro-
duce this caustic entirely. Using a bidirectional path sampler might
alleviate the issue, but robust exploration of such rare path events is
still an open problem in general. Recent advances in path guiding,
where difficult path are selected more often [RHJD18], can poten-
tially be combined with our stratified MCMC.

Future work. We use a cross-shaped tile in this paper, but our for-
mulation is not limited to this particular shape. For example, one
can consider having larger tiles to potentially exploit coherency
among more pixels, and adaptive tile shapes to numerically maxi-
mize the benefit of coherent sampling within a tile. Due to the simi-
larity of our formulation to gradient-domain reconstruction, a more
robust reconstruction algorithm such as the one based on control
variates [RIN16] might exist for our case as well. We should also
emphasize that image-space stratification is only a first step. Higher
dimensional stratification, particularly that in the path-space, can
provide further improvements.

6. Comparison to Previous Work

Our current implementation uses a path tracer to unidirection-
ally construct light paths starting from the sensor. Our stratifica-
tion framework, however, is not limited to this unidirectional path
construction and can be applied to other construction techniques
such bi-directional path tracing (BDPT) [VG95,LW93]. In BDPT,
a family of paths is constructed by connecting subpaths starting
from light sources and sensors. Similar to the use of BDPT in
PSSMLT [KSACO02], our framework is compatible with BDPT,
with the exception of the light tracing technique. The light trac-
ing technique, by construction, cannot be stratified in the image
space, and the stratification of light tracing is left for future work.
Multiplexed MLT bidirectionally constructs a single path by em-
bedding the choice of which path to generate inside of the chain
state [HKD14] and can be combined with our framework.

Besides path construction techniques, researchers have explored
improved mutation strategies in the path space such as manifold

exploration and variants [JM12, KHD14], geometry-aware pertur-
bation [OHHD18], and derivative-driven mutation [LLR*15]. Re-
cent works [OKH*17, Pan17, BINJ18] show the connection be-
tween the different state spaces used in light transport simulation.
All of these improvements do not fundamentally change the be-
havior of MCMC in terms of image-space exploration. They are
thus orthogonal to our contribution and can be incorporated into
our framework to improve exploration of the state space.

Metropolis instant radiosity [SIPO7b] uses MCMC to generate
virtual point lights (VPLs) proportional to their average image-
space contribution. This work can be interpreted as achieving per-
fect stratification over the image space since each VPL contributes
to all the pixels, making the contributions of the MCMC chain strat-
ified over the image space. VPLs are, however, prone to singularity
artifacts and are inefficient for glossy to glossy light transport. As
the results show, our work can leverage the strength of MCMC for
such transport while achieving perfect stratification.

For the topic of stratification in MCMC, Sik et al. explained
how to improve image-space stratification in their MCMC ap-
proach [§OHK16] based on UPS/VCM [HPJ12, GKDS12]. Their
approach is to use MC sampling for sensor subpaths, and the
results demonstrate significant improvement by improving strat-
ification over the image-space. Several previous works [SIP07a,
THD17,MDTW19] proposed to generate multiple proposals to im-
prove stratification. Szirmay-Kalos and Szécsi [SKS17] proposed
an adaptive mutation strategy which improves stratification in the
path space. While the ultimate goal of perfect stratification in both
the image space and the path space simultaneously has not been
achieved so far, nevertheless, all of these prior works point out the
importance of achieving stratification, even if it is only in the image
space. Common to all is that none of them ensures perfect stratifi-
cation in its strict sense, which is what our method achieves in the
image space.

Some concurrent work proposes to combine MC and MCMC
adaptively to achieve better stratification. Bitterli et al. [BJ19]
proposes to selectively run a MCMC process on outlier paths
initially generated by an MC technique. Their work is essen-
tially equivalent to the selective path guiding method by Reibold
et al. [RHJD18], but path guiding is done by MCMC instead.
Grittmann et al. [GGSK19] demonstrate a weighted combination
of MC and MCMC images based on variance, and their work also
emphasizes the importance of having stratification in the image
space. Unlike these concurrent works, we do not combine MC and
MCMC, and our framework achieves stratification by using only
MCMC.

7. Conclusion

We achieved perfect image-space stratification in MCMC render-
ing for the first time. The main idea is to use an independent chain
per pixel to guarantee stratification by definition. While such an in-
dependent MCMC process per pixel leads to an issue of unknown
normalization factors, we have identified novel algorithms that can
reconstruct them using overlapping image-space tiles per pixel. Our
reconstruction algorithms are based on the fact that the same pixel
converges to the same value even across different tiles. We showed
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how theoretical formulation of this reconstruction process is closely
related to gradient-domain reconstruction. This similarity allows us
to formulate the reconstruction as a simple optimization problem
and motivates the use of coherent sampling for neighboring pixels
within each tile. To improve the exploration of many chains, we
proposed to perform replica exchange locally between neighboring
tiles in the image-space. The numerical results show promising per-
formance compared to MCMC rendering without any stratification.
We believe that the theoretical similarity between our technique
and gradient-domain rendering opens up many interesting venues
for unified treatments between the two.
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