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ABSTRACT

In this supplementary document, we provide a proof for Theorem 2

in the main paper, and then discuss some variants of Theorem 2. We

also provide additional comparisons between our kernel and two

input-independent kernels for input estimates with high sample

counts.
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1 PROOF OF THEOREM 2

Let us recall the combination function simplified from the previous

combination function [Back et al. 2020]:

𝜇𝑐 = 𝑦𝑐 +
∑︁
𝑖∈Ω𝑐

𝑘𝑖 (Δ𝑧𝑐𝑖 − Δ𝑦𝑐𝑖 ) . (1)

In the combination, the input estimates 𝑦 and 𝑧 are assumed to be

statistically independent of each other and unbiased estimates [Back

et al. 2020].

We define the sub-averages of the estimateΔ𝑧𝑐𝑖 asΔ𝑧
1

𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖

followed by a distribution 𝐷 (𝜇𝑐 − 𝜇𝑖 , 𝜎
2/𝑛), where 𝐵 is the number

of sub-averages, 𝜎2 is the variance of the correlated samples, and

𝑛 is the sample counts for a single sub-average. The sub-averages

are independent and identically distributed. We assume that the

distribution of Δ𝑧
𝑗
𝑐𝑖
,∀𝑗 ∈ [1, 𝐵] is a symmetric distribution.
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Δ𝑧𝑐𝑖 is the average of all sub-averages, Δ𝑧
1

𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
, and this

functional relationship is represented by using a function 𝑓 :

Δ𝑧𝑐𝑖 = 𝑓 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 ) =

1

𝐵

𝐵∑︁
𝑗=1

Δ𝑧
𝑗
𝑐𝑖
. (2)

Note that the average function 𝑓 has the following properties:

𝑓 (Δ𝑧1𝑐𝑖 + 𝛼, · · · ,Δ𝑧𝐵𝑐𝑖 + 𝛼) = 𝑓 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 ) + 𝛼,

𝑓 (−Δ𝑧1𝑐𝑖 , · · · ,−Δ𝑧
𝐵
𝑐𝑖 ) = −𝑓 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧

𝐵
𝑐𝑖 ),

(3)

where 𝛼 is an arbitrary value.

Next, we define that a function 𝑘 is a function of the estimates

Δ𝑧1
𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
(i.e., 𝑘 (Δ𝑧1

𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
)) that follows the conditions:

𝑘 (Δ𝑧1𝑐𝑖 + 𝛼, · · · ,Δ𝑧𝐵𝑐𝑖 + 𝛼) = 𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 ),

𝑘 (−Δ𝑧1𝑐𝑖 , · · · ,−Δ𝑧
𝐵
𝑐𝑖 ) = 𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧

𝐵
𝑐𝑖 ) .

(4)

By using two functions, 𝑓 and 𝑘 , the combination formula (Eq. 1)

is represented as below:

𝜇𝑐 = 𝑦𝑐 +
∑︁
𝑖∈Ω𝑐

𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )

(
𝑓 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧

𝐵
𝑐𝑖 ) − Δ𝑦𝑐𝑖

)
. (5)

The expectation of 𝜇𝑐 can be expressed in the following manner:

𝐸 [𝜇𝑐 ] = 𝐸

[
𝑦𝑐 +

∑︁
𝑖∈Ω𝑐

𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )

(
𝑓 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧

𝐵
𝑐𝑖 ) − Δ𝑦𝑐𝑖

)]
= 𝜇𝑐 +

∑︁
𝑖∈Ω𝑐

𝐸

[
𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧

𝐵
𝑐𝑖 )

(
𝑓 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧

𝐵
𝑐𝑖 ) − Δ𝑦𝑐𝑖

)]
= 𝜇𝑐 +

∑︁
𝑖∈Ω𝑐

{
𝐸 [𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧

𝐵
𝑐𝑖 ) 𝑓 (Δ𝑧

1

𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )]

− 𝐸 [𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )] (𝜇𝑐 − 𝜇𝑖 )

}
.

(6)

Before proving its unbiasedness, we first prove the uncorrelat-

edness between 𝑓 (Δ𝑧1
𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
) and 𝑘 (Δ𝑧1

𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
), referring

to the proof of Hogg’s Theorem [Hogg 1960]. For a more intuitive

proof of the unbiasedness, we temporarily change the notation

of the estimates Δ𝑧1
𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
to 𝑥1, · · · , 𝑥𝐵 . The covariance of

two statistics from functions 𝑓 and 𝑘 , which is denoted as 𝐶 , is
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represented in the following integral form:

𝐶 =

∫ ∞

−∞
· · ·

∫ ∞

−∞
(𝑓 (𝑥1, · · · , 𝑥𝐵) − 𝜆)𝑘 (𝑥1, · · · , 𝑥𝐵)

𝐷 (𝑥1) · · ·𝐷 (𝑥𝐵)𝑑𝑥1 · · ·𝑑𝑥𝐵,
(7)

where 𝜆 indicates the expected value of 𝑓 (𝑥1, · · · , 𝑥𝐵), and 𝐷 is the

probability density function of 𝑥1, · · · , 𝑥𝐵 .
By using the transformation of variables 𝑥 𝑗 = ¤𝑥 𝑗 + 𝜆,∀𝑗 ∈ [1, 𝐵],

the covariance can be expressed as below:

𝐶 =

∫ ∞

−∞
· · ·

∫ ∞

−∞
(𝑓 ( ¤𝑥1 + 𝜆, · · · , ¤𝑥𝐵 + 𝜆) − 𝜆)𝑘 ( ¤𝑥1 + 𝜆, · · · , ¤𝑥𝐵 + 𝜆)

𝐷 ( ¤𝑥1 + 𝜆) · · ·𝐷 ( ¤𝑥𝐵 + 𝜆)𝑑 ¤𝑥1 · · ·𝑑 ¤𝑥𝐵 .
(8)

By the properties of the functions 𝑓 and𝑘 (i.e., 𝑓 ( ¤𝑥1+𝜆, · · · , ¤𝑥𝐵+𝜆) =
𝑓 ( ¤𝑥1, · · · , ¤𝑥𝐵) +𝜆 in Eq. 3 and 𝑘 ( ¤𝑥1 +𝜆, · · · , ¤𝑥𝐵 +𝜆) = 𝑘 ( ¤𝑥1, · · · , ¤𝑥𝐵)
in Eq. 4, the covariance in Eq. 8 can be changed in the following

manner:

𝐶 =

∫ ∞

−∞
· · ·

∫ ∞

−∞
𝑓 ( ¤𝑥1, · · · , ¤𝑥𝐵)𝑘 ( ¤𝑥1, · · · , ¤𝑥𝐵)

𝐷 ( ¤𝑥1 + 𝜆) · · ·𝐷 ( ¤𝑥𝐵 + 𝜆)𝑑 ¤𝑥1 · · ·𝑑 ¤𝑥𝐵 .
(9)

When employing a change of variables ¤𝑥 𝑗 = −¥𝑥 𝑗 ,∀𝑗 ∈ [1, 𝐵],
the covariance is as follows:

𝐶 =

∫ ∞

−∞
· · ·

∫ ∞

−∞
𝑓 (−¥𝑥1, · · · ,−¥𝑥𝐵)𝑘 (−¥𝑥1, · · · ,−¥𝑥𝐵)

𝐷 (−¥𝑥1 + 𝜆) · · ·𝐷 (−¥𝑥𝐵 + 𝜆)𝑑 ¥𝑥1 · · ·𝑑 ¥𝑥𝐵 .
(10)

By the other properties of the functions 𝑓 and𝑘 (i.e., 𝑓 (−¥𝑥1, · · · ,−¥𝑥𝐵) =
−𝑓 ( ¥𝑥1, · · · , ¥𝑥𝐵) and 𝑘 (−¥𝑥1, · · · ,−¥𝑥𝐵) = 𝑘 ( ¥𝑥1, · · · , ¥𝑥𝐵) in Eqs. 3

and 4) and the symmetric property of the distribution (i.e., 𝐷 (−¥𝑥 𝑗 +
𝜆) = 𝐷 ( ¥𝑥 𝑗 + 𝜆) for all 𝑗 ), the covariance in Eq. 10 is converted into

the covariance in Eq. 9 while inverting the sign:

𝐶 = −
∫ ∞

−∞
· · ·

∫ ∞

−∞
𝑓 ( ¥𝑥1, · · · , ¥𝑥𝐵)𝑘 ( ¥𝑥1, · · · , ¥𝑥𝐵)

𝐷 ( ¥𝑥1 + 𝜆) · · ·𝐷 ( ¥𝑥𝐵 + 𝜆)𝑑 ¥𝑥1 · · ·𝑑 ¥𝑥𝐵 = −𝐶.
(11)

Therefore, the covariance 𝐶 is zero.

Coming back to our notations for the combination, two statistics,

𝑓 (Δ𝑧1
𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
) and 𝑘 (Δ𝑧1

𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
), are uncorrelated:

𝐸 [𝑓 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )𝑘 (Δ𝑧

1

𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )]

= 𝐸 [𝑓 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )]𝐸 [𝑘 (Δ𝑧

1

𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )]

= (𝜇𝑐 − 𝜇𝑖 )𝐸 [𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )] .

(12)

Therefore, by plugging the statistical relationship between two

statistics (Eq. 12) into Eq. 6, it can be shown that the expected value

of 𝜇𝑐 is equal to 𝜇𝑐 , which means that 𝜇𝑐 is an unbiased estimate of

𝜇𝑐 :

𝐸 [𝜇𝑐 ] = 𝜇𝑐 +
∑︁
𝑖∈Ω𝑐

{
𝐸 [𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧

𝐵
𝑐𝑖 ) 𝑓 (Δ𝑧

1

𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )]

− 𝐸 [𝑘 (Δ𝑧1𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 )] (𝜇𝑐 − 𝜇𝑖 )

}
= 𝜇𝑐 .

(13)

2 VARIANTS OF THEOREM 2

Theorem 2 shows the unbiasedness of a denoised estimate 𝜇𝑐 via

the combination function using the kernel 𝑘𝑖 depending on the

sub-averages Δ𝑧1
𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
, under an assumption that the sub-

averages have a symmetric distribution. Depending on which the

sub-averages that have a symmetric distribution we set, we can

design different types of input-dependent uncorrelated kernels

satisfying the unbiased denoising.

2.1 Input-Dependent Kernel on Independent

Estimates

In this section, we demonstrate that the combination (Eq. 1) with an

input-dependent kernel on the sub-averages of the estimate Δ𝑦𝑐𝑖 ,
which are defined as Δ𝑦1

𝑐𝑖
, · · · ,Δ𝑦𝐵

𝑐𝑖
, satisfies its unbiasedness under

an assumption that the sub-averages have a symmetric distribution:

Theorem 2.1. Let the kernel 𝑘 be a bounded function of estimates
Δ𝑦

𝑗
𝑐𝑖
,∀𝑗 ∈ [1, 𝐵], i.e., 𝑘 (Δ𝑦1

𝑐𝑖
, · · · ,Δ𝑦𝐵

𝑐𝑖
) satisfying the following con-

ditions:

𝑘 (Δ𝑦1𝑐𝑖 + 𝛼, · · · ,Δ𝑦𝐵𝑐𝑖 + 𝛼) = 𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 ),

𝑘 (−Δ𝑦1𝑐𝑖 , · · · ,−Δ𝑦
𝐵
𝑐𝑖 ) = 𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦

𝐵
𝑐𝑖 ),

(14)

where 𝛼 is an arbitrary value. By assuming that Δ𝑦 𝑗
𝑐𝑖
has a symmetric

distribution, the denoised output 𝜇𝑐 (Eq. 1) is an unbiased estimate of
the ground truth 𝜇𝑐 , i.e., 𝐸 [𝜇𝑐 ] = 𝜇𝑐 .

Proof. We define an average function as 𝑓 , and Δ𝑦𝑐𝑖 is repre-
sented by the function 𝑓 that takes the sub-averages Δ𝑦1

𝑐𝑖
, · · · ,Δ𝑦𝐵

𝑐𝑖
:

Δ𝑦𝑐𝑖 = 𝑓 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 ) =

1

𝐵

𝐵∑︁
𝑗=1

Δ𝑦
𝑗
𝑐𝑖
. (15)

The sub-averages Δ𝑦1
𝑐𝑖
, · · · ,Δ𝑦𝐵

𝑐𝑖
are independent and identically

distributed, and the function 𝑓 has the following properties:

𝑓 (Δ𝑦1𝑐𝑖 + 𝛼, · · · ,Δ𝑦𝐵𝑐𝑖 + 𝛼) = 𝑓 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 ) + 𝛼,

𝑓 (−Δ𝑦1𝑐𝑖 , · · · ,−Δ𝑦
𝐵
𝑐𝑖 ) = −𝑓 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦

𝐵
𝑐𝑖 ),

(16)

where 𝛼 is an arbitrary value.

Then, the expected value of a denoised estimate (Eq. 1) using the

defined functions 𝑓 and 𝑘 is as follows:

𝐸 [𝜇𝑐 ] = 𝐸

[
𝑦𝑐 +

∑︁
𝑖∈Ω𝑐

𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 )

(
Δ𝑧𝑐𝑖 − 𝑓 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦

𝐵
𝑐𝑖 )

)]
= 𝜇𝑐 +

∑︁
𝑖∈Ω𝑐

𝐸

[
𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦

𝐵
𝑐𝑖 )

(
Δ𝑧𝑐𝑖 − 𝑓 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦

𝐵
𝑐𝑖 )

)]
= 𝜇𝑐 +

∑︁
𝑖∈Ω𝑐

{
𝐸 [𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦

𝐵
𝑐𝑖 )] (𝜇𝑐 − 𝜇𝑖 )

− 𝐸 [𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 ) 𝑓 (Δ𝑦

1

𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 )]

}
.

(17)

As shown in the proof of Theorem 2 (Sec. 1), given the properties

of the functions 𝑓 and 𝑘 (i.e., Eqs. 16 and 14) and the condition that

the sub-averages Δ𝑦1
𝑐𝑖
, · · · ,Δ𝑦𝐵

𝑐𝑖
are independent and identically
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distributed variables following a symmetric distribution, two statis-

tics, 𝑓 (Δ𝑦1
𝑐𝑖
, · · · ,Δ𝑦𝐵

𝑐𝑖
) and 𝑘 (Δ𝑦1

𝑐𝑖
, · · · ,Δ𝑦𝐵

𝑐𝑖
), are uncorrelated:

𝐸 [𝑓 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 )𝑘 (Δ𝑦

1

𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 )]

= 𝐸 [𝑓 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 )]𝐸 [𝑘 (Δ𝑦

1

𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 )]

= (𝜇𝑐 − 𝜇𝑖 )𝐸 [𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 )] .

(18)

By inserting Eq. 18 into Eq. 17, the expected value of the denoised

estimate 𝜇𝑐 becomes 𝜇𝑐 .

𝐸 [𝜇𝑐 ] = 𝜇𝑐 +
∑︁
𝑖∈Ω𝑐

{
𝐸 [𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦

𝐵
𝑐𝑖 )] (𝜇𝑐 − 𝜇𝑖 )

− 𝐸 [𝑘 (Δ𝑦1𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 ) 𝑓 (Δ𝑦

1

𝑐𝑖 , · · · ,Δ𝑦
𝐵
𝑐𝑖 )]

}
= 𝜇𝑐 .

(19)

Therefore, the denoised estimate 𝜇𝑐 is an unbiased estimate of

ground truth 𝜇𝑐 . □

2.2 Input-Dependent Kernel on Both

Independent and Correlated Estimates

This section provides another variant of Theorem 2, a denoised es-

timate (Eq. 1) using an input-dependent kernel on the sub-averages

of the estimates Δ𝑧𝑐𝑖 − Δ𝑦𝑐𝑖 (i.e., Δ𝑧
1

𝑐𝑖
− Δ𝑦1

𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
− Δ𝑦𝐵

𝑐𝑖
) is

an unbiased estimate of ground truth 𝜇𝑐 under an assumption:

Theorem 2.2. Let the kernel 𝑘 be a bounded function of estimates
Δ𝑣

𝑗
𝑐𝑖

≡ Δ𝑧
𝑗
𝑐𝑖
−Δ𝑦

𝑗
𝑐𝑖
,∀𝑗 ∈ [1, 𝐵], i.e., 𝑘 (Δ𝑣1

𝑐𝑖
, · · · ,Δ𝑣𝐵

𝑐𝑖
) satisfying the

following conditions:

𝑘 (Δ𝑣1𝑐𝑖 + 𝛼, · · · ,Δ𝑣𝐵𝑐𝑖 + 𝛼) = 𝑘 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 ),

𝑘 (−Δ𝑣1𝑐𝑖 , · · · ,−Δ𝑣
𝐵
𝑐𝑖 ) = 𝑘 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣

𝐵
𝑐𝑖 ),

(20)

where 𝛼 is an arbitrary value. By assuming that Δ𝑣 𝑗
𝑐𝑖
has a symmetric

distribution, the denoised output 𝜇𝑐 (Eq. 1) is an unbiased estimate of
the ground truth 𝜇𝑐 , i.e., 𝐸 [𝜇𝑐 ] = 𝜇𝑐 .

Proof. We first express the combination function (Eq. 1) by

replacing Δ𝑧𝑐𝑖 − Δ𝑦𝑐𝑖 into Δ𝑣𝑐𝑖 for a more intuitive representation:

𝜇𝑐 = 𝑦𝑐 +
∑︁
𝑖∈Ω𝑐

𝑘𝑖Δ𝑣𝑐𝑖 . (21)

The estimate Δ𝑣𝑐𝑖 is the average of the independent and identically

distributed sub-averages Δ𝑣1
𝑐𝑖
, · · · ,Δ𝑣𝐵

𝑐𝑖
, which can be expressed by

using an average function 𝑓 as below:

Δ𝑣𝑐𝑖 = 𝑓 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 ) =

1

𝐵

𝐵∑︁
𝑗=1

Δ𝑣
𝑗
𝑐𝑖
. (22)

The average function 𝑓 exhibits the characteristics outlined below:

𝑓 (Δ𝑣1𝑐𝑖 + 𝛼, · · · ,Δ𝑣𝐵𝑐𝑖 + 𝛼) = 𝑓 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 ) + 𝛼,

𝑓 (−Δ𝑣1𝑐𝑖 , · · · ,−Δ𝑣
𝐵
𝑐𝑖 ) = −𝑓 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣

𝐵
𝑐𝑖 ),

(23)

where 𝛼 is an arbitrary value.

Subsequently, the expectation of the denoised estimate 𝜇𝑐 intro-

ducing two functions 𝑓 and 𝑘 is calculated in the following manner:

𝐸 [𝜇𝑐 ] = 𝐸

[
𝑦𝑐 +

∑︁
𝑖∈Ω𝑐

𝑘 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 ) 𝑓 (Δ𝑣

1

𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 )

]
= 𝜇𝑐 +

∑︁
𝑖∈Ω𝑐

𝐸 [𝑘 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 ) 𝑓 (Δ𝑣

1

𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 )] .

(24)

In the proof of Theorem 2, it is shown that two statistics from the

functions 𝑓 and𝑘 of the sub-averages Δ𝑣1
𝑐𝑖
, · · · ,Δ𝑣𝐵

𝑐𝑖
are statistically

uncorrelated, under the conditions where two functions have the

aforementioned properties (Eqs. 23 and 20) and the sub-averages

are independent and identically distributed variables having a sym-

metric distribution:

𝐸 [𝑓 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 )𝑘 (Δ𝑣

1

𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 )]

= 𝐸 [𝑓 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 )]𝐸 [𝑘 (Δ𝑣

1

𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖 )] .

(25)

Since the expected value of Δ𝑣𝑐𝑖 (i.e., 𝐸 [𝑓 (Δ𝑣1𝑐𝑖 , · · · ,Δ𝑣
𝐵
𝑐𝑖
)]) is zero,

𝐸 [𝑓 (Δ𝑣1
𝑐𝑖
, · · · ,Δ𝑣𝐵

𝑐𝑖
)𝑘 (Δ𝑣1

𝑐𝑖
, · · · ,Δ𝑣𝐵

𝑐𝑖
)] in Eq. 25 becomes zero as

well. Thus, the summation in Eq. 24 is zero, so that the expectation

of 𝜇𝑐 is equivalent to the ground truth 𝜇𝑐 , indicating an unbiased

estimation. □

3 ADDITIONAL COMPARSIONS AT HIGH

SAMPLE COUNTS

Fig. 1 illustrates comparisons between our kernel and two input-

independent kernels (a uniform kernel and a cross-weighting ker-

nel) when applied to input estimates with high sample counts. It

is shown that the input-independent kernels do not effectively re-

duce some remaining errors inherent in the input estimates (e.g.,

random noise in path-traced images with independent sampling

and structured error in path-traced images sampled with a common

random number (CRN)), even when the number of samples for the

inputs is high. On the other hand, our kernel exhibits much more

effective error reduction with the introduction of a slight bias. It is

noteworthy that the assumption made in Theorem 2 (i.e., input esti-

mate having a symmetric distribution) becomes increasingly valid

as the sample count rises, resulting in consistent error reduction in

the inputs.
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(b) Input image
(PT)

(a) Reference, 64K spp (c) Input image
(CRN)

(e) Combination
(w/ cross-weighting)

(f) Combination
(w/ our-kernel)

(g) Reference, 64K spp(d) Combination
(w/ uni-kernel)

512 / 0.022007 512 / 0.016828 1024 / 0.007926 1024 / 0.003718 spp / Relative L21024 / 0.009719

512 / 0.019698 512 / 0.018354 1024 / 0.012027 1024 / 0.006499 spp / Relative L21024 / 0.016130

256 / 0.002230 256 / 0.002513 512 / 0.001148 512 / 0.000784 spp / Relative L2512 / 0.001643

256 / 0.005165 256 / 0.004531 512 / 0.000478 512 / 0.000384 spp / Relative L2512 / 0.000547

512 / 0.001815 512 / 0.001805 1024 / 0.000948 1024 / 0.000696 spp / Relative L21024 / 0.001233STAIRCASE

LAMP

HOUSE

CLASSROOM

BATHROOM

Figure 1: Comparisons with input-independent kernels (a uniform kernel and a cross-weighting kernel) at high sample counts.

It can be seen that the input-independent kernels fail to reduce certain errors in the input estimates even with a high number

of samples per pixel (e.g., structured artifacts in Bathroom, House and Staircase, and spike noise in Classroom and Lamp).

Our method effectively mitigates these residual errors.
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