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Figure 1: Our denoising with a new input-dependent kernel locally weights the two input pixel estimates, path tracing with
independent sampling (b) and common random numbers (CRN) (c) to produce a denoised output while preventing image edges
from blurring (i.e., a limited denoising bias). The numerical accuracy is measured by a relative 𝐿2 error using the reference
images (a) and (e).

ABSTRACT
Image-space denoising techniques have been widely employed in

Monte Carlo rendering, typically blending neighboring pixel esti-

mates using a denoising kernel. It is widely recognized that a kernel

should be adapted to characteristics of the input pixel estimates in

order to ensure robustness to diverse image features and amount

of noise. Denoising with such an input-dependent kernel, how-

ever, can introduce a bias that makes the denoised estimate even

less accurate than the noisy input estimate. Consequently, it has

been considered essential to balance the bias introduced by denois-

ing and the reduction of noise. We propose a new framework to

define an input-dependent kernel that departs from the existing ap-

proaches based on error estimation or supervised learning. Rather

than seeking an optimal bias-noise balance as in those existing

approaches, we propose to constrain the amount of bias introduced

by denoising. Such a constraint is made possible by the concept of

uncorrelated statistics, which has never been applied for denoising.

By designing an input-dependent kernel with uncorrelated weights
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against the input pixel estimates, our denoising kernel can reduce

data-dependent noise with a negligible amount of bias in most cases.

We demonstrate the effectiveness of our method for various scenes.
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1 INTRODUCTION
Monte Carlo (MC) integration is awidely adopted numericalmethod

to estimate the light transport integral [Kajiya 1986] to simulate

photorealistic rendering effects [Burley et al. 2018; Christensen et al.

2018; Kulla et al. 2018]. MC integration provides us with unbiased

pixel estimates, meaning that the errors can be effectively charac-

terized by examining the variances of these estimates. These errors

https://doi.org/10.1145/3610548.3618177
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manifest in a rendered image as random variations among its pixels,

commonly referred to as noise. Therefore, there has been a signifi-

cant amount of study on reducing noise to improve the accuracy

of MC rendering. A naïve approach to reducing noise is simply

increasing the number of random samples for MC estimation, but

it comes with the computational cost for additional samples.

One very promising alternative is image-space denoising, which

takes an MC-rendered image as input and produces a denoised im-

age as output without taking additional samples. A widely adopted

denoising strategy is to exploit a denoising kernel to reduce the

noise of a pixel by taking a weighted sum over its neighboring pix-

els. A careful definition of a denoising kernel is essential to achieve

effective denoising, and virtually all the denoising kernels are de-

signed to be adaptive to the noisy input, which makes the kernel

input-dependent. Input-dependent kernels allow image denoising to

handle pixel estimates robustly with non-uniform image features

(i.e., edges) and noise, which is typical for MC-rendered images.

A major challenge is that an input-dependent kernel can intro-

duce an arbitrarily large denoising bias to denoising results as a cost

of its variance reduction. Hence, balancing the (squared) bias and

variance has been considered necessary for image denoising. The

latest approaches optimize the kernel using a mean squared error

(MSE) estimation [Zwicker et al. 2015] or using a neural network

trained over a set of training data [Huo and Yoon 2021].

There is also another class of image-space denoising approaches

that reduce only the noise while avoiding introducing bias, i.e., un-

biased denoising. A well-known example is the L2 reconstruction

kernel in gradient-domain rendering [Kettunen et al. 2015] that

takes two unbiased inputs (e.g., primal colors and image gradients)

and reconstructs a combined image in an unbiased manner via

solving an ordinary least squares, i.e., the screen-space Poisson

reconstruction. This reconstruction kernel, however, assumes ho-

mogeneous errors in the input estimates and treats the color and

gradient errors among pixels equally, i.e., uniform weighting, and

thus input-independent. While this approach can produce unbiased

results, it is not as efficient as input-dependent kernels and often

results in visual artifacts when its assumption breaks. For example,

L2 reconstruction in the presence of gradient outliers results in

dipole-like artifacts.

We propose generalizing this unbiased denoising approach by

relaxing the strict unbiasedness constraint. Unlike unbiased de-

noising, our kernel is input-dependent analogously to the other

biased image denoisers with input-dependent kernels. Our formu-

lation, built upon uncorrelated statistics, fundamentally differs from

other biased denoising as we pursue a different objective where we

aim at reducing noise while forcing denoising bias from an input-

dependent kernel to be as small as possible instead of balancing the

bias-variance. Our input-dependent kernel forces image denoising

to have a bias only introduced by skewness in the distribution of

input pixel estimates. Our main contributions are as follows.

• We revisit the theory of uncorrelated statistics, which states

that two random variables with specific technical conditions

can be dependent but uncorrelated, and we use this theory to

devise an input-dependent denoising kernel that is uncorrelated

with input pixel estimates.

• We show that image denoising using an input-dependent ker-

nel, which has the conditions to be uncorrelated with input

estimates, becomes unbiased when it takes input estimates sym-

metrically distributed.

• As a proof of concept, we present a practical implementation of

such an input-dependent kernel.

The distributions of input estimates are often asymmetric in

rendering, which violates the symmetric assumption required for

the unbiasedness of our denoising. Nonetheless, we empirically

show that this violation can be mild in practice, which leads to

effective noise reduction in input pixel estimates compared to input-

independent kernels while significantly restricting denoising bias.

2 RELATEDWORK
Image-space denoising of MC ray tracing has become increasingly

popular because of its effectiveness in variance reduction. As this ap-

proach operates in the image space, it does not require a significant

modification to the underlying path-space sampling techniques re-

quired for MC ray tracing. The key idea of image-space denoising is

to devise a denoising kernel that computes a weighted sum of pixel

estimates so that the kernel outputs a better pixel estimate. Several

weighting mechanisms exist; this section focuses on discussing

existing weighting mechanisms designed for MC ray tracing and

gradient-domain rendering.

Denoising for MC ray tracing. One weighting mechanism is to set

a denoising kernel to be independent of its inputs, e.g., a Gaussian

filter, which performs a weighted average over a local neighbor-

hood of pixel estimates without considering the actual values of

these pixels. This mechanism can reduce noise in smooth areas

but works poorly in other regions, as it ignores image-space fea-

tures (e.g., edges) in the inputs. It is well known that forming an

input-dependent kernel, e.g., a bilateral filter, is necessary so that

image denoising can handle MC-rendered images robustly with

heterogeneous features and errors (e.g., noise).

A classical but well-known approach for conducting such input-

dependent weighting is to exploit existing image filters, such as

cross-bilateral filters [Li et al. 2012; Sen and Darabi 2012] and non-

local means filtering [Rousselle et al. 2012, 2013]), which take the

pixel estimates to beweighted as input to the filters, e.g., the squared

difference between the colors of a center pixel and its neighborhood.

One can also generate an input-dependent kernel using a weighted

local regression [Bitterli et al. 2016; Moon et al. 2014, 2016]. We

refer to a comprehensive survey [Zwicker et al. 2015] that reviews

classical image denoisers with different input-dependent kernels.

Another common direction for input-dependent weighting re-

lies on a deep neural network to optimize the kernel without the

traditional mean squared error (MSE) optimization, e.g., a mul-

tilayer perceptron for inferring optimal bandwidths of classical

filters [Kalantari et al. 2015] and normalized non-negative per-pixel

kernels [Bako et al. 2017; Salehi et al. 2022; Vogels et al. 2018].

Recently, more advanced neural denoising frameworks were pre-

sented for weighting individual samples [Gharbi et al. 2019], a

self-attention-based weighting using rendering-specific informa-

tion [Yu et al. 2021], computationally efficient denoising using

bilateral grids [Meng et al. 2020] and an affinity-based kernel [Işık
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et al. 2021]. Additionally, one can apply a post-denoising step that

corrects a denoised image with an imbalanced bias-variance for an

improved denoising result [Back et al. 2020, 2022; Firmino et al. 2022;

Gu et al. 2022; Zheng et al. 2021]. We refer to a recent survey [Huo

and Yoon 2021] for a comprehensive overview of learning-based

denoisers.

Denoising for gradient-domain rendering. Gradient-domain ren-

dering estimates image gradients in addition to pixel colors, and

the estimated gradients can become less noisy than the primal

colors through correlated sampling such as shift mapping [Ket-

tunen et al. 2015; Lehtinen et al. 2013]. Then, the two estimated

inputs can be combined via unweighted least squares, e.g., screened

Poisson equation with the L2 norm [Pérez et al. 2003], a method

commonly referred to as L2 reconstruction. A survey [Hua et al.

2019] thoroughly discusses correlated sampling and reconstruction.

The output image using the L2 reconstruction can have a much-

reduced variance compared to the variance of the primal colors

without introducing a reconstruction bias. However, the quality of

the reconstruction relies entirely on the accuracy of the estimated

gradients, as the reconstruction cannot robustly handle heteroge-

neous errors in the estimated gradients. As an alternative to the

uniform weighting (i.e., L2 reconstruction), Rousselle et al. [2016]

showed that an input-independent weighting using a half-buffer

scheme [Rousselle et al. 2012] allowed an unbiased reconstruction.

However, such input-independent weighting is not effective in ad-

dressing outliers caused by erroneous gradient estimates. To handle

image gradients with heterogeneous errors, one can exploit input-

dependent weighting using classical methods (e.g., a regularized

L1 reconstruction with auxiliary features [Manzi et al. 2016]) and

learning-based methods [Guo et al. 2019; Kettunen et al. 2019].

While both these classical and learning-based denoisers for

primal- and gradient-domain renderings effectively reduced noise

in MC-rendered images through sophisticated input-dependent

weighting, they come at the cost of some additional bias as the

overall denoising errors are minimized by balancing between bias

and variance. In this paper, we devise the theoretical conditions

of an input-dependent kernel, which makes image denoising un-

biased for input estimates with symmetric distributions. It allows

us to design a kernel whose denoising bias is only introduced by

violating the conditions, unlike the existing biased denoisers that

need a balance between bias and variance.

3 PROBLEM STATEMENT AND MOTIVATION
We aim to design an input-dependent denoising kernel that enables

image denoising to restrict its bias without the help of additional

optimization, such as optimal balancing of bias-variance trade-off.

We build upon a general combination function [Back et al. 2020]

that takes an image 𝑦 with independent pixel estimates and an

image 𝑧 with correlated pixel estimates to produce a combined

image 𝜇, i.e., estimates of the ground truth 𝜇. The two inputs are

assumed to be independent of each other. Specifically, a denoising

estimate 𝜇𝑐 at pixel 𝑐 is computed as

𝜇𝑐 = 𝑘𝑐𝑦𝑐 +
∑︁
𝑖∈Ω𝑐

𝑘𝑖𝑦𝑖 +
∑︁
𝑖∈Ω𝑐

𝑘𝑖Δ𝑧𝑐𝑖 , (1)

Relative L20.043677

(a) Input image
(PT, 256 spp)

Relative L20.002230
(b) Input image
(CRN, 256 spp)

(c) Combination
(w/ uni-kernel)

(d) Combination
(w/ our kernel)

(e) Reference
(64K spp)

0.002513 0.001643 0.000784

0.034509 0.020037 0.006124

Figure 2: Denoising results with a uniform kernel and our
input-dependent kernel for the two inputs (a) and (b). While
the uniform kernel generates an unbiased image (c), it is
ineffective in reducing the heterogeneous variances inher-
ent in the correlated input (b). Our denoising with an input-
dependent kernel reduces the structural errors while avoid-
ing excessive blurring on edges, as shown in (d).

where Δ𝑧𝑐𝑖 ≡ 𝑧𝑐 −𝑧𝑖 . The combination above averages independent

colors 𝑦𝑖 and the differences Δ𝑧𝑐𝑖 of dependent colors between
pixel 𝑐 and pixel 𝑖 . Ω𝑐 is the set of neighboring pixels nearby pixel 𝑐 ,

excluding the pixel 𝑐 , and 𝑘 is a normalized kernel that determines

positive weights 𝑘𝑐 and 𝑘𝑖 for pixels 𝑐 and 𝑖 (i.e., 𝑘𝑐 +
∑
𝑖∈Ω𝑐

𝑘𝑖 = 1).

The deep combiner by Back et al. [2020] determines the kernel 𝑘 in

an input-dependent manner via a deep neural network that takes

the inputs 𝑦 and 𝑧 and is generally biased.

Multiple techniques exist to obtain a correlated image, e.g., us-

ing identical random number sequences across all pixels (path

tracing with CRN), sharing traced photons via density estima-

tion [Hachisuka et al. 2008; Jensen 1996], and blending neighboring

pixel estimates using image gradients (L2 reconstruction). Our work

focuses on input with unbiased estimates (e.g., path tracing with

CRN) since we design a kernel for image denoising. Note that the

combination (Eq. 1) serves as image denoising when it takes unbi-

ased estimates. We will refer to the combined output 𝜇𝑐 (in Eq. 1)

as a denoised estimate.

Motivation. Eq. 1 provides one trivial recipe for unbiased denois-
ing. If a denoising kernel is uncorrelated with its inputs 𝑦 and 𝑧,

e.g., 𝐸 [𝑘𝑖Δ𝑧𝑐𝑖 ] = 𝐸 [𝑘𝑖 ]𝐸 [Δ𝑧𝑐𝑖 ] and 𝐸 [𝑘𝑖𝑦𝑖 ] = 𝐸 [𝑘𝑖 ]𝐸 [𝑦𝑖 ], then the

denoised estimate 𝜇𝑐 becomes unbiased:

𝐸 [𝜇𝑐 ] = 𝐸 [𝑘𝑐 ]𝐸 [𝑦𝑐 ] +
∑︁
𝑖∈Ω𝑐

𝐸 [𝑘𝑖 ]𝐸 [𝑦𝑖 ] +
∑︁
𝑖∈Ω𝑐

𝐸 [𝑘𝑖 ]𝐸 [Δ𝑧𝑐𝑖 ]

= 𝐸 [𝑘𝑐 ]𝜇𝑐 +
∑︁
𝑖∈Ω𝑐

𝐸 [𝑘𝑖 ]𝜇𝑖 +
∑︁
𝑖∈Ω𝑐

𝐸 [𝑘𝑖 ] (𝜇𝑐 − 𝜇𝑖 )

= 𝐸

[
𝑘𝑐 +

∑︁
𝑖∈Ω𝑐

𝑘𝑖

]
𝜇𝑐 = 𝜇𝑐 .

(2)

A straightforward way to achieve this uncorrelatedness condition is

via statistical independence, i.e., to construct an input-independent
kernel such that the kernel is independent of inputs 𝑦 and 𝑧. An

example of such an input-independent kernel is a uniform kernel

that treats each pixel estimate equally by 𝑘𝑐 = 𝑘𝑖 = 1/(|Ω𝑐 | + 1).
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While being unbiased, this type of independent weighting of pixel

estimates is not effective as it does not consider the heterogeneous

nature of noise (e.g., structural errors) in the correlated input 𝑧, as

shown in Fig. 2. To handle the heterogeneous variances, it is desir-

able to have a kernel that considers input pixel estimates 𝑦 and 𝑧

while keeping it ideally unbiased. This observation on uncorrelated

weights gives us a hint for such denoising kernels; we want them to

be input-dependent and uncorrelated at the same time, which leads

to our main idea of utilizing the concept of uncorrelated statistics.

4 INPUT-DEPENDENT AND UNCORRELATED
KERNELS

In general, two random variables 𝑋 and 𝑌 are uncorrelated when

their covariance is zero, i.e., 𝑐𝑜𝑣 (𝑋,𝑌 ) = 𝐸 [𝑋𝑌 ] − 𝐸 [𝑋 ]𝐸 [𝑌 ] = 0,

thus there is no explicit condition of dependency between 𝑋 and 𝑌 .

One subtlety is that 𝑋 and 𝑌 being independent means they are un-

correlated, but 𝑋 and 𝑌 being dependent does not necessarily mean

they are correlated. Prior works showed that dependent random

variables could be uncorrelated under certain conditions (e.g., [Lan-

caster 1959; Ostle and Steck 1959; Wolfe 1973]). We leverage this

flexibility to define the weights 𝑘𝑖 that are dependent on, but un-

correlated with, the input Δ𝑧𝑐𝑖 so that 𝐸 [𝑘𝑖Δ𝑧𝑐𝑖 ] = 𝐸 [𝑘𝑖 ]𝐸 [Δ𝑧𝑐𝑖 ].
Hogg [1960] showed that the values of two functions 𝑓 and 𝑔

evaluated at random samples 𝑥1, · · · , 𝑥𝑛 satisfying the following

conditions are uncorrelated:

Theorem 1 (Hogg’s Theorem). Let 𝑥𝑖 ,∀𝑖 ∈ [1, 𝑛] be a random
sample taken from a symmetric distribution where 𝑛 is the number of
the random samples. Let 𝑓 and 𝑔 be functions of the random samples
satisfying the following conditions:

𝑓 (𝑥1 + 𝛼, 𝑥2 + 𝛼, · · · , 𝑥𝑛 + 𝛼) = 𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛) + 𝛼,

𝑓 (−𝑥1,−𝑥2, · · · ,−𝑥𝑛) = −𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛),
(3)

𝑔(𝑥1 + 𝛼, 𝑥2 + 𝛼, · · · , 𝑥𝑛 + 𝛼) = 𝑔(𝑥1, 𝑥2, · · · , 𝑥𝑛),
𝑔(−𝑥1,−𝑥2, · · · ,−𝑥𝑛) = 𝑔(𝑥1, 𝑥2, · · · , 𝑥𝑛),

(4)

where 𝛼 is an arbitrary value. Then, two statistics from the functions,
𝑓 (𝑥1, 𝑥2, · · · , 𝑥𝑛) and 𝑔(𝑥1, 𝑥2, · · · , 𝑥𝑛), are uncorrelated.

The theorem implies that two dependent statistics (on 𝑥𝑖 ) gen-

erated by the two different functions 𝑓 and 𝑔 are uncorrelated as

long as they satisfy the conditions (Eqs. 3 and 4).

4.1 Input-Dependent Kernel using Uncorrelated
Statistics

Let us show that image denoising via the combination (Eq. 1) is

unbiased when its kernel weights the input estimates with a sym-

metric distribution, guided by the theory of uncorrelated statistics

(Theorem 1). We first transform the combination (Eq. 1) into a

simplified variant of the original one by setting 𝑘𝑐 = 1 −∑
𝑖∈Ω𝑐

𝑘𝑖 :

𝜇𝑐 = 𝑦𝑐 +
∑︁
𝑖∈Ω𝑐

𝑘𝑖 (Δ𝑧𝑐𝑖 − Δ𝑦𝑐𝑖 ) , (5)

where Δ𝑦𝑐𝑖 ≡ 𝑦𝑐 − 𝑦𝑖 .

We then employ Theorem 1 to design a kernel function 𝑘 that

can take the input estimates (e.g., Δ𝑧𝑐𝑖 ) as its input to produce data-
dependent weights 𝑘𝑖 . Note that one can make the kernel take sub-

averages (not just sample averages such as Δ𝑧𝑐𝑖 ) since we can access
individual samples in rendering. To make our kernel compatible

with the rendering-specific data (i.e., sub-averages), we introduce

𝐵 (𝐵 ≥ 1) sub-averages of correlated samples by Δ𝑧1

𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
,

which follow an identical distribution 𝐷 (𝜇𝑐 − 𝜇𝑖 , 𝜎
2/𝑛), where 𝜎2

is the variance of the correlated samples and 𝑛 is the sample size

for each sub-average. Note that Δ𝑧1

𝑐𝑖
= Δ𝑧𝑐𝑖 when 𝐵 = 1.

The sub-averages can be trivially computed in rendering since

individual samples per pixel can be split into 𝐵 disjoint sets, i.e.,

Δ𝑧
𝑗
𝑐𝑖

= 1

𝑛

∑𝑛
𝑠=1

Δ𝑧𝑐𝑖, 𝑗×𝑛+𝑠 where Δ𝑧𝑐𝑖, 𝑗×𝑛+𝑠 is ( 𝑗 × 𝑛 + 𝑠)-th corre-

lated sample for the estimate Δ𝑧𝑐𝑖 . We can consider that Δ𝑧𝑐𝑖 is an
estimate of a function 𝑓 that takes the average of 𝐵 sub-averages:

Δ𝑧𝑐𝑖 = 𝑓 (Δ𝑧1

𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 ) =

1

𝐵

𝐵∑︁
𝑗=1

Δ𝑧
𝑗
𝑐𝑖
. (6)

It is worth noting that the defined function 𝑓 has the properties

aforementioned in Eq. 3.

Next, we need to model the kernel 𝑘 as the function 𝑔 in Eq. 4,

so that two statistics from the functions 𝑓 and 𝑘 are uncorrelated

according to Theorem 1. The conditions for this kernel 𝑘 (or 𝑔) can

be stated in the following new theorem:

Theorem 2. Let the kernel 𝑘 be a bounded function of estimates
Δ𝑧

𝑗
𝑐𝑖
,∀𝑗 ∈ [1, 𝐵], i.e., 𝑘 (Δ𝑧1

𝑐𝑖
, · · · ,Δ𝑧𝐵

𝑐𝑖
) satisfying the following con-

ditions:
𝑘 (Δ𝑧1

𝑐𝑖 + 𝛼, · · · ,Δ𝑧𝐵𝑐𝑖 + 𝛼) = 𝑘 (Δ𝑧1

𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 ),

𝑘 (−Δ𝑧1

𝑐𝑖 , · · · ,−Δ𝑧
𝐵
𝑐𝑖 ) = 𝑘 (Δ𝑧1

𝑐𝑖 , · · · ,Δ𝑧
𝐵
𝑐𝑖 ),

(7)

where 𝛼 is an arbitrary value. By assuming that Δ𝑧 𝑗
𝑐𝑖
has a symmetric

distribution, the denoised output 𝜇𝑐 (Eq. 5) is an unbiased estimate of
the ground truth 𝜇𝑐 , i.e., 𝐸 [𝜇𝑐 ] = 𝜇𝑐 .

This theorem shows how one can achieve unbiased denoising

when the condition of the symmetric distribution is met. One can

also set the kernel 𝑘 to a function of another input Δ𝑦𝑐𝑖 or of
both inputs Δ𝑦𝑐𝑖 and Δ𝑧𝑐𝑖 , analogously in the theorem. We include

the proofs of Theorem 2 and these variations in the supplemental

report.

The main assumption in Theorem 2 is a symmetric distribution

of the difference (e.g., Δ𝑧
𝑗
𝑐𝑖
) between correlated pixel estimates, not

the pixel estimates (e.g., 𝑧
𝑗
𝑖
). It is well-known that the distributions

of rendered pixel estimates with finite samples can have long right

tails [Elek et al. 2019; Salehi et al. 2022], but the distribution of the

differences can be less skewed than one of the pixel estimates since

the two adjacent pixels tend to have a similar level of skewness (see

Fig. 3-(a)). Additionally, the distribution of the Δ𝑧
𝑗
𝑐𝑖
converges to a

symmetric distribution (i.e., normal distribution) as the sample size

goes to infinity, according to the central limit theorem. Thus, the

violation of the assumption becomes smaller with larger sample

counts. This property, in turn, automatically makes the denoising

with the kernel 𝑘 consistent. We also numerically show that the bias

coming from this assumption is typically much smaller than the

bias in the existing methods. As such, we can use Theorem 2 as a

guideline to design a new denoising kernel that has a negligible

bias in most cases and is always consistent.

4.2 Example Denoising Kernel
Theorem 2 opens up a large design space of nearly unbiased de-

noising kernels, but as a proof of concept, we pick up a simple
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(a) Absolute value of skewness
(correlated estimates)

(b) Absolute value of skewness
(differences of correlated estimates)

0.0 > 1.5 0.0 > 1.5

0.484610 0.135028

Figure 3: Visualization of the Pearson median skewness for
the correlated estimates 𝑧𝑖 and their differences Δ𝑧𝑐𝑖 . We com-
pute the absolute values of skewness using 600 path-tracing
images with CRN, each using 128 spp. As the skewness of
differences Δ𝑧𝑐𝑖 per pixel 𝑐 varies according to a neighbor 𝑖
in a local window Ω𝑐 , we visualize the average of the abso-
lute values of the skewness. The reported numbers below
the sub-figures are the averages for the visualized per-pixel
skewness. The distribution of per-pixel correlated estimates
is highly skewed (a), but the skewness tends to be spatially
coherent, resulting in 3.6× lower skewness for the difference
(b).

variance-based weighting with 𝐵 = 2:

𝑘 (Δ𝑧1

𝑐𝑖 ,Δ𝑧
2

𝑐𝑖 ) =
1

|Ω𝑐 |
exp

(
−𝛾𝑛

(
Δ𝑧1

𝑐𝑖 − Δ𝑧2

𝑐𝑖

)
2

)
, (8)

which satisfies the conditions in Theorem 2. 𝛾 is a scale parameter

shared for all center pixels 𝑐 . We set the denoising window Ω𝑐 to

15 × 15. The squared term (Δ𝑧1

𝑐𝑖
− Δ𝑧2

𝑐𝑖
)2

serves as an estimated

variance for Δ𝑧𝑐𝑖 . We apply the combination (Eq. 5) using this input-

dependent kernel (Eq. 8) to produce a denoised output 𝜇 from two

unbiased inputs 𝑦 and 𝑧.

Fig. 4 compares the denoising bias of the combination results

from our input-dependent kernel and the existing learning-based

scheme, deep combiner (DC) [Back et al. 2020]. As shown in the

figure, our method shows a limited bias only for small regions

where our assumption is violated (e.g., in the orange box of Fig. 4),

unlike the existing kernel with a noticeable bias around image

edges. As a result, our bias is 21× lower than DC. Note that such

bias reduction is achieved via a newly designed input-dependent

kernel without relying on rendering-specific information (e.g., G-

buffers) and neural network based supervised learning.

Details for the parameter 𝛾 . To select the scale parameter 𝛾 (in

Eq. 8), we estimated our denoising variance using the dual-buffer

scheme [Rousselle et al. 2012]. Specifically, we generated four pairs

of input images, i.e., four independent and correlated image pairs,

and conducted our denoising with the example kernel (Eq. 8) using

the first two and the other two pairs while varying the parameter

𝛾 = {0.01, 0.025, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2, 2.5}. Then, we selected
the best 𝛾 that has the smallest relative variance,

1

𝑃

∑𝑃
𝑐=1

(𝜇𝑎𝑐 −
𝜇𝑏𝑐 )2/(𝑦2

𝑐 + 0.01). 𝜇𝑎 and 𝜇𝑏 are the two denoising outputs using a

candidate 𝛾 . 𝑃 is the total pixel count, and𝑦𝑐 = (𝑦𝑐 +
∑
𝑖∈Ω𝑐

𝑦𝑖 )/(1+
|Ω𝑐 |). We computed the relative variance for each color channel

and then averaged them.

(b) Squared bias (ours, 64 spp)(a) Squared bias (DC, 64 spp)

0.0 > 0.03

0.0005240.011265

0.0 > 0.03

Figure 4: Bias comparison between two input-dependent ker-
nels: an existing learning-based kernel (DC [Back et al. 2020]
(a)) and ours (b). The biases are computed using 300 input
image pairs, i.e., path-tracing results with independent sam-
pling and CRN, and the numbers below the sub-figures are
the averages of per-pixel squared biases. Our method has
a drastically lower bias than DC since we design an input-
dependent kernel to have a restricted bias only associated
with the skewness in the distribution of input estimates.

5 RESULTS AND DISCUSSION
We have compared our simple denoising kernel with other baselines

for Eq. 1: the two input-independent kernels (a uniform kernel and

a cross-weighting kernel) that always produce unbiased results, and

the input-dependent kernel predicted by a neural network [Back

et al. 2020] using the pre-trained model publicly released by the

authors. These baselines are selected as two extremes of input-

independent and uncorrelatedweights (always unbiased), and input-

dependent and correlated weights (biased). Our kernel is input-

dependent, and it would be uncorrelated (and thus unbiased) when

the assumption in Theorem 2 holds. The inputs to all these methods

are obtained by path tracing: input 𝑦 with independent sampling

and input 𝑧 with correlated sampling using CRN.

We have compared our denoising with a recent biased denoiser,

auxiliary feature guided self-attention (AFGSA) [Yu et al. 2021]. This

biased denoiser takes only independent pixel estimates as input,

unlike our input (i.e., independent and correlated inputs). Thus,

we set the total sample budgets for both methods to be the same.

This comparison can also be seen as a same-time comparison since

our computational overhead (135 ms) is much smaller than their

overhead (2 secs), given the tested image resolution (1280 × 720).

We also demonstrate that our method can be used to improve the

unbiased result of gradient-domain rendering [Kettunen et al. 2015].

Specifically, we use the unbiased L2 reconstruction result from

gradient-domain rendering [Kettunen et al. 2015] as our correlated

estimates.

We tested five scenes (Bathroom,Classroom,House, Lamp, and

Staircase) using Mitsuba renderer [Jakob 2010]. We used the Intel

Xeon CPU E5-2687W and the NVIDIA GeForce RTX 3090 graphics

card for all comparisons. We used the relative 𝐿2 error [Rousselle

et al. 2011] to compare the results quantitatively.

Implementation details for the comparisons. For the cross-weighting
strategy, we have applied the same form of our kernel (i.e., Eq. 8) and

also the same scheme for selecting the parameter 𝛾 (in Sec. 4), but
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(b) Input image
(PT)

(a) Reference, 64K spp (c) Input image
(CRN)

(e) Combination
(w/ cross-weighting)

(f) Combination
(w/ our-kernel)

(g) Reference, 64K spp(d) Combination
(w/ uni-kernel)

128 / 0.086589 128 / 0.057743 256 / 0.027440 256 / 0.009671 spp / Relative L2256 / 0.032066

128 / 0.077382 128 / 0.068711 256 / 0.046768 256 / 0.017516 spp / Relative L2256 / 0.058965

64 / 0.009012 64 / 0.009079 128 / 0.003754 128 / 0.003087 spp / Relative L2128 / 0.005588

64 / 0.020594 64 / 0.015239 128 / 0.001972 128 / 0.001654 spp / Relative L2128 / 0.002467

128 / 0.007240 128 / 0.008298 256 / 0.004346 256 / 0.002457 spp / Relative L2256 / 0.005483STAIRCASE

LAMP

HOUSE

CLASSROOM

BATHROOM

Figure 5: Comparisons with input-independent kernels, a uniform kernel (d) and a cross-weighting (e). Since these alternatives
are not input-dependent kernels that take into account the heterogeneous errors of their inputs, both approaches (i.e., (d) and
(e)) tend to inherit residual noise in the input estimates (b) and (c). On the other hand, our input-dependent kernel (f) allows
image denoising to handle the heterogeneous errors in the input estimates robustly.

we configured the kernel and the input estimates to be independent

of each other. For example, we prepared four pairs of input images,

e.g., (𝑦1, 𝑧1
), · · · , (𝑦4, 𝑧4

), and then computed the kernel using the

first two pairs (𝑦1, 𝑧1
) and (𝑦2, 𝑧2

) and denoised the average of the

next two, i.e., (𝑦3, 𝑧3
) and (𝑦4, 𝑧4

), using the kernel, and vice-versa.

Then, the two denoised outputs are averaged to produce a final

denoised image.

For our denoising with the unbiased L2 reconstruction, it is

required to remove the dependencies between our two inputs, in-

dependent and correlated images (i.e., the L2 reconstruction result),

since the L2 reconstruction is solved from the independent esti-

mates and their gradients. We achieve this by producing four pairs

of sub-averaged independent and correlated images (𝑦 𝑗 , 𝑧 𝑗 ) with
𝑗 ∈ {1..4} and applying our approach twice on each decorrelated

input set, i.e., one denoising using the sub-averaged independent es-

timates (𝑦1, 𝑦2) and the sub-averaged correlated estimates (𝑧3, 𝑧4),
and similarly another denoising using the sub-averaged indepen-

dent estimates (𝑦3, 𝑦4) and the sub-averaged correlated estimates

(𝑧1, 𝑧2). Then, we average two denoised results to get a final output.

Comparisons with input-independent kernels. Fig. 5 compares our

kernel to two input-independent kernels that result in an unbi-

ased combination. Since the correlated estimates with high and

low inter-pixel correlation are equally utilized for its denoising,

uniform weighting fails to reduce the structured noise in the corre-

lated estimates (see Fig. 5-(c) and (d)). The cross-weighting strategy

slightly alleviates this issue compared to the uniform kernel. How-

ever, some residual errors from the input estimates remain since the

weights are not determined by considering the inputs being actually

weighted. While being slightly biased, our method can reduce the

random noise from the independent estimates and the structured

noise in the correlated estimates simultaneously, compared to the

other input-independent kernels, thanks to our input-dependent

weighting.

Comparisons with an input-dependent kernel. Fig. 6 compares our

input-dependent kernel and the learning-based kernel (DC) [Back

et al. 2020] for the same inputs. Our technique and the learning-

based method by Back et al. [2020] have different goals. Back et al.

[2020] aim at reducing relative 𝐿2 error overall based on supervised

learning. On the other hand, we theoretically identify the condi-

tions for unbiased denoising in general and pick up one kernel that

satisfies the conditions (and expect that the bias will be small in

practice for those cases where the conditions are not met). Thus, we

compare the techniques with respect to both the relative 𝐿2 errors

and denoising biases. DC produces 1.9× to 3.6× smaller relative 𝐿2

errors than ours since its supervised loss is designed to reduce the

𝐿2 errors directly. On the other hand, our method has significantly

lower biases than DC, e.g., 18.2× to 39.3× lower (squared) biases.
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Note that the denoising kernel we tested is merely a proof of con-

cept - we did not employ sophisticated optimization or supervised

learning to design our kernel. Nonetheless, our reduction in the

squared biases (18.2× to 39.3× lower than DC) is more significant

than the increase in the 𝐿2 errors (1.9× to 3.6× higher than DC).

Comparisons with a recent biased denoiser. Fig. 7 compares our

denoising with a state-of-the-art biased denoiser, AFGSA [Yu et al.

2021]. The biased denoiser, which relies on a denoising neural

network trained for minimizing denoising errors without a bias

constraint, produces 1.5× to 2.6× lower 𝐿2 errors than our method.

However, their improvements over our technique come with sig-

nificantly higher biases than ours, i.e., 54.3× to 292.0×, which are

visible as blurry features. It indicates that our method can be prefer-

able for scenarios where high-quality rendering, which does not

allow a noticeable bias (e.g., blurred edges), is necessary. Denoising

with a low bias can also make visual inspection and error estimation

of denoised images straightforward for practical scenarios where

ground truth is unavailable. For example, visually inspecting noise

(variance) is much easier than systematic errors (bias), and denois-

ing variance can be easily estimated using the sample variance or

dual-buffer estimation (Sec. 4.2).

Results for gradient-domain rendering. Fig. 8 shows denoising re-

sults for L2 reconstruction in gradient-domain rendering [Kettunen

et al. 2015]. Note that the combination (Eq. 1) allows us to take any

unbiased correlated estimates, such as L2 reconstructed images, as

its input [Back et al. 2020]. As can be seen, the combination using

our kernel mitigates heterogeneous variances in the reconstructed

images, such as visual artifacts in the Bathroom and Classroom

scenes and spike noise in the House scene. Our method can be

regarded as a generalization of Poisson reconstruction with a more

relaxed constraint on unbiasedness than the L2 reconstruction.

Convergence. Fig. 9 shows the convergences of our denoising

for primal and gradient-domain renderings across different sample

counts. Our approach reduces the variances of input estimates while

restricting our denoising bias, which gradually diminishes with

an increase in the sample size since our assumption on the input

distribution, i.e., symmetrically distributed estimates, becomes exact

with an infinite sample count. It makes our method consistently

reduce the errors of our input estimates across the sample sizes. In

other words, our denoising kernel will be consistent by design.

Computational overhead. Given a default configuration of our

approach that takes path-traced images with independent and cor-

related sampling using CRN, our denoising overhead, including the

scale parameter selection and final denoising, is 135 milliseconds

for an image with 1280 × 720 resolution. Considering that the sam-

pling time is dominant in offline rendering (e.g., 872, 844, 355, 494,

and 988 milliseconds for 1 spp on Bathroom, Classroom, House,

Lamp, and Staircase, respectively), the computational overhead

imposed by our method is negligible.

Limitations and future work. Our denoising framework is built

on top of the combination (Eq. 1) that explicitly utilizes a positive

correlation between its correlated pixel estimates. Hence, our noise

reduction can be bounded by the amount of inter-pixel correlation

determined by a chosen correlated sampling, e.g., path tracing with

CRN. As can be observed in Figs. 5, 6, and 7, our method reduces

the actual errors in the input estimates but leaves some residual

noise in our output estimates when the inter-pixel correlation is

low. It would be interesting to adopt more advanced correlated

sampling that introduces a higher correlation among pixels, e.g.,

path-reusing techniques via a generalized shift mapping [Bauszat

et al. 2017] or resampling-based techniques [Bitterli et al. 2020; Lin

et al. 2022; Ouyang et al. 2021], for more effective noise reduction.

We leave this investigation for future work.

We implemented a simple variance-based weighting (Eq. 8) as an

example of our input-dependent kernel (Theorem 2) and showed

variance reduction with limited bias. Nevertheless, our example ker-

nel is likely far from the best possible kernel within our framework,

and the numerical results shown in this paper might not represent

such best possible outcomes, e.g., higher relative 𝐿2 errors than

recent biased methods. Future research would be to derive a more

sophisticated kernel with auxiliary information (e.g., albedos) or to

implicitly predict a kernel that satisfies the conditions (Eq. 7) via a

kernel-predicting neural network [Bako et al. 2017].

6 CONCLUSION
We have proposed a new denoising strategy for an input-dependent

kernel, which allows image denoising to reduce noise in input

pixel estimates while limiting denoising bias. It has been commonly

believed that relying on an input-dependent kernel requires con-

trolling a bias-variance trade-off as a necessary step since image

denoising can have an arbitrarily large denoising bias. Our pa-

per, however, shows that such an input-dependent kernel can be

uncorrelated with input pixel estimates thanks to the theory of

uncorrelated statistics, and one can reduce noise in input pixel

estimates without the tedious task of finding an optimal bias and

variance trade-off.

Empirically, our method is not a perfect unbiased denoising

method. However, the source of our denoising bias becomes techni-

cally limited and explainable since it is only related to the violation

of the symmetric distribution assumption of input pixel estimates,

unlike existing biased image denoisers. We believe that our finding

for an input-dependent kernel, which can be uncorrelated with

the input estimates, can become an essential step toward unbiased

denoising methods with an optimal input-dependent kernel.
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Figure 6: Comparisons with a learning-based kernel (DC) [Back et al. 2020]. The numbers in (g) and (h) are the averages of the
visualized per-pixel squared biases. We also report the relative 𝐿2 errors under the input and denoised images, (b) to (e), to show
the strength and weakness of the input-dependent kernels with different denoising objectives. DC shows 1.9× to 3.6× lower
relative 𝐿2 errors than ours since it optimizes its input-dependent kernel to minimize the errors via supervised learning. On the
other hand, our technique, aiming at reducing denoising bias as small as possible, shows 18.2× to 39.3× lower squared biases.
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Figure 7: Comparisons with a recent biased denoiser (AFGSA) [Yu et al. 2021]. The numbers reported under the sub-figures (b)
to (d) mean the relative 𝐿2 errors, and the numbers in (f) and (g) represent the average of the per-pixel squared biases. While
AFGSA shows 1.5× to 2.6× lower relative 𝐿2 errors than our approach, our method exhibits 54.3× to 292.0× lower squared biases
than AFGSA.
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(a) Reference, 64K spp (d) Ours for L2 (e) Reference, 64K spp(b) Input image (PT) (c) Input image (L2)
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Figure 8: Our denoising results for the L2 reconstruction [Kettunen et al. 2015]. Our method (d) mitigates the residual errors in
our input image (c) without a noticeable blur on image edges.
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Figure 9: Numerical convergence plots of our denoising for primal and gradient-domain renderings in a log-log scale.
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