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ABSTRACT OF THE DISSERTATION

Robust Light Transport Simulation using Progressive Density Estimation

by

Toshiya Hachisuka

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Henrik Wann Jensen, Chair

This dissertation introduces a new light transport simulation framework that

significantly expands a class of scene configurations that we can handle. The main

contribution is a novel density estimation method, called progressive density estimation,

which addresses fundamental limitations of existing density estimation methods. The

key feature of progressive density estimation is that the method does not need to store

a full set of samples to guarantee convergence to the correct solution. Progressive

density estimation led to a new light transport algorithm which can simulate many

optical configurations that would be impractical to handle with any existing algorithm.

In particular, the algorithm can efficiently simulate complex lighting fixtures from the

filament/LED-level for the first time.

xiv



This dissertation also extends this basic framework of progressive density esti-

mation. We first introduce a practical error estimator for progressive density estimation.

This method can estimate how much expected error exists for a given computed solution

without needing any knowledge of the correct solution. Since we often need to estimate

average illumination over a region that is unknown before computation in computer

graphics, we developed stochastic progressive density estimation which provides a sim-

ple solution to this problem. This estimator extends progressive density estimation for

computing average density over unknown region with provable convergence.

In order to improve computational efficiency of the proposed framework, we

applied an adaptive Markov chain Monte Carlo method to light transport simulation.

With this adaptive algorithm, we can focus computation on only to the visible region.

To our knowledge, this is the first application of adaptive Markov chain Monte Carlo

methods in light transport simulation. We also propose a novel framework that achieves

the adaptive combination of progressive density estimation and other approaches based

on Monte Carlo integration. In order to develop this framework, we conducted theoretical

analysis of a provably good combination of density estimation methods and Monte

Carlo integration. For parallel computation of the proposed framework, we developed a

new spatial hashing method. This new hashing algorithm is designed to work correctly

regardless of the result of contentions in parallel processes as opposed to avoiding the

contentions.

xv



Chapter 1

Introduction

One important aspect of many applications of computer graphics is the require-

ment of accurate recreations of the physical world. For example, computer-generated

images used for product design need to be as visually close as possible to the real world

correspondences. Applications in entertainment industry such as movie production, ad-

vertisements, and video games increasingly demand photorealism of computer-generated

images. Computer simulation of how light interacts with given virtual shapes and ma-

terials, or in other words, light transport simulation, is a natural approach to achieve

photorealism if the images should recreate appearances of the real world.

Light transport simulation has been a core topic in computer graphics research

over a few decades, and the effort led to many practical algorithms to the date. Initial

effort toward light transport simulation dealt with computation of shadows from one

object to another [7]. Ward introduced the idea of ray tracing, which samples a path

of light by recursive computation of light interactions [130]. Cook et al. [17] later

implemented the idea of random sampling of paths to simulate various optical effects.

These work pioneered the light transport problem in computer graphics, however, they

omitted interreflection of light between surfaces.

1
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One earliest attempt to simulate general interreflection of light between surfaces

is the radiosity method [37]. The radiosity method was initially developed as a method

for simulating heat transfer in the engineering field [132]. Since heat transfer between

distance surfaces is in fact due to radiation of photons, this particular problem is the

same as the light transport problem. This work led to a bloom of work on light transport

simulation in computer graphics [16, 39, 48, 106].

Although the radiosity method is the first successful method that simulates in-

terreflection of light between surfaces, the method made a simplifying assumption that

surfaces reflect light uniformly over all directions. This assumption limits types of

materials that the radiosity method can simulate to essentially the one with a matte

appearance. In order to remove this limitation, Immel et al. proposed a recursive integral

equation of light transport that considers generalized surface reflectance profiles [57].

Concurrently, Kajiya proposed a similar formulation, called the rendering equation [66].

The main difference of these two work is that Immel et al. solved this equation in the

same framework as the radiosity method, whereas Kajiya proposed another approach to

solve light transport based on Monte Carlo integration methods.

As the Monte Carlo integration turned out to be more efficient than the linear

equations approach employed in the radiosity method under general settings, this work

by Kajiya led to another bloom of research in light transport simulation algorithms. At

the same time, the original method proposed by Kajiya, the path tracing algorithm [66],

posed a challenging problem of keeping computational efficiency for arbitrary scene

input. For example, although path tracing works well for scenes with matte materials and

large light sources, it becomes very inefficient in the presence of reflections of light from

a small light source due a mirror or glass. In other words, path tracing is not robust for

this type of scenes.

Improving the robustness has been a focus of research in light transport simulation.

One interesting history of the development is that, in contrast to how real light behaves,

the initial algorithm by Kajiya was using computation starting from the eye. This is

a valid approach as the Stokes-Helmholtz reversion-reciprocity principle (commonly

known as Helmholtz reciprocity) [52, 109] states that the direction of a light path can

be reversed without affecting its throughput. Arvo [8] however proposed to solve the
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light transport problem starting from light sources, and demonstrated that this approach

captures a certain type of light paths more efficiently than the inverse approach used in

path tracing. This work later led to another class of algorithms that start computation

from both light sources and the eye at the same time [71, 118]. Another direction of

effort has been to improve efficiency of sampling in the Monte Carlo process. Metropolis

light transport [119] is the application of Markov chain Monte Carlo sampling, which

improves the efficiency under strongly localized illumination effects such as illumination

coming through a slight opening of door. Several work [15, 67, 73] improved upon

this basic algorithm. All of these algorithms are all classified as unbiased Monte Carlo

methods, where the expected solution is exactly equal to the correct solution.

The above algorithms are all considering the rendering equation as an integral

equation, but there is another important class of light transport algorithms based on photon

density estimation [61, 104, 121]. The basic algorithm is a two pass algorithm where

the first pass distributes packets of light energy, called photons, based on light transport

simulation starting from light sources, and the second pass estimates illumination at

different locations within the scene by estimating density of photons. This class of

methods formulates light transport as a density estimation problem.

While photon density estimation is robust to many scenes, fundamental limitations

of density estimation has been restricting its usage only to computing a rough solution

of light transport. This is first because any existing density estimation algorithm is a

biased algorithm, meaning that expected solutions of a biased algorithm are different

from the correct solutions. Another important reason is that existing density estimation

algorithms are, though convergent in theory, not convergent in practice. Although

theoretical conditions for making density estimation convergent has been known for a

while, these conditions are mainly of theoretical interests and tweaking parameters of

density estimation based on the conditions is necessary to obtain converging results. It

is thus considered that using unbiased algorithms is the only option for accurate light

transport simulation. Recent advancement in biased light transport algorithms has focused

on improving efficiency under restricted scene configurations [122, 123], and no research

have taken the direction to develop a new biased algorithm that can compete with the

unbiased algorithms under general scene configurations.
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The goal of this dissertation work is to develop a robust general algorithm that

simulates light transport under general scene configurations. The main idea builds

upon a new density estimation framework, called progressive density estimation, which

addresses fundamental limitations of existing density estimation methods. Progressive

density estimation performs density estimation with provable convergence to the correct

solution in a single run. The application of this framework is a new lighting simulation

algorithm which can simulate many optical configurations that would be impractical

with the use of any existing algorithm. This dissertation work blurs a border between

the biased algorithms and the unbiased algorithms as progressive density estimation is a

biased algorithm yet the result asymptotically converges to the correct solution similar

to the unbiased algorithms. To the best of our knowledge, this is the first biased light

transport framework that leverages the convergence as the key property.

1.1 Contributions

Progressive Density Estimation

We introduce a new density estimation method called progressive density estima-

tion that converges to the correct density value as more samples are used. The key feature

is that the convergence to the correct solution can be achieved simply by iteratively

adding more samples. Unlike other density estimation methods, it possible to compute

a solution with any desired accuracy without multiple runs. This is a general density

estimation algorithm that is applicable beyond computer graphics.

Progressive Photon Mapping

Based on progressive density estimation, we developed a new global illumination

algorithm called progressive photon mapping. Each newly added sample results in

an increasingly accurate light transport solution that can be visualized for progressive

feedback. Compared with existing light transport algorithms, progressive photon mapping

provides an efficient and robust alternative in the presence of complex light transport.

This is the first light transport algorithm that can robustly and accurately capture specular-

diffuse-specular light paths without putting any restriction on scene configurations.
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Stochastic Density Estimation

In computer graphics, we often need to estimate average illumination over a

region that is unknown before computation. A prominent example is a lens simulation

where we need to compute average illumination coming to the sensor through a potentially

complex footprint of the aperture through the lens. We extended progressive density

estimation for dealing with such problem settings. This extension, stochastic progressive

density estimation, does not need an explicit representation of a region that we compute

average density, yet provide provable convergence to the correct average density in the

limit. This method is also a general density estimation method that is applicable for

problems other than light transport simulation.

Error Estimation Framework for Progressive Density Estimation

Although provable convergence to the correct solution in progressive density

estimation is theoretically appealing, in many applications of light transport simulation,

it is important to know how much computation is necessary to achieve a given allowable

computation error. We provide a practical error estimation framework for progressive

density estimation to achieve this goal. The resulting algorithm can estimate how much

error is expected for a given computed illumination, without needing any input of the

correct solution. This work provides one of the first practical error estimation methods

for a biased light transport simulation.

Adaptive Photon Tracing based on Visibility

Existing light transport simulation algorithms based on photon density estimation

become inefficient when we focus on simulating light transport in a small part of a scene.

We developed a new adaptive computation algorithm that automatically concentrates

computational effort to the region of interest. The key idea is the use of visibility of

samples, and we formulate photon trajectory simulation as a sampling problem using

adaptive Markov chain Monte Carlo methods. To the best of our knowledge, this is

the first application of adaptive Markov chain Monte Carlo sampling in light transport

simulation.
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Hybrid Estimator for Progressive Density Estimation

We provide a unified framework that adaptively combines progressive density

estimation and unbiased Monte Carlo integration methods for light transport simulation.

In order to take the best of both approaches without relying on a heuristic choice of the al-

gorithms, we developed an application of multiple importance sampling framework [118]

to the combination of progressive photon mapping and unbiased Monte Carlo ray tracing.

We extended the theoretical analysis of a provably optimal combination by considering

the presence of a biased method, namely progressive density estimation.

Stochastic Spatial Hashing

Range queries occupy a major part of computation in progressive density estima-

tion. In particular, since progressive density estimation iteratively accumulate statistics

of independent samples by means of range queries in multiple passes, not only that the

number of range queries can be quite high, but also that the repeated constructions of an

acceleration data structure for range queries can be quite costly. We developed a simple

data-parallel range query algorithm based on a novel hashing algorithm called stochastic

hashing. The algorithm is suitable for a massively parallel computation platform such

as recent graphics processing units. The key feature is that the method incorporates

the contention of parallel processes as a stochastic process of the algorithm, rather than

trying to avoid the contention.

1.2 Organization

The dissertation consists of eleven chapters. The following first three chapters

(Chapter 2 to Chapter 4) review background materials of this dissertation work, the next

six chapters describe the original contributions (Chapter 5 to Chapter 10), and the last

chapter concludes with the perspective for future work.

Chapter 2 and Chapter 3 introduce basic concepts of Monte Carlo integration and

density estimation, which are both fundamental tools that the dissertation work builds

upon. Chapter 4 describes how we can use these tools to solve the light transport problem
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based on the rendering equation. Readers familiar with these basic concepts can skip

these three chapters.

Chapter 5 builds a novel density estimation algorithm, progressive density estima-

tion, which is applied to the light transport problem as progressive photon mapping. This

is a new density estimation algorithm that has built-in provable convergence to the correct

solution. The application to light transport, progressive photon mapping, is the first light

transport algorithm that demonstrates robust simulation of realistic lighting fixtures such

as light bulbs. Chapter 6 provides a practical error estimation framework for progressive

density estimation, which has been commonly considered possible only with unbiased

Monte Carlo light transport simulation. Chapter 7 extends the original progressive density

estimation algorithm to be able to estimate average density over an arbitrary region. This

average density estimator improves efficiency for common light transport configurations

in computer graphics such as computing average illumination (i.e., density of photons)

over a region seeing through a complex lens system. The proposed algorithm is also

the first to achieve provable convergence of average density estimation over an arbitrary

region.

Chapter 8 introduces a simple adaptive computation method that improves the

efficiency of progressive photon mapping under scene configurations that is very ineffi-

cient to handle with existing light transport algorithms. This is the first application of

some recent development in Monte Carlo integration into light transport simulation in

computer graphics. Although progressive photon mapping is a unified algorithm which

can robustly handle many scene configurations, existing methods can sometimes be more

efficient for some scenes. Chapter 9 describes a novel framework that automatically

combines progressive photon mapping and the unbiased Monte Carlo methods based on

scene configurations. This work provides a unified view of progressive photon mapping

and other light transport algorithms. Chapter 10 looks into a computational considera-

tion of progressive density estimation on a highly parallel processor such as a graphics

processing unit. This chapter then introduces a novel parallel spatial hashing algorithm,

stochastic hashing, that utilizes the statistical identity of the density estimation problem

in order to parallelize its computation with a simple algorithm.

Chapter 11 summarizes the contributions and discusses possible future work.



Chapter 2

Monte Carlo Integration

This chapter reviews Monte Carlo integration. Monte Carlo integration is a

general numerical integration method that uses random numbers. Since the rendering

equation formulates the light transport problem as an integral equation, many light

transport algorithms directly build upon Monte Carlo integration. This chapter introduces

some basic concepts and techniques of Monte Carlo integration that we will be using in

the following chapters.

8
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2.1 Background

Consider a definite integral over a domain Ω = [0,1]d:

I =
∫

Ω

f (~x) d~x, (2.1)

where~x = (x1,x2, . . . ,xd) ∈Ω is a point in the domain of integration, d is the number of

dimensions of the domain Ω, and f : Ω→ R is a scalar function. In general, there is no

single analytical approach that can solve such an integral for all types of the function f .

We therefore often need to use numerical integration in order to obtain an approximate

solution of the integral.

One popular approach is to use a quadrature rule, which takes a weighted sum of

point-wise evaluations (i.e., samples) of the function f at predetermined locations:

I ≈
n

∑
i1=1

n

∑
i1=1
· · ·

n

∑
id=1

wi1wi1 · · ·wid f (xi1,xi2, . . . ,xid), (2.2)

where n is the number of samples along each axis, wid is the weight of idth coordinate of

the sample. Common choice of weight includes Newton–Cotes quadrature for equally

spaced samples, and Gaussian quadrature and Clenshaw–Curtis quadrature for unequally

spaced samples. Although the quadrature rule approach is applicable to a general function,

the total number of samples needed is exponential to the number of dimensions O(nd),

making its application to high dimensional integrals impractical. This problem is often

referred as the curse of dimensionality [89].

Monte Carlo integration [85] is another numerical integration method that takes a

weighted sum of point-wise estimations of the function at random locations:

I ≈
N

∑
i1=1

wi f (xi), (2.3)

where N is the total number of samples and wi is the weight for the ith sample. The

number of samples in Monte Carlo integration does not have direct dependence on the

number of dimensions d. This independence is particular useful in the light transport

problem, since it can be formulated as integration over a very high dimensional (or in

general, infinite dimensional) domain. Note that it does not mean that Monte Carlo

integration is completely independent from the number of dimensions as we discuss later.

The true advantage of Monte Carlo integration is in its flexible placement of samples.
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2.2 Methods

2.2.1 Basic Theory

Before describing techniques of Monte Carlo integration, we first review the basic

properties of Monte Carlo integration. We use 1D examples over the domain [0,1] in the

following discussion for brevity.

Probability Density Functions and Cumulative Distribution Functions

Suppose that we generate x ∈ [0,1] that satisfies a < x < b. We define the

probability of generating such x as

Prob[a < x < b] =
∫ b

a
p(x) dx = P(b)−P(a). (2.4)

p(x) is called a probability density function, and P(x) is called a cumulative distribution

function. Note that

dP(x)
dx

= p(x). (2.5)

Following the definition, integral of any probability density function is equal to 1;∫ 1

0
p(x) dx = Prob[0 < x < 1] = 1, (2.6)

and any cumulative distribution functions satisfies P(1) = 1 and P(0) = 0 in this domain.

Note also that the probability of generating a point (i.e., x = a = b) is zero, but its

probability density can be non-zero and more than one.

Expected Values and Variance

The expected value of a random variable f (x) with the probability density function

p(x) is

E[ f (X)] =
∫ 1

0
f (x)p(x) dx (2.7)

and the variance is

V[ f (X)] = E
[
( f (X)−E[ f (X)])2

]
. (2.8)



11

If samples are independent from each other, the expression for the variance can be

simplified as

V[ f (X)] = E
[

f (X)2−2 f (X)E[ f (X)]+E[ f (X)]2
]

= E[ f (X)2]−2E[ f (X)E[ f (X)]]+E[E[ f (X)]2]

= E[ f (X)2]−2E[ f (X)]2 +E[ f (X)]2

= E[ f (X)2]−E[ f (X)]2.

(2.9)

Convergence Rate of Monte Carlo Integration

Suppose that we would like to solve the definite integral∫ 1

0
f (x) dx. (2.10)

Using the definition of expected values, we can formulate the definite integral as the

expected value of a random variable f (X)/p(X) using the probability density function

p(x) since;

E
[

f (X)

p(X)

]
=
∫ 1

0

f (x)
p(x)

p(x) dx =
∫ 1

0
f (x) dx. (2.11)

This means the a sampled value that we consider is f (x)
p(x) rather than f (x) itself. Monte

Carlo integration approximates this expected value with a finite number of samples

(x1,x2, . . . ,xN).

E
[

f (X)

p(X)

]
≈ 1

N

N

∑
i=1

f (xi)

p(xi)
(2.12)

Since the estimate in Monte Carlo integration is a random variable, in order to quantify

the error of the estimate, we consider the expected squared error as follows:

E

(E
[

f (X)

p(X)

]
− 1

N

N

∑
i=1

f (xi)

p(xi)

)2
 (2.13)
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We can expand this equation assuming that estimates 1
N ∑

N
i=1

f (xi)
p(xi)

as random variables

are independent from each other

E

(E
[

f (X)

p(X)

]
− 1

N

N

∑
i=1

f (xi)

p(xi)

)2


= E

E
[

f (X)

p(X)

]2

−2E
[

f (X)

p(X)

]
1
N

N

∑
i=1

f (xi)

p(xi)
+

(
1
N

N

∑
i=1

f (xi)

p(xi)

)2


= E
[

f (X)

p(X)

]2

−2E
[

f (X)

p(X)

]2

+E

( 1
N

N

∑
i=1

f (xi)

p(xi)

)2


= E

( 1
N

N

∑
i=1

f (xi)

p(xi)

)2
−E

[
f (X)

p(X)

]2

=
1
N

V
[

f (X)

p(X)

]
.

(2.14)

This immediately shows that the expected squared error of Monte Carlo integration

reduces as O(N−1) (thus the error reduces as O(N−
1
2 )). Note that the assumption that

1
N ∑

N
i=1

f (xi)
p(xi)

is independent is not correct unless the samples are drawn from the normal

distribution. However, the central limit theorem states that the distribution of these

average values converges to the normal distribution with N → ∞, so the assumption

is asymptotically true. This derivation also assumes that V
[

f (X)
p(X)

]
is finite and exists.

However, even if the variance is infinite, the strong law of large numbers tells us that

lim
N→∞

Prob

[
E
[

f (X)

p(X)

]
− 1

N

N

∑
i=1

f (xi)

p(xi)
= 0

]
= 1 (2.15)

This result often referred as the proof of independence of the convergence rate

of Monte Carlo integration from the number of dimensions. However, such argument is

not entirely accurate. We should note that the constant factor V
[

f (X)
p(X)

]
could reintroduce

the dependence on the number of dimensions. For example, suppose that f (x) is a

binary function that returns 1 when x is in a unit hypersphere within the domain centered

at (0.5, . . . ,0.5), and 0 otherwise. Assuming p(x) = 1, we have V
[

f (X)
p(X)

]
= O(0.5d).

Therefore, the dependence on the number of dimensions is not always avoided even in

Monte Carlo integration. However, a more sophisticated sample placement in Monte
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Carlo integration might achieve V
[

f (X)
p(X)

]
= O(1) if we have enough knowledge about

the function f (x). The independence of Monte Carlo integration from the number of

dimensions is not an unconditional property.

Consistency and Unbiasedness of Estimates

A Monte Carlo estimator fN(X) is consistent if the estimate converges almost

surly to the correct solution with an infinite number of samples. In the context of Monte

Carlo integration, a consistent estimator satisfies

lim
N→∞

Prob
[∫ 1

0
f (x) dx− fN(X) = 0

]
= 1, (2.16)

where N is the number of samples.

As a related, yet separate, concept is unbiasedness. A Monte Carlo estimator

fN(X) is unbiased if the expected value of the estimate is equal to the correct solution.

To be concrete, an unbiased estimator satisfy∫ 1

0
f (x) dx−E[ fN(X)] = 0 (2.17)

A biased estimator does not satisfy the above condition. Note that an unbiased estimator

is unbiased regardless of the number of samples.

One common misconception is that all unbiased estimators are consistent. This is

not true and the definitions of consistent/inconsistent and unbiased/biased are independent.

For example, think about estimating the expected numbers obtained by throwing a regular

cubic dice. We can obtain example estimators as follows.

• Consistent and unbiased estimator:

The sum of numbers we obtained so far divided by the number of throws.

• Inconsistent and unbiased estimator:

The number obtained from the first throw regardless of the rest of throws.

• Consistent and unbiased estimator:

The sum of numbers we obtained so far divided by the number of throws + 1.

• Inconsistent and biased estimator:

4, regardless of the throws.
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Notice that there exists inconsistent and unbiased estimator even in this simple

example. This estimator is unbiased since the expected value of the number obtained

from the first throw is equal to the correct value of 3.5. However, this estimator is

inconsistent because the estimate never converges to the correct value of 3.5 even with

an infinite number of throws. One example estimator of this kind is Metropolis light

transport with the start-up bias elimination [117]. Although the initial weighting of a

Markov chain makes the process unbiased, since the weight is sampled once and is not

resampled over the process, the result is unbiased, but inconsistent. Veach briefly touched

this issue as “Since all subsequent samples use the same weight Wi = W0, this would lead

to a completely black final image” in 11.3.2 [117] (in practice, however, we do not see

the problem as the weight is often close to one even across many different runs). The

existence of this class of estimators is often ignored, so one should be careful not to

immediately conclude that a new unbiased estimator is also consistent.

Another misconception is that unbiased estimators are more accurate than biased

estimators. This is incorrect in two ways. First, as we mentioned above, just because an

estimator is unbiased does guarantee that it is also consistent. If a biased estimator in

comparison is consistent and an unbiased estimator is actually inconsistent, solutions

obtained by the biased estimator can be closer to the correct solution as we take more

samples. Second, an actual solution we obtain from an unbiased estimator is not the

expected value itself, but a single probabilistic estimate of a random variable of which

the expected value is equal to the correct solution. It is possible that a biased estimator

gives us a solution closer to the correct solution with the same number of samples.

Some care also should be taken on consistency of estimators. Ensuring consis-

tency is preferable in theory in order to claim the correctness of Monte Carlo estimates.

However, one should notice that the condition for consistency is based on an infinite

number of samples, which never happens in practice. It is thus again incorrect to claim

that any consistent method is more accurate than inconsistent methods, unless we take

an infinite number of samples.

The fact that one estimator is unbiased or consistent should not be taken as any

evidence on the accuracy of its estimate with a finite number of samples. We emphasize

that it is incorrect to make such a claim in general settings.
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2.2.2 Irregular Sample Placement

The key advantage of Monte Carlo integration is that the placement of samples is

very flexible. Samples can be placed even based on partial knowledge of the function

that we integrate. In the following subsections, we review some common techniques that

can improve the efficiency of Monte Carlo integration. We first review techniques that

place samples with an irregular distribution.

Importance sampling

Recall that we can choose arbitrary probability density function in Monte Carlo

integration (Equation 2.12). Recall also that error in Monte Carlo integration is propor-

tional to the variance V [ f (x)/p(x)] (Equation 2.14). The idea of importance sampling

is to choose p(x) that reduces the variance V [ f (x)/p(x)], which in turn reduces error of

Monte Carlo integration.

In fact, having cp(x)= f (x) with a constant c gives us exactly zero error regardless

of the number of samples since

E

(E
[

f (X)

p(X)

]
− 1

N

N

∑
i=1

f (xi)

p(xi)

)2
=

1
N

V
[

f (X)

p(X)

]
=

1
N

V
[

1
c

]
= 0. (2.18)

However, since any probability density functions should integrate to one, we need to

know the proportionality constant c as

c =
1∫

Ω
f (x) dx

(2.19)

which unfortunately is the exact integral that we are trying to solve. Although finding

such p(x) is not plausible in general, the above equation provides the rule of thumb

that the shape of p(x) should be close to the shape of f (x). Note however that we

can also make the variance V [ f (x)/p(x)] arbitrary large [92], thus we should carefully

choose p(x). When we have multiple choices of p(x), we could use multiple importance

sampling [118] to combine the result from each probability density function.

Adaptive sampling

Instead of trying to find a good probability density function that reduces error,

adaptive sampling uses the statistical analysis of partial information of f (x) obtained
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through previous samples in order to generate a new sample. There are many forms of

adaptive sampling (for a comprehensive review in computer graphics, one may refer

to the book by Glassner [34]), but one common form is a two stage algorithm, where

the first stage blindly takes pilot samples over the integration domain and the second

stage constructs a guess of the shape of f (x) from the pilot samples in order to drive

importance sampling based on the guess.

2.2.3 Uniform Sample Placement

Since we can only take a finite number of samples in practice, it is possible

(though less likely) that all the samples land very close to each other. This is undesirable

since we would like samples to cover the entire domain of integration. Samples will

eventually cover the entire domain if we take an infinite number of samples, but we

would like a finite number of samples to distribute as uniformly as possible. We describe

two techniques that improves distribution of samples. We consider the case p(x) = 1 in

this section (i.e., uniform sampling), but the same concept is applicable to any p(x).

Stratified sampling

Stratified sampling breaks the domain into strata, and place an equal number of

samples to each stratum. As long as strata are well-shaped, all the samples cannot land

within a small region. Suppose that we divide the integration domain into N
n uniformly-

sized strata Di with n samples in each stratum, Monte Carlo integration using stratified

sampling is given as

E
[

f (X)

p(X)

]
≈ 1

N

N
n

∑
i=1

n

∑
i=1

f (xi)

p(xi)
. (2.20)

If we define VDi as the variance of f (xi)
p(xi)

within each stratum, the variance of the above

estimate is
1
N

N
n

∑
i=1

VDi

[
f (X)

p(X)

]
≤ 1

N
V
[

f (X)

p(X)

]
. (2.21)

The variance of the estimate using stratified sampling can be smaller if the sum of the

variance of each stratum VDi is smaller than the variance of the entire integration domain.
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In particular, if f (X)
p(X) is constant within each stratum, the estimate using stratified sampling

has zero error. It is also possible to combine adaptive sampling and stratified sampling

such that the shapes of strata depend on samples taken so far. VEGAS [79] is one such

algorithm that is particularly efficient for 1D-separable functions.

Quasi-Monte Carlo methods

Stratified sampling can be quite costly in high dimensional space because of the

book keeping of strata. Quasi-Monte Carlo methods modifies random number generators

such that generated samples are less clumped by giving up the randomness of samples.

One common approach to generate such samples is based on a low-discrepancy sequence

such as Halton sequence, Sobol sequence, and Hammersley sequence. A comprehensive

survey in the context of light transport simulation is given by Owen [91]. One such

application is pioneered by Keller [68].

2.2.4 Correlated Sampling

Samples in Monte Carlo integration methods are usually not correlated. There

are however a few techniques that intentionally introduce correlation between samples,

such that additional covariance of samples works to reduce error of Monte Carlo integra-

tion. Similar to importance sampling, this technique can increase error of Monte Carlo

integration if not carefully used.

Control variates

Suppose that we have function g(x) with known integral Gp =
∫

Ω
g(x) dx, control

variates use the following estimation to perform Monte Carlo integration of f (x):∫ 1

0
f (x) dx =

∫ 1

0
f (x)−g(x)+g(x) dx

=
∫ 1

0
f (x)−g(x) dx+G

≈ 1
N

N

∑
i=1

f (xi)−g(xi)

p(xi)
+G.

(2.22)
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The variance of the estimate is given as

V

[
1
N

N

∑
i=1

f (xi)−g(xi)

p(xi)
+G

]
=

1
N

(
V
[

f (X)

p(X)

]
+V

[
g(X)

p(X)

]
−2Cov

[
f (X)

p(X)
,

g(X)

p(X)

])
.

(2.23)

where Cov
[

f (X)
p(X) ,

g(X)
p(X)

]
is covariance of f (X)

p(X) and g(X)
p(X) . We can think that samples for

f (x) and g(x) are correlated. In order that this estimation reduces the variance, f (x) and

g(x) should be at least positively correlated.

Antithetic variates

Another technique that uses correlated samples is antithetic variates. We consider

only the original function f (x) but take multiple correlated samples such that correlation

reduces variance of combined estimates. For example, suppose that we generate a pair of

correlated samples xi and yi, Monte Carlo integration of f (x) using antithetic variates is

∫ 1

0
f (x)≈ 1

N

N

∑
i=1

f (xi)
p(xi)

+ f (yi)
p(yi)

2
. (2.24)

The variance of the estimate is given as

V

 1
N

N
2

∑
i=1

(
f (xi)

p(xi)
+

f (yi)

p(yi)

)=
1

4N

(
V
[

f (X)

p(X)

]
+V

[
f (Y )
p(Y )

]
+2Cov

[
f (X)

p(X)
,

f (Y )
p(Y )

])
.

(2.25)

Note that if xi and yi are independent, then the estimate becomes exactly equal to the

estimate on using regular Monte Carlo integration. In order that this estimation reduces

the variance, f (xi)
p(xi)

and f (yi)
p(yi)

should be at least negatively correlated. If f (x)
p(x) is a monotonic

function over the domain, one of the easiest choice of such yi is yi = 1− xi.

2.3 Sample Generation

The previous section does not discuss how to generate samples from a given

probability density function p(x). Generating samples is in fact not a trivial problem,

especially if we do not have much knowledge on p(x). This section review some sample

generation methods.
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2.3.1 Inversion Method

One easiest method for generating samples according p(x) is to use the inverse

function of its cumulative distribution function P−1(x). This method first generates a

random number µ that is uniformly distributed within the interval µ ∈ [0,1], and takes

P−1(µ) = x as the random sample from the probability density distribution p(x). It is

easy to see this method is valid since

Prob(P−1(µ)≤ x) = Prob(µ ≤ P(x)) = P(x). (2.26)

This method is useful if the inverse function of the cumulative distribution function

P−1(x) is available either symbolically or numerically. One example of this method is

the Box-Muller transform for generating samples from the normal distribution [10].

2.3.2 Rejection Sampling

Suppose that we can generate samples according to the probability density func-

tion q(x), but not based on p(x). If we can find a constant M where p(x)< Mq(x) for all

x, then we can generate samples according to p(x) by rejection sampling. The method

first generates a sample x according to q(x) and additionally generates another sample µ

from the uniform distribution, and repeats the process until p(x)
Mq(x) > µ .

The validation of the method can be shown using Bayes’ theorem. We define

Prob(x|a) as the probability of generating a sample x given that x is not rejected, Prob(a|x)
as the probability of accepting x given the generated sample x. We would like to know if

Prob(x|a) = p(x). From the algorithm, we can observe that

Prob(a|x) = p(x)
Mq(x)

2EMProb(x) = q(x), (2.27)

Prob(a) =
∫

x
Prob(a|x)Prob(x) dx =

∫
x

p(x)
M

dx =
1
M
. (2.28)

Applying the Bayes’ theorem, we obtain

Prob(x|a) = Prob(a|x)Prob(x)
Prob(a)

=

p(x)
Mq(x)q(x)

1
M

= p(x) (2.29)

as we wanted.
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Another useful view of rejection sampling is that the method generates samples

under the area below Mq(x) and accept only samples that are below p(x). If the envelope

Mq(x) is closer to p(x), less samples will be rejected. Note that no rejection will occur

only if Mq(x) = p(x), which defeats the purpose of using rejection sampling to begin

with.

2.3.3 Markov Chain Monte Carlo Sampling

The idea of generating samples within the envelope and rejecting samples outside

is related to Markov chain Monte Carlo sampling. Since Markov chain Monte Carlo

sampling in general covers many different algorithms, this section provides only the

overall idea. We can think of the key idea as another form of rejection sampling. The

idea is that, instead of generating samples from the envelope Mq(x), we use a random

walk that is crawling under the area defined by p(x) and reject a random walk to obtain

the sample distribution p(x).

One popular approach is the Metropolis-Hastings algorithm. Suppose that the

current sample (or the state of the random walk) is xt . The algorithm uses the proposal

density function Q(a|b) which describes the probability density function of new samples

a given the current sample b. Using this proposal density function, the algorithm accept

a newly generated sample only if another random number µ ∈ [0,1] from the uniform

distribution satisfies

µ <
p(xp)Q(xt |xp)

p(xt)Q(xp|xt)
(2.30)

where xp is the newly generated sample. If this new sample is accepted, the next sample

is xt+1 = xp, and otherwise xt+1 = xt . Samples in the history of this random walk are

distributed according to p(x) for a large enough t (or in general t→ ∞).

Markov chain Monte Carlo sampling is a very strong approach as it only needs the

ability to evaluate p(x) up to a constant scaling factor. There are many variations of this

basic algorithm. For the direction of improving proposal distributions, the Multiple-try

algorithm [80] proposed an extension to include multiple proposals at the same time,

instead of a single proposal. Gibbs sampling uses (described in the book by Geman and

Geman [33]) importance sampling along an axis instead of the random proposal. Slice

sampling [87] uses rejection sampling along the axis of the function value, which can be
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seen as a mixture of rejection sampling and Markov Chain Monte Carlo sampling. Hybrid

Monte Carlo [21] uses gradients of the function in order to incorporate a symplectic

integrator to generate a proposal along the same magnitude of the function value, and

another proposal is used for generating a Markov chain along a different function value.

Another direction is to modify the target function p(x) in some ways. Ensemble

Monte Carlo methods such as parallel tempering or replica exchange [111] extend

the function space by an auxiliary variable in order to reduce correlation of samples.

Umbrella sampling [116] weight the function according to the histogram such that the

tail of the distribution gets better sample distribution. If we look at approaches that uses

multiple Markov chains, population Monte Carlo methods (also known as particle filters

and sequential Monte Carlo) [38] uses multiple chains that interact with each other to

propagate information from one chain to another, and perfect sampling [81] proposes

an algorithm that can completely get rid of correction of samples at the cost of running

multiple chains until they match the state to obtain a single sample.

The method has been successfully applied to many problems including the light

transport problem [15, 103, 119]. One general issue however is that samples are now

correlated due to the random walk process. Another issue is that in general there is no

way to know if samples are really distributed according p(x) with a finite number of

steps. Both of the issues are largely affected by the proposal density function, which is

usually problem dependent. Nevertheless, Markov Chain Monte Carlo sampling is often

the only reasonable approach to generate samples from an unknown arbitrary function

p(x) since both the inverse method and rejection sampling uses some knowledge on p(x).

In this dissertation, Chapter 8 goes into more details of the our new application.



Chapter 3

Density Estimation

The basis of this dissertation work is density estimation, which is a problem of

constructing an unknown probability distribution of finite observed samples. Density

estimation has many applications over very different topics. For example, a teacher might

be interested in the distribution of scores given a set of scores of an exam, which is equal

to estimate density of scores. A survey of a geographical distribution of a particular

animal species often involves density estimation over a surface. In this dissertation, we

use density estimation to determine the intensity of illumination given the distribution

of photons. This chapter introduces some basic concepts of density estimation and also

reviews some existing methods.

22
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3.1 Formulation

Density estimation is a problem of constructing an unknown probability density

function p(x) from observed samples that are generated according to p(x). One approach

for density estimation is a parametric approach, where we assume that samples are drawn

from a known family of probability density functions. For example, we could assume that

samples are drawn from the normal distributions. In this case, the parametric approach

estimates the parameters of the normal distributions (i.e., mean and variance).

In this dissertation, we instead focus on a nonparametric approach which does

not restrict the estimated probability density function to be a given family of probability

density functions. The application of density estimation to the light transport problem has

been explored in computer graphics [62, 104, 121, 124], and we will discuss more details

on how this dissertation work differentiates from the existing work in the following

chapters.

We can formulate many density estimation methods as a sum of weight functions

placed at each sample position [131]. Consider a function w(x,y) that satisfies the

following two conditions; ∫
∞

−∞

w(x,y) dy = 1 (3.1)

and

w(x,y)≥ 0 ∀ x,y. (3.2)

Given N samples x1,x2, . . . ,xN , an estimate of the probability density may be obtained by

p̂(x) =
1
N

N

∑
i=1

wi(xi,x). (3.3)

Note that the weight function can vary across samples. This general formulation, com-

monly called a δ -sequence density estimator, can express all the methods we describe in

the next section.

It is easy to confirm that the estimate is a probability density function regardless

of samples since

∫
∞

−∞

p̂(x) dx =
∫

∞

−∞

1
N

N

∑
i=1

wi(xi,x) dx =
1
N

N

∑
i=1

∫
∞

−∞

wi(xi,x) dx = 1. (3.4)
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We can also think of density estimation as a result of spatially varying filtering

over the correct function p(x) since xi are distributed according to p(x):

E [p̂(x)] =
1
N

N

∑
i=1

E [wi(xi,x)] =
∫

wt(t,x)p(t) dt. (3.5)

This alternative view is particularly useful when for analyzing asymptotic properties.

If we consider the function w′x(t) = wt(t,x)p(t), the above expression also tells us that

density estimation is essentially equivalent to Monte Carlo integration of this combined

function w′x(t) at x.

3.2 Methods

This section reviews some common methods for nonparametric density estimation.

This section by no means an extensive survey of all the available density estimation

methods. Although it is classical, the book by Silverman [105] covers major density

estimation methods that are still in use today. A more recent extensive survey was done

by Izenman [58].

3.2.1 Histograms

The histogram method is the oldest and still widely used density estimation

method. Given the position X that we would like to estimate density, we define an

interval X ∈ [Xa,Xb], then the estimate is given as

p̂histo(X) =
|xi ∈ [Xa,Xb]|
N(Xb−Xa)

, (3.6)

where |xi ∈ [Xa,Xb]| is the number of samples that lands within [Xa,Xb]. In its simplest

form, we can break the entire domain of interest into uniform sized intervals, and simply

count the number of samples within each interval to construct the estimate. Note that the

above definition does not require intervals to be non-overlapping.

By definition, the estimate using histograms is not a continuous function. Instead,

p̂histo(X) as discontinuities at each end of the intervals, and has zero derivatives every-

where. This may or may not be an issue depending on the application, however, the

following methods will remove this limitation.



25

The histogram method also has the asymptotic mean-squared-error convergence

rate of O(N−
2
3 ) at most [102], which is worse than O(N−

4
5 ) of the best possible kernel

estimator in the next section [31]. This give another, somewhat theoretical, reason why

one wants to use another density estimator.

3.2.2 Kernel Estimator

The idea of the kernel estimator (or kernel density estimation) is that, instead of

simply counting the number of samples within each interval as in the histogram method,

we weight the contribution of each sample by a kernel function around each sample

point [11, 93]. Kernel functions K(t) satisfy∫
∞

−∞

K(t) dt = 1 (3.7)

and the estimate is

p̂kernel(X) =
1
N

N

∑
i=1

Ki(X− xi), (3.8)

where

Ki(t) =
K
(

t
hi

)
hi

. (3.9)

The parameter hi is often called the window width, bandwidth, or the smoothing pa-

rameter, which decides ’smoothness’ of the estimate. If a kernel function is k times

differentiable, the resulting estimate is also k times differentiable. Therefore, we can

obtain a continuous probability density function using the kernel estimator.

The kernel density estimator with nonadaptive, nonnegative kernels has the

asymptotic mean-squared-error convergence rate of O(N−
4
5 ) [31]. Although there are

many choices of the kernel, error of the estimate is insensitive to the choice of the

kernel [83].

Recall that the MSE in density estimation depends on both on the weighting

functions (in the kernel estimator, the kernel function) and the number of samples.

Therefore, different kernel functions can give us different MSE. It is however considered

difficult to automatically select the optimal kernel and its parameters in general cases

since we will need to quantify error only using a finite set of samples [65]. At the moment,

there is no such method that works robustly for a small number of samples.
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One methods that tries to adapt the amount smoothing based on the local density

of samples is the kNN estimator [28]. In the kNN estimator, instead of specifying the

smoothing parameter, we specify the number of nearest neighbors around each estimation

point k. The kernel function in the kNN estimator is defined as

KkNN(t) =
K
(

t
d(t,xk)

)
d(t,xk)

. (3.10)

where d(t,xk) is the distance between t and its k-th nearest neighbor sample xk. As we

will discuss later, the kNN estimator has successfully been used in the applications for

the light transport problem [61, 62, 63].

3.2.3 Orthogonal Series Estimator

The orthogonal series estimator uses projections of samples on a set of orthogonal

basis functions [13]. The estimate is a weighted sum of the orthogonal basis where we

compute each weight using the projection. In order to use the orthogonal series estimator,

we expand a probability density function using a orthogonal series φb, j(x);

p(X) =
∞

∑
j=1

wb, jφb, j(X) (3.11)

where wb, j is defined as

wb, j =
∫

∞

−∞

p(x)φb, j(x) dx (3.12)

which can be estimated using Monte Carlo integration using samples xi.

Note that we often need to truncate the orthogonal series since the expansion of

general p(x) will result in an infinite series (e.g., Fourier series), thus the estimate is

p̂ortho(X) =
N

∑
j=1

wb, jφb, j(X). (3.13)

One issue of this approach is that the resulting estimate cannot be guaranteed to be

non-negative in general. Since all probability density functions are non-negative by

definition, this issue may be undesirable in some applications including the light transport

problem. Note also that the method is not necessarily free from the smoothing parameters.

Choosing the number of terms in the estimate poses essentially the same challenges as

choosing the smoothing parameters.
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3.2.4 Maximum Likelihood Estimator

A general view of density estimation is to find a function p̂(x) that approximates

p(x) from given samples. In order to find such a function, we need some measure of how

close the approximation p̂(x) is to the correct solution p(x) using samples. One common

measure is the log likelihood function [27];

L(p̂(x)) =
N

∑
j=1

log p̂(xi). (3.14)

The problem is then to find a function p̂(x) (subject to the condition that the function

being in a specific class of functions) that maximizes the likelihood function, which is

called the maximum likelihood problem.

The idea of the maximum likelihood estimator is to use a solution (not necessarily

unique) to this problem. Note however that we need to put some restrictions (indeed

“smoothing” conditions) in order that the solution to make sense. This is because one can

attain the maximum likelihood by placing the delta functions at sample locations, which

is unlikely to be equal to the correct solution p(x). There are many variations of such

restrictions, but one popular way is to “penalize roughness” of the function by using the

Φ-penalized log likelihood function [36];

L̂(p̂(x)) =
N

∑
j=1

log p̂(xi)−Φ(p̂(xi)) (3.15)

where Φ is the penalty function.

One should be cautious that the log likelihood function (either penalized or non-

penalized) is another heuristic measure of the accuracy of p̂(x) except for some simple

cases, especially for a finite number of samples and general functions. The histogram

estimator indeed gives us a unique solution to this problem where the class of functions

is a sum of rectangular functions [19], but even the uniqueness of the solution is not

the case in general. For example, a common model of Gaussian mixtures indeed poses

those issues in theory. However, many applications found that the maximum likelihood

estimator work well in practice. A recent application of this class of estimators to light

transport simulation demonstrates some benefits of using this approach [59].
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3.3 Properties of the Error

Since we only observe a finite number of samples in practice, an estimated

probability density function usually differs from the correct probability density function.

In this section, we review some important properties of error in density estimation.

3.3.1 Bias and Variance

There are various ways to quantify error in density estimation. One popular

approach is to consider the mean square error (MSE) at a single point. Given the

estimated probability density function p̂(x) and the correct probability density function

p(x), the MSE is given as

MSE(p̂(x)) = E[p(x)− p̂(x)]2 = (E[p̂(x)]− p(x))2 +V [p̂(x)]. (3.16)

Since E[p̂(x)]− p(x) is bias, the MSE is simply described as a sum of squared bias

and variance. Note that the MSE is again given as expected error over possible sets of

samples (i.e., average error over different random number sequences). This is because

the estimated probability density function p̂(x) is stochastic similar estimates in Monte

Carlo integration.

3.3.2 Expected Mean Square Error

Although it is usually not possible to exactly quantify error in density estimation,

we can analyze the expected behavior of the error using the generalized formulation

above. To be concrete, the bias term in the MSE can be expanded as

(E[p̂(x)]− p(x))2 =

(∫
wt(t,x)p(t) dt− p(x)

)2

(3.17)

and the variance term in the MSE can be expanded as

V [p̂(x)] =
1

N2

N

∑
i=1

(∫
wi(t,x)2 p(t) dt−

(∫
wi(t,x)p(t) dt)

)2
)
. (3.18)

The result for the bias term tells us that just increasing the number of samples N does

not decrease bias, and the result for the variance term tells us that variance depends
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on both the number of samples and the weight functions wi(x,y). Similar to Monte

Carlo integration, density estimation is said to be unbiased if the bias term is zero, and

consistent if the MSE almost surely converges to zero as we increase the number of

samples.

3.3.3 Asymptotic Properties of Error

In order to further analyze properties of error in density estimation, we restrict

ourself for the kernel estimator on 1D space using a single kernel. Under this setting and

y = x−ht, we can expand the bias term as [105]

E[p̂(x)]− p(x) =
∫

wy(y,x)p(y) dt− p(x)

=
∫

K(t)p(x−ht) dt− p(x)

=
∫

K(t)(p(x−ht)− p(x)) dt

≈
∫

K(t)
(

p(x)−ht
d p
dx

(x)+
1
2

h2t2 d2 p
dx2 (x)− p(x)

)
dt

=
1
2

k2h2 d2 p
dx2 (x).

(3.19)

Similarly, we can expand the variance term for large N and small h as [105]

V [p̂(x)] =
1
N

∫ (K
(x−y

h

)
h

)2

p(y) dy−

(∫ K
(x−y

h

)
h

p(y) dy

)2


=
1
N

(
1
h

∫
K(t)2 p(x−ht) dt− (p(x)+(E[p̂(x)]− p(x)))2

)
≈ 1

N

(
1
h

∫
K(t)2 p(x−ht) dt−

(
p(x)+

1
2

k2h2 d2 p
dx2 (x)

)2
)

≈ 1
N

(
1
h

∫
K(t)2

(
p(x)−ht

d p
dx

(x)+
1
2

h2t2 d2 p
dx2 (x)

)
dt
)
+O

(
1
N

)
≈ 1

Nh

∫
K(t)2 p(x) dt +O(h)+O

(
1
N

)
≈ k3

Nh
p(x).

(3.20)
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These derivations assume that the kernel function satisfies∫
K(t) dt = 1

∫
tK(t) dt = 0∫

t2K(t) dt = k2 6= 0
∫

K(t)2 dt = k3 6= 0
(3.21)

which is true for a radially symmetric kernel function. Combining these results together,

the MSE in density estimation is

MSE(p̂(x))≈ k3

Nh
p(x)+

1
4

k2
2h4
(

d2 p
dx2 (x)

)2

. (3.22)

Notice again that the error due to the bias term does not decrease by simply increasing

the number of samples N. Furthermore, this derivation reveals that the variance term

asymptotically reduces according to the reciprocal of the product of the number of

samples N and the smoothing parameter h. This derivation also suggests that there is a

trade-off between bias and variance for the smoothing parameter h. Reducing h results

in reducing bias, but increasing variance in the MSE. Conversely, increasing h results

in reducing variance, but increasing bias in the MSE. This is effect is commonly called

bias-variance trade-off.

3.3.4 Conditions of Consistency

The asymptotic behavior of the MSE leads to the following important condition

that ensures the convergence of density estimation:

lim
N→∞

MSE(p̂(x)) = 0 (3.23)

if

lim
N→∞

h = 0 lim
N→∞

Nh = ∞ (3.24)

are satisfied provided that p(x) is continuous at x [93]. In other words, under these condi-

tions, the estimate p̂(x) exhibits a strong point-wise convergence for p(x). This result

has been mainly used purely for theoretical analysis [30] or guiding the development

of automatic smoothing parameter selection algorithms [2]. One contribution of this

dissertation work is a new desity estimator that incorporates these conditions into the

algorithm itself.



Chapter 4

Light Transport Theory

This chapter reviews the foundations of light transport theory which are basis for

many light transport simulation algorithms. Although physics of light is well understood

throughout history, there are some specific assumptions made in computer graphics in

order to make simulation of light transport computationally tractable. In this chapter, the

first few sections define the terminology that are necessarily to describe the properties

of light, and develop the equations that govern light transport. The succeeding section

briefly summarizes how we can perform light transport simulation based on the equations

in different ways.
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4.1 Assumptions in Simulation

In modern physics, light is understood as a packet of energy that exhibits both

wave and particle properties (refer to the book by Saleh and Teich [100] for example).

This view is based on quantum physics, and the study of light using this view is called

quantum optics. Quantum optics can model all the light transport phenomena that we

can observe in nature. Although it is tempting to use quantum optics to light transport

simulation, this level of physical accuracy is usually not necessary in computer graphics.

Instead, computer graphics typically uses geometric optics.

Geometric optics describes light as a particle which travels along a straight

line. Using geometric optics, we can describe emission, absorption, reflection, and

refraction of light. In computer graphics, we ignore temporal behavior of light, which

leads to a common abstraction of light as a ray. Geometric optics provides an excellent

approximation of light transport in the real world when the wavelength of light is

significantly smaller than the scale of effects that we would like to simulate. This

assumption is true in many interesting cases as wavelength of visible light is in the order

of 10−7 m and objects that we see are typically in 10−1 m to 101 m.

Although geometric optics ignores wave properties of light, it can capture many

phenomena of light that are visually important for generating photorealistic images using

light transport simulation. In addition, it is indeed possible to simulate some phenomena

such as polarization and interference that are described by wave optics using an light

transport simulation algorithm based on geometric optics [35, 113]. It is wrong to claim

that light transport simulation based on geometric optics cannot capture such phenomena.

4.2 Radiometry

This section provides a brief overview of the radiometric units that describe

physical quantities of light. Note that, there are also relevant units called photometric

units that deals with the perception of light energy to a human observer. This dissertation

focuses only on radiometric quantities since photometric quantities can be derived from

corresponding radiometric quantities.
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4.2.1 Background

Before going into the definitions of radiometric units, we will first review some

mathematical concepts used throughout their definitions. We first define a space of

normalized vectors for given another vector n as

Ω+ = {~ω : |~ω|= 1, ~ω ·~n≥ 0} , (4.1)

which is basically a set of directions over the upper hemisphere around n. Similarly, we

can define another space for the lower hemisphere

Ω− = {~ω : |~ω|= 1, ~ω ·~n≤ 0} . (4.2)

In computer graphics, we conventionally use Ω = Ω+ and this dissertation also follows

this convention. We also use A to denote a set of all the points on the input geometry.

Solid Angle

Since light travels in a 3D space, it is useful to have a notation of angle in a

3D space. The solid angle ∆Ω serves exactly this purpose, which is an extension of

conventional angle on a 2D Euclidean space to the surface of a unit sphere. Suppose that

we use ~ω = (θ ,φ) to denote longitudinal and azimuthal angles of the vector originating

from the center of the sphere to any point, the solid angle of a surface S at the center of

the sphere is defined as a finite integral

∆Ω =
∫∫

S
|sinθ | dθ dφ =

∫∫
S

dΩ (4.3)

where dΩ = |sinθ | dθ dφ is a differential solid angle. The solid angle is basically the

projected surface area of S onto the unit sphere. The solid angle subtended by S that

covers all the directions is 4π . Similarly, the solid angle subtended by Ω+ and Ω− are

2π .

The projected solid angle, ∆Ω~n, is the solid angle around a small surface oriented

toward~n (|~n|= 1);

∆Ω~n =
∫∫

S
|~ω ·~n| dΩ (4.4)
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4.2.2 Radiometric Quantities

Radiometric quantities describe energy flow due to light. Depending on the

measurement unit of energy, there are four quantities that are commonly used in computer

graphics.

Flux

Flux (or radiant power) is the fundamental quantity that express total energy flow

per unit time. It is usually denoted as Φ and this dissertation follows the same convention.

The unit is watts (W). Note that flux does not specify any configurations of the source of

energy of the receiver. Flux simply states how much energy flows over all. An example

of usages is to specify brightness of a light source in flux. For example, if we have a light

bulb with a power rating of 100 W, if there is no loss of energy, its flux is 100 W.

Radiant Intensity

Radiant intensity, I, is flux per unit solid angle defined as

I =
dΦ

dΩ
. (4.5)

This notation may be confusing at a glance since it looks like flux Φ is a function of solid

angle, which does not sound immediately consistent with the definition of flux (i.e., flux

just denotes total energy flow). The key is to consider radiant intensity as a limit of the

ratio of flux flowing within a small solid angle and the solid angle itself. Using this view,

it is easy to see that

Φ =
∫

Ω

I dΩ =
∫

Ω

dΦ

dΩ
dΩ. (4.6)

In computer graphics, radiant intensity is used to specify the intensity of light source that

is infinitely far away from the receiver. Such a light source gives us a moderately good

approximation of sunlight. Note that radiant intensity can be used for describing both

energy arriving to a receiver or energy emanating from a light source. For example, if

we have a light source with 100 W that emits its energy uniformly over all directions, its

radiant intensity is 100
4π

W/s
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Irradiance

Irradiance, E, is similar to radiant intensity, but is defined as flux per unit area;

E =
dΦ

dA
. (4.7)

Irradiance only describes energy arriving to the receiver. Energy emitted from a light

source is instead called radiant exitance (or radiosity). For example, if a surface with

an area of 5 m2 uniformly receives 100 W of flux, irradiance is 20 W/m2. It is again

important to realize that, while irradiance can be a function over a receiver, flux usually

is just a single value that describes total energy flow. Flux is an integral of irradiance (or

radiant intensity) over a surface;

Φ =
∫

A
E dA =

∫
A

dΦ

dA
dA. (4.8)

In computer graphics, it is common to use a point light source to approximate a light

source with small geometric size. Note that, although we can specify brightness of a

point light source either by radiant intensity or flux, we cannot use irradiance for this

purpose. This is because irradiance is infinity for a point light source.

Radiance

Radiance, L, is flux per unit projected area per unit solid angle;

L =
d2Φ

dΩ dA~n
, (4.9)

where dA~n is projected differential area. Radiance is the important quantity that basically

captures what we "see" as light. For example, the response of sensors (either cameras or

the human eye) is proportional to radiance.

Radiance is invariant along straight paths regardless of distance, and this is the

reason why apparent brightness of objects does not change by distance. For example,

suppose that we see a monitor that emits 100 W of flux in total. If we get far away from

the monitor, flux (total energy), from the monitor to our eye decreases. However, at the

same time, the solid angle subtended by the monitor reduces as we getting far away,

which exactly cancels out reduction of flux and keeping radiance constant.
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Some relationships to other radiometric quantities are as follows

L =
dE

dΩ~n
=

dI
dA~n

Φ =
∫

A

∫
Ω

L dΩ~n dA

E =
∫

Ω

L dΩ~n.

(4.10)

Again, notation like dE
dΩ~n

is confusing at a glance, but it is just a limit of the ratio of a

fraction of irradiance that comes through a small solid angle and the (projected) solid

angle, not meaning irradiance itself is a function over directions.

The reason that we use the projected area instead the area in the definition of

radiance is that we basically would like to measure a fraction of flux arriving at the

receiver [22]. Expressing differential flux using radiance makes this point clear;

dΦ = L dΩ dA~n. (4.11)

For a large inclination angle (therefore, smaller projected area), apparent geometric area

of the receiver shrinks and the receiver gets less flux. The cosine term accounts for this

reduction in apparent geometric area due to the orientation of the receiver.

Since radiance is a function of direction and position, we use L(~x→ ~ω) to express

radiance leaving from ~x to the direction ~ω and L(~x← ~ω) to express radiance coming

toward~x from the direction ~ω .

4.3 Interaction of Light with Surfaces

Bidirectional Scattering Distribution Functions

Since light transport involves interactions of light and surfaces, we need to

describe how radiometric quantities of light change when the light interacts with a

surface. This interaction depends on optical properties of the surface. In computer

graphics, this interaction is described by a bidirectional scattering distribution function

(commonly abbreviated as BSDF) defined as

fr(~x, ~ωi, ~ωo) =
dL(~x→ ~ωo)

dE(~x← ~ωi)
=

dL(~x→ ~ωo)

L(~x← ~ωi)cos(~n, ~ωi)
dωi. (4.12)



37

Using the BRDF, the reflected radiance can be expressed as:

dL(~x→ ~ωo) = fr(~x, ~ωi, ~ωo) dE(~x← ~ωi)

L(~x→ ~ωo) =
∫

Ω

dL(~x→ ~ωo)

=
∫

Ω

fr(~x, ~ωi, ~ωo) dE(~x← ~ωi)

=
∫

Ω

fr(~x, ~ωi, ~ωo)L(~x← ~ωi) dωi~n.

(4.13)

Conditions for BRDFs

It is important to note that the BRDF is not the reflectance which expresses the

percentage of energy reflected by the material. As opposed to the reflectance, which value

is in [0,1], the BRDF can take any positive value. In fact, the reflectance R is defined as

R =
1
π

∫∫
Ω

fr(~x, ~ωi, ~ωo) dωo~n dωi~n. (4.14)

Since the reflectance should be R ∈ [0,1] by definition, we can see that∫
Ω

fr(~x, ~ωi, ~ωo) dωo~n ≤ 1. (4.15)

This is the necessary and sufficient condition that the BRDF satisfies the law of conserva-

tion of energy.

Helmholtz reciprocity states that the direction of a light path can be reversed

without affecting its throughput [52, 109]. For the BRDF, this translates into the following

condition:

fr(~x, ~ωi, ~ωo) = fr(~x, ~ωo, ~ωi). (4.16)

BRDFs, BTDFs, BSDFs, and BSSRDFs

It is possible to define similar functions that describe the amount of transmitting

light. In general, we have the following four possible functions [108]:

f+r : Ω+×Ω+→ R

f−r : Ω−×Ω−→ R

f+t : Ω+×Ω−→ R

f−t : Ω−×Ω+→ R,

(4.17)
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where f+r and f−r define BRDFs for outer and inner surfaces, and f+t and f−t are called

Bidirectional Transmittance Distribution Function (BTDF) that define the transmittance

for incoming and outgoing light. The union of the functions is called Bidirectional

Scattering Distribution Function (BSDF).

The BRDF does not describe all the phenomena that we can see in the real world.

For example, the BRDF assumes that the wavelength of light does not change after

its reflection/transmission. This is not the case for fluorescence where incoming light

is converted into another light with different wavelength. The BRDF also makes the

assumption that the outgoing light exits at the point where the incoming light arrives.

This approximately is largely incorrect for surfaces that exhibits subsurface light transport

such as human skin, wax, milk, and many organic materials. The generalized function

called Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF) [88]

formulates such materials, but this thesis mainly focuses on surfaces that can be described

by the BRDF.

4.4 Rendering Equation

Given all the notations, we can now formulate the light transport problem as the

equilibrium distribution of light energy as the rendering equation [66, 57]:

L(~x→ ~ω) = Le(~x→ ~ω)+
∫

Ω

fr(~x, ~ωi, ~ω)L(~x← ~ωi) dωi~n, (4.18)

where Le(~x→ ~ω) is the emitted radiance from the point~x toward the direction ~ω . The

equation is a recursive integral equation since the unknown radiance appear on the both

side of the equation (formally, this is a Fredholm equation of the second kind). Note

that this equation assumes the absence of participating media that alter paths of light

between surfaces. Examples of participating media are smoke, fog, clouds, and fire. In

other words, we assume that objects are surrounded by vacuum.

Except for some restricted cases [107], analytic solutions to this equation are

difficult to obtain. The goal of a light transport algorithm is to numerically approximate

the solution to this equation at an arbitrary point. The following subsections describe

different formulations and methods to solve the rendering equation.
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4.4.1 Operator Formulation

Suppose that we define the operator T as

Tg(~x→ ~ω) =
∫

Ω

fr(~x, ~ωi, ~ω)g(~x← ~ωi) dωi~n. (4.19)

Using this operator T, we can reformulate the rendering equation as

L(~x→ ~ω) = Le(~x→ ~ω)+TL(~x→ ~ω) (4.20)

Using I as the identity operator, we can solve the above equation for L(~x→ ~ω) as

IL(~x→ ~ω) = Le(~x→ ~ω)+TL(~x→ ~ω)

IL(~x→ ~ω)−TL(~x→ ~ω) = Le(~x→ ~ω)

(I−T)L(~x→ ~ω) = Le(~x→ ~ω)

L(~x→ ~ω) = (I−T)−1Le(~x→ ~ω).

(4.21)

The result tells us that the solution to the rendering equation is the result of applying the

operator (I−T)−1 to the input emittance distribution Le(~x→ ~ω).

This formulation is the basis of the algorithms using finite elements methods

such as the radiosity method [37] and its extension [57]. The method first discretizes

the solution space L(~x→ ~ω) such that the integral can be written as a weighted sum of

discretized elements. The operator T then becomes a matrix and L becomes the solution

to the linear equation L = Le +∑i TiL. Although finite elements methods are not actively

used anymore because of the need of discretization and computational cost of solving

linear equations, some recent work revisited this formulation and demonstrated promising

results [18, 78].

4.4.2 Path Formulation

We can expand the rendering equation as follows

L = Le +TL

= Le +T(Le +TL)

= Le +TLe +T2L

= Le +TLe +T2(Le +TL)

= Le +TLe +T2Le +T3Le · · · .

(4.22)
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Since the operator TLe corresponds to integral of the known input function Le, this

expression tell us that the solution rendering equation is the sum of integrals. One can

abstract the sum of integrals as a single integral over the union of space Ti as path space

Ω∗;

L(~x→ ~ω) =
∫

Ω∗
f (~X) dµ(~X), (4.23)

where dµ(~X) is a measure in path space, ~X is any path that evaluates the function of Ti

with some i. In a concrete example, a path corresponds to a light path that is coming from

the light source and reaching to the eye. This formulation was formally introduced into

light transport simulation by Veach [117], but it has been the basis of many stochastic

light transport algorithms before its formal introduction.

The path formulation is useful to formulate the algorithms based on Monte Carlo

integration such as path tracing [66], bidirectional path tracing [71, 118], and the more

advanced methods based on Markov Chain Monte Carlo methods [15, 119]. Common

to all the methods is that they all solve the integral of the path formulation using Monte

Carlo integration. The difference lies in how to perform Monte Carlo integration, and

different methods use different techniques such as importance sampling that we reviewed

in Chapter 2.

4.4.3 Density Formulation

Another way to look at the rendering equation is based on a photon trajectory

simulation. Recall that radiance is flux per projected area per solid angle. Since flux is

called by photons, flux is proportional to the number of photons, and we can evaluate

radiance if we know the distribution of photons.

If we write the expected number of photons we can observe from the position~x

toward the direction ~ω as N(~x→ ~ω), a photon trajectory simulation can be formulated as

N(~x→ ~ω) = Q(~x→ ~ω)+
∫

Ω

p(~x, ~ωi, ~ω)N(~x← ~ωi) dωi~n, (4.24)

where p(~x, ~ωi, ~ω) is a transition probability density function of sampling a photon that

comes to~x toward the direction ~ω from another photon that is coming from the direction

~ωi, and Q(~x→ ~ω) is the initial photon distribution (i.e., initial emittance distribution).

This equation is equivalent to the rendering equation if p(~x, ~ωi, ~ω) = fr(~x, ~ωi, ~ω).
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The standard approach for estimating N(~x→ ~ω) is to recording particles based

on random walk simulations. To be precise, we first start from the initial distribution

N(~x→ ~ω)≈ N̂(~x→ ~ω) = Q(~x→ ~ω). (4.25)

We then generate a new particle distribution by random walk simulation of the current

distribution N̂(~x→ ~ω) using the transition probability density function given by the scene

configuration as ∫
Ω

p(~x, ~ωi, ~ω)N̂(~x← ~ωi) dωi~n. (4.26)

This new distribution is added to the current distribution

N(~x→ ~ω)≈ N̂(~x→ ~ω)+
∫

Ω

p(~x, ~ωi, ~ω)N̂(~x← ~ωi) dωi~n (4.27)

and we iterate the whole process by using the right hand side of the above equation as

the current distribution. Since radiance is obtained as density of particles, we need to use

density estimation techniques that are reviewed in Chapter 3.

To the best of our knowledge, this formal description of photon density estimation

methods has been largely ignored except for the book by Dutré [22]. One common

alternative description is that photon density estimation solves for the ‘blurred solution’

of the rendering equation. However, this description does not precisely differentiate

the Monte Carlo integration methods and photon density estimation. In this alternative

description, applying blur seems a redundant intentional operation, given the solution of

the rendering equation. The above formulation more cleanly describes why we need to

introduce “blur” by density estimation.

This formulation is the basis of multiple algorithms [61, 104, 121] as well as

this dissertation work. The main difference lies in density estimation techniques they

employed. In this dissertation work, we use a novel density estimation framework that is

suitable for solving the light transport problem using this formulation.

The methods based on Markov Chain Monte Carlo to generate paths [15, 73, 119]

can actually be categorized into this formulation as well. These methods directly generate

samples from the unknown distribution N(~x→ ~ω) by means of Markov Chain Monte

Carlo methods, and compute the constant factor using Monte Carlo integration to convert

N(~x→ ~ω) into L(~x→ ~ω). These methods use a histogram density estimator over an

image to estimate the distribution from samples.



Chapter 5

Progressive Density Estimation

The basis of this dissertation is a novel density estimation method called pro-

gressive density estimation. The key is that, unlike regular density estimation methods,

progressive density estimation can produce a solution with any desired accuracy without

multiple runs with different parameters. In other words, convergence of progressive

density estimation is built into the algorithm itself. We applied progressive density

estimation to build a new light transport simulation algorithm which we named as pro-

gressive photon mapping. Compared with existing light transport algorithms based on

Monte Carlo integration, progressive photon mapping is more efficient and robust in the

presence of complex light paths such as ones from a lighting fixture.

42
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5.1 Related Work

Photon mapping is a two-pass light transport simulation algorithm developed by

Jensen [61]. The first pass is building a photon map using photon tracing, and the second

pass uses ray tracing to render the image. In the ray tracing pass the photon map is used

to estimate the radiance at different locations within the scene. This is done by locating

the nearest photons and performing a nearest neighbor density estimation. The density

estimation process can be considered as a way of loosely connecting paths from the eye

to the light.

The density estimation process effectively blurs the lighting in the scene, and

to represent sharp illumination details it is necessary to use a large number of photons.

The main challenge is scenes with lighting dominated by caustics. This type of lighting

is rendered using a direct visualization of the photon map, which can require a large

number of photons to resolve the details. Since the photon map is stored in memory, the

final quality is often limited by the maximum number of photons that can be stored in

the photon map. We overcome this problem in photon mapping by using a sequence of

smaller photon maps without the need of storing all the photons.

To improve the performance of photon mapping and final gathering Havran et

al. [51] introduced the concept of reverse photon mapping. Reverse photon mapping uses

ray tracing in the first pass and photon tracing in the second pass. The ray tracing step

builds a kd-tree over the hit points and in the photon tracing step this kd-tree is used to

find the nearest hit points that a photon contributes to. The motivation for this approach is

to reduce the complexity and improve the performance of photon mapping when a large

number of rays are used in the ray tracing pass (e.g., as part of final gathering). We use a

concept similar to reverse photon mapping, but our goal is to compute a highly accurate

solution of light transport simulation in scenes with complex lighting and to overcome

the inherent limitation of the final image quality in standard photon mapping.

Suykens and Willems [110] proposed an adaptive image filtering algorithm that

asymptotically converges to the correct solutions. They described several heuristics that

reduces the width of filtering kernel based on the number of samples. Our method also

uses the number of photons to reduce the search radius of density estimation, which

asymptotically converges to the correct solutions similar to their method. The key
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difference is that our method utilizes the fact that photon mapping is a consistent method.

Therefore we can keep the robustness of photon mapping while obtaining asymptotically

correct images.

A number of papers have addressed the issues in the standard photon mapping

algorithm. Ray splatting [53] removes boundary bias and topology bias [101] by using

rays rather than photons to perform density estimation. Proximity bias is not avoided as

these methods still rely on regular density estimation. Fradin et al. [29] presented an out

of core photon mapping approach optimized for large buildings where only a small part

of the photon map is used. Christensen et al. [14] introduced brick maps as a compact

approximate representation of the illumination represented by the photon map.

None of these existing work essentially resolved the issue of storage requirement

for many photons which comes from a fundamental limitation existing density estimation

methods. With progressive density estimation, for the first time, we can use an unlimited

number of samples with a finite amount of memory.

5.2 Issues with Regular Photon Mapping

We briefly review the photon mapping [62] algorithm in this section. The first

pass of photon mapping is photon tracing, which traces photons from the light sources

into the scene and stores them in a photon map as they interact with the surfaces. The

second pass is rendering in which the photon map is used to estimate the illumination

in the scene. Given a photon map, exitant radiance at any surface location x can be

estimated as:

L(x, ~ω)≈
n

∑
p=1

fr(x, ~ω, ~ωp)φp(xp, ~ωp)

πr2 , (5.1)

where n is the number of nearest photons used to estimate the incoming radiance. φp

is the flux of the pth photon, fr is the BRDF, ~ω and ~ωp are the outgoing and incoming

directions. r is the radius of the sphere containing the n nearest photons. This estimate

assumes that the local set of photons represents incoming radiance at x, and that the

surface is locally flat around x.

The photon density estimation in Equation 5.1 is the source of bias in photon

mapping. To ensure convergence to the correct solution, it is necessary to use an infinite
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number of photons in the photon map and in the photon density estimation. Furthermore,

the radius should converge to zero. Recall that these are the conditions of consistency for

density estimation in general (Chapter 3).

We can satisfy these requirements, for example, by using N photons in the photon

map, but only Nβ with β ∈]0 : 1[ photons in the photon density estimation. As N becomes

infinite both N and Nβ will become infinite, but Nβ will be infinitely smaller than N,

which ensures that r will converge to zero. This can be written as [62]:

L(x, ~ω) = lim
N→∞

bNβ c

∑
p=1

fr(x, ~ω, ~ωp)φp(xp, ~ωp)

πr2 , (5.2)

Similar to other density estimation methods, in standard photon mapping, this result is

only of theoretical interest since all the photons have to be stored in memory in order

to use this result. This makes it impossible to obtain a solution with arbitrary precision

with a single run of the algorithm. In the following sections, we describe a new density

estimation method that fulfills the requirements of Equation 5.2 without having to store

all the photons in memory.

5.3 Progressive Density Estimation

The traditional density estimation as given in Equation 5.1 relies on an estimate

of the local density of photons. The estimate of the local density d(x) is

d(x) =
n

πr2 . (5.3)

This estimate is based on locating the n nearest photons within a sphere of radius r,

assuming that the surface is locally flat such that the photons are located within a disc. If

we generate another photon map and use it to compute the density at x, we might find n′

photons within the same disc, which may results in a different density estimate d′(x):

d′(x) =
n′

πr2 . (5.4)

Note that we are using the same radius as Equation 5.3. By averaging d(x) and

d′(x) we can obtain a more accurate estimate of the density within the disc of radius r.
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This approach was proposed by Christensen [64], and it will lead to a less noisy density

estimate, but the final result does not have more detail than each individual photon map.

Furthermore, the averaging procedure is not consistent and the method will not converge

to the exact value at x. Instead, it computes the average value within a constant radius

r. As a result, it cannot resolve small details within the radius r, and the accuracy is

effectively limited by the total number of photons in each individual photon map.

Progressive density estimation combines the result from several photon maps in a

way that the final estimate will converge to the correct solution. It is able to resolve details

in the illumination that is not captured by the individual photon maps. The key insight

that makes this possible is a new technique for reducing the radius in the density estimate

at each measurement point, while increasing the number of accumulated photons. This

effectively ensures that the number of samples in an infinitely small region diverges in the

limit in accordance with Equation 5.2. The following sections describe how the photon

density is progressively computed.

5.3.1 Radius Reduction

Each point has a radius, R(x). Initially, the radius, R(x), at x is set to a non-zero

value such as the footprint of the pixel. It is also possible to estimate the radius after the

first photon tracing pass by using regular photon mapping to obtain the radius around

each point. Our goal is to reduce this radius while increasing the number of photons

accumulated within this radius, N(x). The density d(x) at a point x is computed using

Equation 5.3. Assume that a number of photon tracing steps have been performed and

that N(x) photons have been accumulated at x. If we perform one additional photon

tracing step and find M(x) photons within the radius R(x) then we can add these M(x)

photons to x, which results in a new photon density d̂(x):

d̂(x) =
N(x)+M(x)

πR(x)2 . (5.5)

The next step of the algorithm is reducing the radius R(x) by dR(x). If we assume that

the photon density is constant within R(x), we can compute the new total number of

photons N̂(x) within a disc of radius R̂(x) = R(x)−dR(x) as:

N̂(x) = πR̂(x)2d̂(x) = π(R(x)−dR(x))2d̂(x) . (5.6)
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Radius: R(x)
Photons: N(x)

Radius: R(x)
Photons: N(x) + M(x)

Radius: R(x) - dR(x)
Photons: N(x) + αM(x)

Figure 5.1: Each point in the ray tracing pass is stored in a global data structure with an
associated radius and accumulated photon power. After each photon tracing pass we find
the new photons within the radius of each point, and we reduce the radius based on the
newly added photons. Progressive density estimation ensures that the final value at each
point will converge to the correct radiance value.

To satisfy the consistency condition in Equation 5.2, there has to be a gain in the total

number of photons at every iteration (i.e. N̂(x)> N(x)). A single parameter α = (0,1)

controls the fraction of photons to keep after every iteration. Therefore, N̂(x) can be

computed as:

N̂(x) = N(x)+αM(x) , (5.7)

which states that we would like to add αM(x) new photons at each iteration. Note that

the value of αM(x) can be a real number, rather than an integer. We can compute the

actual reduction of the radius dR(x) by combining Equations 5.5, 5.6 and 5.7:

π(R(x)−dR(x))2d̂(x) = N̂(x)

⇔ π(R(x)−dR(x))2 N(x)+M(x)
πR(x)2 = N(x)+αM(x)

⇔ dR(x) = R(x)−R(x)

√
N(x)+αM(x)
N(x)+M(x)

. (5.8)

Finally, the reduced radius R̂(x) is computed as:

R̂(x) = R(x)−dR(x) = R(x)

√
N(x)+αM(x)
N(x)+M(x)

. (5.9)

Note that this equation is solved independently for each point.
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5.3.2 Flux Correction

When a point receives M(x) photons, we need to accumulate the flux carried by

those photons. In addition, we need to adjust this flux to take into account the radius

reduction described in the previous section. Each point stores the unnormalized total

flux received pre-multiplied by the BRDF. This quantity τ(x, ~ω) for the N(x) photons is

computed as:

τN(x, ~ω) =
N(x)

∑
p=1

fr(x, ~ω, ~ωp)φ
′
p(xp, ~ωp) , (5.10)

where ~ω is the direction of the incident ray at the point, ~ωp is the direction of the incident

photon, and φ ′p(xp, ~ωp) is unnormalized flux carried by the photon p. Note, that the

flux at this stage is not divided by the number of emitted photons as in standard photon

mapping. Similarly, the M(x) new photons give:

τM(x, ~ω) =
M(x)

∑
p=1

fr(x, ~ω, ~ωp)φ
′
p(xp, ~ωp) . (5.11)

If the radius was constant, one could simply add τM(x, ~ω) to τN(x, ~ω), but since

the radius is reduced, it is necessary to account for the photons that fall outside the

reduced radius (see Figure 5.1). One method for finding those photons would be to keep a

list of all photons within the disc and remove those that are not within the reduced radius

disc. However, this method is not practical as it would require too much memory for the

photon lists. Instead, progressive density estimation assumes that the illumination and

the photon density within the disc is constant, which results in the following adjustment:

τN̂(x, ~ω) = (τN(x, ~ω)+ τM(x, ~ω))
πR̂(x)2

πR(x)2

= τN+M(x, ~ω)
π

(
R(x)

√
N(x)+αM(x)
N(x)+M(x)

)2

πR(x)2

= τN+M(x, ~ω)
N(x)+αM(x)
N(x)+M(x)

, (5.12)

where τN+M(x, ~ω) = τN(x, ~ω) + τM(x, ~ω), and τN̂(x, ~ω) is the reduced value for the

reduced radius disc corresponding to N̂(x) photons. The assumption that the photon

density and thereby the illumination is constant within the disc may not be correct initially,
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but it becomes increasingly true as the radius becomes smaller except for points exactly at

illumination discontinuities. This is not an issue, since the illumination at discontinuities

is undefined and the probability of having a point exactly at a discontinuity is zero.

5.3.3 Radiance Evaluation

After each photon tracing pass, we can evaluate the radiance at the points. Recall

that the quantities stored include the current radius and the current intercepted flux

multiplied by the BRDF. The evaluated radiance is multiplied by the pixel weight and

added to the pixel associated with the point. To evaluate the radiance, we further need

to know the total number of emitted photons Nemitted in order to normalize τ(x, ~ω). The

radiance is evaluated as follows:

L(x, ~ω) =
∫

2π

fr(x, ~ω, ~ω ′)L(x, ~ω ′)(~n ·~ω ′)dω
′

≈ 1
∆A

n

∑
p=1

fr(x, ~ω, ~ωp)∆φp(xp, ~ωp)

=
1

πR(x)2
τ(x, ~ω)

Nemitted
. (5.13)

Similar to the regular photon mapping, this formulation is not restricted to Lam-

bertian materials as we pre-multiply the flux with the BRDF and store it as τ(x, ~ω).

Note that the radius R(x) will not be reduced if the disc defined by R(x) is within an

unlit region (i.e., M(x) = 0). Although this situation seemingly breaks the conditions

of consistency, it still converges to the correct solution L(x, ~ω) = 0, since τ(x, ~ω) will

not increase and L(x, ~ω)→ 0 as Nemitted → ∞. Figure 5.3 numerically demonstrates that

the progressive density estimate converges to the correct radiance value L(x), while the

radius R(x) is reduced to zero, and the number of photons N(x) grows to infinity. The

progressive density estimate ensures that the photon density at each point increases at

each iteration and it is therefore consistent in accordance with Equation 5.2.

5.3.4 Progressive Photon Mapping

This section describes the overall steps of the proposed light transport algorithm.

Progressive photon mapping is a multi-pass algorithm in which the first pass is eye ray
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Ray Tracing Pass Photon Tracing Pass

Figure 5.2: Progressive photon mapping uses eye ray tracing in the first pass followed
by multiple photon tracing passes.

tracing and all subsequent passes use photon tracing. Each photon tracing pass improves

the accuracy of the solution and the algorithm is progressive in nature. Figure 5.2

summarizes our algorithm.

Eye Ray Tracing Pass: The eye ray tracing pass is similar to reverse photon shoot-

ing [51] without the use of gathering. It uses standard ray tracing to find all the non-

specular surfaces in the scene visible through each pixel in the image. Each eye path

includes all specular bounces until the first non-specular surface seen. In scenes with a

large number of specular surfaces, the length of the ray paths can be limited by using

Russian Roulette.

For each eye path, we store all hit points along the path where the surface has a

non-specular component in the BRDF. With each hit point we store the hit location x,

the ray direction ~ω , scaling factors including BRDF and pixel filtering value, and the

associated pixel location. In addition we store extra data necessary for the progressive

density estimate including a radius, the intercepted flux, and the number of photons

within the radius. Since these hit points are essentially the points that we would like to

“measure” radiance during the computation, we often call those points as measurement

points in this dissertation.

Note that nothing prevents us not to use eye ray tracing to generate these points.

Measuring radiance at arbitrary location is possible as long as we can generate such a

point. The argument that progressive photon mapping loses the view-independence of

regular photon mapping is incorrect. One can generate measurement points independent
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from the view and display the result based on a novel view by means of any reasonable

interpolation method (e.g., lightmaps).

We represent these values in the following structure:

struct mpoint {

position x Hit location

normal~n Normal at x

vector ~ω Ray direction

integer B BRDF index

float x,y Pixel location

color wgt Pixel weight

float R Current photon radius

float N Accumulated photon count

color τ Accumulated reflected flux

}

Photon Tracing Passes: The photon tracing step is used to accumulate photon power

at the measurement points found in the ray tracing pass. Each pass consists of tracing a

given number of photons into the scene in order to build a photon map. After each photon

tracing pass, we loop through all the measurement points and find the photons within the

radius of each measurement point. We use the newly added photons to refine the estimate

of the illumination within the measurement point as described in the following section.

Once the contribution of the photons have been recorded, they are no longer needed, and

we can discard all photons and proceed with a new photon tracing pass. This continues

until enough photons have been accumulated and the final image quality is sufficient.

Note that we can render an image after each photon tracing pass, which can provide

feedback of the progress of rendering to a user. As more photons are accumulated the

quality of the image will progressively improve toward the final result.
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Figure 5.3: Statistics at the measurement points as a function of the number of iterations.
The three measurement pointss A, B, and C are indicated in (d). Each iteration is using
100000 photons. Note that the graph of R(x) uses log scale for both axes.

5.4 Results and Discussion

This section present results based on our implementation of the progressive

photon mapping algorithm (PPM). Progressive photon mapping is compared against path

tracing (PT) with explicit direct light source sampling, bidirectional path tracing (BDPT)

with multiple importance sampling [118], Metropolis light transport [119] based on the

primary sample space [67] (MLT), and photon mapping (PM) [62]. All the examples

have been rendered on a PC with 1GB of memory and a 2.4GHz Intel Core 2 Q6600

using one core. The rendered images have a width of 640 pixels. Progressive photon

mapping uses 100000 photons per photon shooting pass and α = 0.7. The results of

regular photon mapping is limited to 20 million photons due to memory constraints on the



53

1 pass 4 passes 16 passes

64 passes 256 passes 1024 passes

Figure 5.4: Sequence of images with increasing number of photons. The images show
a direct visualization the progressive density estimate after 1, 4, 16, 64, 256, and 1024
photon tracing passes. Note how well the image with only after 16 passes captures rough
illumination. Adding more photons makes the image sharper and reduces low frequency
noise.

machine that was used for rendering. Regular photon mapping used 500-1500 photons

in the density estimate for obtaining visually satisfactory results without too much bias

or noise in the images. All the results are equal time comparisons except for photon

mapping, where the rendering time is shorter since the total number of photons is limited

by the available memory. Table 5.1 summarizes the computational effort for the different

scenes.

Figure 5.8 shows a glass lamp illuminating a wall. The images have been rendered

using BDPT, MLT, PM, and PPM. The image was rendered in 22 hours. Note how the

illumination seen in the glass lamp is very noisy in all the Monte Carlo ray tracing

methods, while the photon mapping result exhibits low frequency noise even with 20

million photons. Progressive photon mapping was able to use 165 million photons, which

captures the sharp features in the illumination without the high frequency noise seen in

the Monte Carlo ray tracing images.
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The test scene shown in Figure 5.5 is a box with two mirror balls and a smaller

glass ball. One of the mirror balls is faceted to cause interesting caustics pattern. The

scene is illuminated by two lighting fixtures, where each lighting fixture is a small

spherical light source behind a spherical lens inside the metal cylinders at the ceiling.

This type of caustics illumination results in numerous SDS paths within the model. Note

how the reflections in the mirror ball are very noisy in both BDPT and MLT. Normal

photon mapping generated in a slightly blurry result. Progressive photon mapping can

increase the number of photons to 213 million, which makes it possible to capture the

detailed illumination within the scene with considerable less noise than the unbiased

Monte Carlo ray tracing methods. The unbiased Monte Carlo ray tracing images and

the progressive photon mapping image were rendered in 4 hours, while the normal

photon mapping image was rendered in 1 hour. The progressive nature of our method is

demonstrated on the box scene in Figure 5.4 where the intermediate results have been

visualized.

Figure 5.6 demonstrates the illumination on a torus embedded in a glass cube

(inspired by a similar scene by Cline et al. [15]). All the Monte Carlo ray tracing methods

have trouble rendering the lighting on the torus, while progressive photon mapping

renders a smooth noise free result in the same time (2 hours). The reference image

rendered using path tracing still exhibit noise even after using 51500 samples per pixel

and 91 hours of rendering time.

The bathroom scene in Figure 5.7 is an example of complex geometry and

illumination. The illumination in this scene is due to two small spherical area light

sources enclosed within bumpy glass tubes. This type of illumination is common in

real world lighting. Both BDPT and MLT fail to properly sample the reflection in the

mirror and on the chrome pipes as well as the lighting behind the glass door. Our method

robustly handles all of these illumination paths robustly. Normal photon mapping is also

fairly robust in this scene, but it is not possible to render a noise free image using 20

million photons.
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Table 5.1: Rendering statistics for the different scenes. The samples and mutations
numbers are the average number per pixel. PPM uses 100000 photons per iteration.

PT BDPT MLT PPM Time
Samples Samples Mutations Iterations Hours

Lamp 840 80 82 1651 22
Box 1428 155 132 2134 4

Torus 1050 550 359 520 2
Bathroom 675 66 66 6126 16

Path tracing Bidirectional path tracing

Metropolis light transport Progressive photon mapping

Figure 5.5: Box scene illuminated by a lighting fixture. The lighting fixture is behind
glass and the illumination in the scene is dominated by caustics. The specular reflections
and refractions have significant noise even with Metropolis light transport. Standard
photon mapping cannot resolve the sharp illumination details in the scene with the
maximum 20 million photons in the photon map. Progressive photon mapping could use
213 million photons, which resolves all the details in the scene and provides a noise free
image in the same rendering time as the Monte Carlo ray tracing methods.
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Path Tracing Bidirectional Path Tracing Metropolis Light Transport

Progressive Photon Mapping Reference

Figure 5.6: Torus embedded in a glass cube. The reference image has been rendered
using path tracing with 51500 samples per pixel. The Monte Carlo ray tracing methods
fail to capture the lighting within the glass cube, while progressive photon mapping
provides a smooth result using the same rendering time.

5.5 Theoretical Analysis

This section provides some theoretical analysis on progressive density estimation.

Following the original work presented in this chapter, Knaus and Zwicker [70] recently

provided a thorough theoretical analysis of progressive photon mapping. This section

contains the original results obtained ahead of their work as well as observations on the

convergence rate based on their results.
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Path tracing Bidirectional path tracing

Metropolis light transport Progressive photon mapping

Figure 5.7: Lighting simulation in a bathroom. The scene is illuminated by a small
lighting fixture consisting of a light source embedded in glass. The illumination in the
mirror cannot be resolved using any Monte Carlo ray tracing method. Photon mapping
with 20 million photons results in a noisy and blurry image, while progressive photon
mapping is able to resolve the details in the mirror and in the illumination without noise.

5.5.1 Convergence of Radius

The following derivation shows that the radius converges to 0 by using an infinite

number of samples. Recall that the equation to update the radius is as follows:

Ri+1 = Ri

√
Ni +αMi

Ni +Mi
, (5.14)

where Ri is the radius, Ni is the number of local photons, and Mi is the number of photons

within the radius at ith iteration. The radius at the next iteration, Ri+1, is computed

based on the equation above with a user defined parameter α ∈ (0,1). For simplicity, the

following proof considers the squared radius Ri+1
2. The squared radius is updated with
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Bidirectional path tracing Metropolis light transport

Photon mapping Progressive photon mapping

Figure 5.8: A glass lamp illuminates a wall and generates a complex caustics lighting
pattern on the wall. This type of illumination is difficult to simulate with Monte Carlo
ray tracing methods. The lighting seen through the lamp is particularly difficult for these
methods. Photon mapping is significantly better at capturing the caustics lighting seen
through the lamp, but the final quality is limited by the memory available for the photon
map and it lacks the fine detail in the illumination. Progressive photon mapping provides
an image with substantially less noise in the same render time as the Monte Carlo ray
tracing methods and the final quality is not limited by the available memory.
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the following equation:

Ri+1
2 =

(
Ri

√
Ni +αMi

Ni +Mi

)2

= Ri
2 Ni +αMi

Ni +Mi
. (5.15)

Note that the radius converges to 0 if and only if the squared radius converges to 0

lim
i→∞

Ri
2 = 0⇔ lim

i→∞
Ri = 0. (5.16)

First, Equation 5.15 expands as follows:

Ri+1
2 = Ri

2 Ni +αMi

Ni +Mi

=

(
Ri−1

2 Ni−1 +αMi−1

Ni−1 +Mi−1

)
Ni +αMi

Ni +Mi

= Ri−1
2 Ni−1 +αMi−1

Ni−1 +Mi−1

Ni +αMi

Ni +Mi

· · ·

= R0
2 N0 +αM0

N0 +M0
· · · Ni +αMi

Ni +Mi
.

(5.17)

Since the initial squared radius R0
2 is a non-zero value, showing limi→∞ Ri

2 = 0 is

equivalent as showing that the following infinite product converges to 0:

∞

∏
i=0

Ni +αMi

Ni +Mi
. (5.18)

Substituting the update equation for the number of local photons, Ni+1 = Ni +αMi, we

obtain:
∞

∏
i=0

Ni +αMi

Ni +Mi
=

∞

∏
i=0

Ni+1

Ni +Mi

=
∞

∏
i=0

Ni+1

Ni+1 +(1−α)Mi

=
∞

∏
i=0

1

1+ (1−α)Mi
Ni+1

.

(5.19)

Since the numerator is always 1 and the product is positive, we can show that the infinite

product converges to 0 if its reciprocal diverges to ∞:

∞

∏
i=0

Ni +αMi

Ni +Mi
= 0⇔

∞

∏
i=0

(
1+

(1−α)Mi

Ni+1

)
= ∞. (5.20)
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By defining a sequence bi =
(1−α)Mi

Ni+1
we can also write down the infinite product as

follows:
∞

∏
i=0

(
1+

(1−α)Mi

Ni+1

)
=

∞

∏
i=0

(1+bi) , (5.21)

Since bi ≥ 0, we can bound the infinite product by

1+
∞

∑
i=0

bi ≤
∞

∏
i=0

(1+bi) . (5.22)

Therefore, the infinite product ∏
∞
i=0 (1+bi) diverges if the infinite sum ∑

∞
i=0 bi diverges.

To show the the infinite sum diverges, first we substitute back bi:

∞

∑
i=0

bi =
∞

∑
i=0

(1−α)Mi

Ni+1
. (5.23)

If we look at the definition of Ni, it grows at most linearly to the number of iterations no

matter how the photon shooting part is effective because we shoot the fixed number of

photons per iteration. In addition, since Mi ≥ 1, we have the following lower bound for

sufficiently large K

K

∑
i=0

(1−α)

Mmax(i+1)
≤

K

∑
i=0

(1−α)

Ni+1
≤

K

∑
i=0

(1−α)Mi

Ni+1
, (5.24)

where Mmax is the number of photons per iteration (i.e., the maximum number of photons

in the radius at each iteration). Although it is possible to have Mi = 0 if the radius

becomes small, we can safely ignore any iteration with Mi = 0 and reassigning indices

i for the purpose of our proof. Note that any iteration with Mi = 0 merely increases

computation time, and it does not change any variable such as Ri and Ni. Based on the

definition of Riemann sum, we can further bound the summation by the integral for

sufficiently large K: ∫ K+1

1

(1−α)

Mmaxx
dx≤

K

∑
i=0

(1−α)

Mmax(i+1)
. (5.25)

The above integral can be easily solved as follows∫ K+1

1

(1−α)

Mmaxx
dx =

(1−α)

Mmax
log(K +1), (5.26)
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so this integral diverges as K→ ∞. Therefore, the infinite sum also diverges. As a result

∞

∑
i=0

(1−α)Mi

Ni+1
= ∞⇔

∞

∏
i=0

(
1+

(1−α)Mi

Ni+1

)
= ∞⇔

∞

∏
i=0

Ni +αMi

Ni +Mi
= 0,

(5.27)

which shows that Ri converges to 0 as i goes to infinity.

5.5.2 Divergence of Local Photon Count

Given the proof of convergence of radius, it is trivial to show Ni diverges since

Ni+1 = Ni
Ni+1

Ni
= Ni

Ni +αMi

Ni
= Ni

(
1+

αMi

Ni

)
= N0

∞

∏
i=0

(
1+

αMi

Ni

)
, (5.28)

which gives us a reciprocal of the same form of infinite product as in Equation 5.19 but

with α instead of 1−α . Therefore, Ri converges to 0 and Ni diverges to ∞ as i goes to ∞.

Along with convergence of radius, note that this result satisfies the consistency conditions

of density estimate.

5.5.3 Convergence of Progressive Radiance Estimate

First, the estimated radiance L j+1(x) at the j+1th iteration using the refinement

procedure expands as

L j+1(x) =
τ j+1(x, ~ω)

πR j+1(x)2 =
R j+1(x)2

R j(x)2

τ ′j+1(x, ~ω)

πR j+1(x)2

=
jτ j(x, ~ω)+ τ̃ j+1(x, ~ω)

j+1
1

πR j(x)2

=
1

j+1

(
j
τ j(x, ~ω)

πR j(x)2 +
τ̃ j+1(x, ~ω)

πR j(x)2

)
=

1
j+1

(
jL j(x)+Lp, j(x)

)
,

(5.29)

where Lp, j(x) is radiance estimate using only the photons from the jth pass. Note

that τ̃ j+1(x,~ω)

πR j(x)2 = Lp, j(x) because τ̃ j+1(x, ~ω) includes the intercepted photons only at the
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j+1th iteration before the radius reduction and the radius reduction happens after flux

accumulation (i.e., the radius used in the photon query is R j(x)). The solution of this

recurrence equation is

L j+1(x) =
1

j+1
(

jL j(x)+Lp, j(x)
)

=
1

j+1
(
( j−1)L j−1(x)+Lp, j−1(x)+Lp, j(x)

)
=

1
j+1

j

∑
k=0

Lp,k(x).

(5.30)

Progressive density estimate thus can be seen as regular radiance estimate where the

kernel is the arithmetic average of kernels with sizes. The averaged kernel K j+1(x) is

normalized as follows.∫
K j+1(x) dx =

1
j+1

j

∑
k=0

∫ 1
πR2

k
dx =

1
j+1

j

∑
k=0

1 = 1. (5.31)

Note also that lim j→∞ K j+1(~o) = ∞ (where~o is the center of the kernels) since

lim
j→∞

K j+1(0) = lim
j→∞

1
j+1

j

∑
k=0

1
πR2

k
> lim

j→∞

1
( j+1)πR2

j+1
∝ lim

j→∞

1
N j+1

= ∞. (5.32)

Standard derivations can show that the sequence of K j+1(~x) converges to the delta

function [1] by noting that

K j+1(x) =
1

j+1

j

∑
k=0

G 1
R j
(x) (5.33)

and

lim
j→∞

∫
K j+1(x) dx = H(|x|) (5.34)

where H(x) is the Heaviside unit step function, Gr(x) = rG(rx) with G(x) = H(x)−
H(x−1). Any function that satisfies Gr(x) = rG(rx) with a parameter r can construct

this converging kernel in the limit of r→ ∞ [1]. Since limits and derivatives commute

for generalized functions, by taking the derivative of the above function, we obtain

lim j→∞ K j+1(~x) = δ (~x).

Therefore, the averaged kernel converges to a delta function in the limit. Since

the number of local photon counts diverges, progressive radiance estimate is equivalent to
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regular radiance estimate with a delta function with an infinite number of local photons in

the limit. Since there are many different sequences of functions that converge to the delta

function [1], our result indicates that there is indeed a large class of dynamic kernels that

has provable convergence to the correct solution under progressive density estimation

framework.

This view also reveals a relationship of progressive density estimation to recursive

density estimation [133, 134]. Recursive density estimation considers the average of

kernel density estimation with a converging sequence of the bandwidth parameter. The

important difference is that progressive density estimation uses sample statistics to

construct this sequence of bandwidth, rather than using a predetermined sequence by the

user. This allows a simple trade-off between bias and variance by the single parameter α ,

which is difficult to achieve with an arbitrary sequence. The formulation by progressive

photon mapping is also more flexible in the sense that no assumptions are made for the

sample generation stage such as non-adaptivity. Although there are certain differences, it

would be interesting to investigate if some theories developed around recursive density

estimation are also applicable to progressive density estimation [20, 129].

5.5.4 Convergence Rate

Based on the follow up work by Knaus and Zwicker [70], we can observe that

progressive density estimate asymptotically converges at the rate of O(N
1
3 ) with α = 2

3 .

According to their results, their alternative formulation as well as the original formulation

both have the following convergence rates for bias and variance:

Variance[LN ] = O
(

1
Nα

)
Bias[LN ] = O

(
1

N1−α

)
, (5.35)

where α ∈ (0,1) is the parameter of progressive photon mapping that decides which

fraction of the newly arrived photons will be kept for the next iteration. Notice that

setting α = 1 makes variance converge at the same rate as unbiased Monte Carlo methods

while keeping bias constant (i.e., Bias = O(1)). This is because α = 1 result in no radius

reduction and progressive radiance estimation turns into histogram density estimation,

which has the same convergence rate as unbiased Monte Carlo methods. Conversely,

setting α = 0 makes bias converge at O(1/N), but variance will be constant.
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Noting that expected squared error of any biased method is a sum of variance and

squared bias, expected squared error in progressive photon mapping has the following

convergence behavior for given α;

E
[
(LN−L)2

]
= O

(
1

Nα

)
+O

(
1

N2(1−α)

)
. (5.36)

The fastest convergence rate is achieved by an α that satisfies O
( 1

Nα

)
= O

(
1

N2(1−α)

)
, that

is, α = 2
3 . Therefore, error in progressive density estimate asymptotically converges at

O(N
1
3 ). Note that this convergence rate is slower than vanilla Monte Carlo integration

methods which is O(N
1
2 ) for N samples. This result however should not be taken as an

indication that progressive density estimate is not useful in practice. The difference in

convergence rates does not describe actual efficiency in light transport simulation as the

results in this chapter demonstrated.

5.6 Extension to Volumetric Density Estimation

The rendering equation assumes that scenes are surrounded by vacuum - in other

words, photons travel along a straight line without changing flux until hit any surfaces.

This assumption breaks when scenes contain participating media that affects paths of

light. This section describes a simple extension of progressive density estimation for

handling participating media. The key is to realize that progressive density estimation

holds for density estimation using different query shapes, and to apply beam radiance

estimation by Jarosz et al [60].

In the combination with beam radiance estimation, the assumption that photon

density is constant in progressive density estimation becomes that radial distribution of

density is constant. Note that this assumption does not require constant density along the

direction of ray, which is usually not constant even if the radius is infinitely small.

Suppose that we have radially constant but axially varying density D(t), where t

is distance along the ray. The number of photons N +M within the cylinder around the

ray with the kernel width R is computed by integration:

N +M =
∫

∞

0
πR2D(t)dt = πR2

∫
∞

0
D(t)dt. (5.37)
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Note that we can take out R outside of the integral because R is constant along the

ray in our application. Based on this setting, we would like to find the new radius

0 < (R−dR)< R which keeps N +αM photons. Using the same integration as above,

we obtain

N +αM = π(R−dR)2
∫

∞

0
D(t)dt. (5.38)

By substituting Equation 5.37, we obtain exactly the same equation as the standard

progressive density estimation for dR

N +αM = π(R−dR)2 N +M
πR2 . (5.39)

Note that we do not need to know axially varying density D(t) explicitly in our computa-

tion of dR. The flux correction part is done exactly the same. The only change we need

to make is to count the number of photons within the cylinder of ray to get Mi.

5.7 Conclusion

This chapter introduced a new light transport simulation algorithm, progressive

photon mapping, that makes it possible to compute solutions with arbitrary accuracy in

scenes with complex illumination. The algorithm is based on a new progressive density

estimation framework which achieves convergence to the correct solution in a single run

for the first time. Our results show that progressive photon mapping is particularly robust

in scenes with complex caustics illumination, and it is more efficient than methods based

on unbiased Monte Carlo integration.
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Chapter 6

Progressive Error Estimation Framework

This chapter introduces an error estimation framework for progressive density

estimation in the context of light transport simulation. The proposed framework char-

acterizes the error by the sum of a bias estimate and a stochastic noise bound, which

is motivated by stochastic error bounds formulation in biased methods. As a part of

the error estimate, this chapter extends progressive density estimation to operate with

smooth kernels. This extension enables the calculation of illumination gradients with

arbitrary accuracy, which the framework uses to progressively compute the local bias

in the density estimate. This chapter also describes how variance can be computed in

progressive photon mapping, which is used to estimate the error due to noise. As an

example application, numerical tests demonstrate how our error estimation can be used to

compute images with a given error threshold. For this example application, the proposed

framework only requires the error threshold and a confidence level to automatically

terminate rendering. The results demonstrate how our error estimation framework works

well in realistic scene configurations.

66
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6.1 Related Work

It is well known that error estimation in unbiased Monte Carlo ray tracing algo-

rithms, such as path tracing [66] and bidirectional path tracing [71, 118], can be done

by computing the variance of the solution. This fact that error in unbiased Monte Carlo

methods appears as variance has been used in many applications. For example, variance

is often used for adaptive sampling in order to find regions with large error [77, 96, 112].

Assuming errors are distributed according the normal distribution, it is also possible to

approximate a stochastic error bound based on variance, which provides an estimated

range of error based on a confidence probability provided by the user. Unfortunately,

the same technique cannot be used as an error estimate for biased Monte Carlo methods,

such as photon mapping [62], since these methods suffer from bias.

Although error estimation in biased methods in general has not been well-studied

compared to unbiased methods, there has been some effort to derive error estimators

for biased methods. An example includes the error bound used to guide the hierarchical

sampling of many point lights in Lightcuts [123] and the first-order Taylor expansion

of error in a hypothetical Lambertian “split-sphere” environment used by irradiance

caching [127].

If we focus on photon density estimation, Myszkowski [86] proposed to use

multiple radii during density estimation to estimate bias, and then selected the estimate

that minimized an error heuristic. Walter [121] improved this heuristic error estimation

using a perceptual metric. Bias compensation [101] also uses multiple radii around the

same point, but uses a binary search to find the radius with the minimum heuristic error.

This method estimates bias by assuming the density estimate with the smallest radius

is an unbiased estimate. These prior techniques all use similar error analyses as ours,

however, none of them provide an actual estimate of error as is possible with unbiased

methods. Our method provides an algorithm to estimate error, especially focusing on

progressive photon mapping. Another difference is that our bias estimation is not based

on multiple radii, but based on a mathematical approximation of bias used in the density

estimation literature [105]. This frees a user from specifying the number of density

estimates with different radii or the minimum radius.
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In order to estimate bias, our method estimates derivatives of the illumination

using kernel derivatives. The same idea is commonly used in standard density estimation

methods [105]; however, the key difference is that our derivation is based on progressive

density estimation. As with progressive density estimation, our derivative estimates

converge to the correct solution with a bounded memory consumption. This is not the

case for standard density estimation methods, which require storing an infinite number of

samples to obtain the correct solution. Gradient computation of light transport itself has

been studied in previous work [126, 97]. This chapter introduces an alternative method

which integrates easily in the proposed error estimation framework.

There are several techniques that reduce the bias of photon density estimation [54,

50, 53]. Although it is conceivable to use our bias estimate for bias reduction, this

application is not the target of the work in this chapter; instead, the goal is to estimate the

bias with reasonable accuracy for error estimation in rendering.

Note that confidence interval estimation is often obtained through bootstrap-

ping [47, 26] outside of graphics. Unfortunately, bootstrapping cannot be directly applied

to progressive photon mapping because it is unclear how to handle the increasing number

of samples in bootstrapping without consuming increasing amount of memory.

6.2 Reformulation of PPM using Normalized Flux

This section reformulates progressive photon mapping in order to derive our

error estimation framework. This alternative formulation uses normalized flux (i.e.,

accumulated flux divided by the number of emitted photons) to formulate progressive

photon mapping, whereas previous formulation used un-normalized accumulated flux.

Table 6.1 summarizes the notation.

In progressive photon mapping, each measurement point tracks the photons

which fall within its search radius R and accumulates their power into τ . After pass i, the

radiance at a measurement point is approximated as:

Li(x, ~ω)≈ τi(x, ~ω)

πRi(x)2 . (6.1)

After the first photon tracing pass, τ1(x, ~ω) stores the flux premultiplied by the
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Table 6.1: Definitions of quantities used throughout this chapter.

Symbol Description

x Position of a measurement point
~ω Outgoing direction of a measurement point
Ne Number of emitted photons in each pass
Ne

i Total number of emitted photons after i passes
Ni Accumulated intercepted photon count at x after pass i

Mi+1 Number of intercepted photons at x during pass i+1
Ri Radius at photon pass i
α Fraction of photons kept after each pass

τi(x, ~ω) Flux within Ri(x) after pass i
τ̃i+1(x, ~ω) Flux within Ri(x) using only photons from pass i
τ ′i+1(x, ~ω) Flux within Ri(x) in pass i+1 (before radius reduction)
τi+1(x, ~ω) Flux within Ri+1(x) after pass i+1 (after radius reduction)

BRDF from all N1 photons landed within radius R1:

τ1(x, ~ω) =
1

Ne
1

N1

∑
p=1

fr(x, ~ω, ~ωp)Φp(xp, ~ωp), (6.2)

where ~ω is the outgoing direction at the measurement point, ~ωp is the incoming direction

of the photon, fr is the BRDF, and Φ(xp, ~ωp) is the flux carried by photon p. The number

of photons emitted in each pass is Ne, and Ne
i = iNe is the total number of emitted

photons up to and including pass i. Note that the radius R1 and number of intercepted

photons N1 both depend on the measurement point x, but the notation here omits these

dependencies for simplicity.

After the first pass, these statistics are refined by performing additional photon

tracing passes, each emitting Ne more photons. During pass i+ 1, Mi+1 additional

photons are intercepted at x. The flux from just these additional photons would be:

τ̃i+1(x, ~ω) =
1

Ne

Mi+1

∑
p=1

fr(x, ~ω, ~ωp)Φp(xp, ~ωp). (6.3)

If we used all Mi+1 photons and kept the radius fixed, we obtain an improved estimate
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for the flux using all Ni +Mi+1 photons by just accumulating this additional flux as:

τ
′
i+1(x, ~ω) =

1
Ne

i+1

Ni+Mi+1

∑
p=1

fr(x, ~ω, ~ωp)Φp(xp, ~ωp),

=
Ne

i τi +Neτ̃i+1

Ne
i+1

=
iτi + τ̃i+1

i+1
.

(6.4)

However, to obtain a consistent estimator, progressive photon mapping must ensure that

the bias and the variance are reduced at each iteration. This is accomplished by reducing

the radius and statistically keeping only a fraction of the intercepted photons at each

iteration. A single parameter α ∈ (0,1) is used to control the fraction of photons to keep

from each pass. If Mi+1 photons are found within search radius Ri during photon pass

i+1, the new accumulated photon count is computed as:

Ni+1 = Ni +αMi+1, (6.5)

and the reduced radius is computed as:

Ri+1 = Ri

√
Ni +αMi+1

Ni +Mi+1
. (6.6)

Due to this radius reduction, we must account for the flux of the photons that

now fall outside the reduced radius. To account for this, the accumulated flux at the next

iteration is computed as:

τi+1(x, ~ω) = τ
′
i+1(x, ~ω)

Ri+1
2

Ri
2 = τ

′
i+1(x, ~ω)

Ni +αMi+1

Ni +Mi+1
. (6.7)

Traditional photon mapping can be considered as a special case of progressive photon

mapping where the radius Ri(x) stays the same (α = 1.0).

6.3 Error Estimation Framework

Stochastic error bounds in unbiased Monte Carlo rendering methods can be

estimated using the variance of the estimate. The reason for this is that the error is caused

purely by noise due to stochastic sampling. However, biased Monte Carlo rendering

methods have bias in addition to noise. Bias is the difference between the estimated
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density without noise and the correct density. Since photon density estimation, including

progressive photon mapping, is a biased rendering method, we need to take into account

both bias and noise in the error estimate.

Note that there is a critical difference between a stochastic bound and a determin-

istic bound. A deterministic bound always correctly bounds the value, but a stochastic

bound only correctly bounds with some probability. This probability is usually provided

by the user as a desirable confidence in the bound. Standard variance-based methods in

fact compute a stochastic bound and, unfortunately, there is little hope of obtaining a

deterministic bound for Monte Carlo estimation. More information on this concept can

be found in statistics textbook such as Hastie et al [49].

In biased methods, the error can be expressed as the sum of bias Bi of the estimate

and noise Ni due to sampling (the exact bias is denoted as Bi since bias is changing at

each iteration in progressive photon mapping):

Li−L = Bi +Ni, (6.8)

where Li is the estimated radiance (i.e., density of photons) and L is the true radiance.

This bias-noise decomposition has been used in prior work (such as [101]) as well and it

is applicable to any biased Monte Carlo methods, including progressive photon mapping.

Now, assuming we know bias Bi and sample variance Vi, the central limit theorem states

that for an infinite number of samples:

Li−L−Bi√
Vi

d→ N(0,1), (6.9)

where d→ expresses that the distribution of the left-hand-side converges to the standard

normal distribution N(0,1). Note that this does not directly estimate error, but rather

estimates the error distribution. Although this relationship is valid only for an infinite

number of samples, it has been shown that assuming this is valid for a finite number of

samples is reasonable in practice [112, 26]. This also indicates that the variance-based

error estimation in unbiased methods is fundamentally an approximation unless we use

an infinite number of samples. Our error estimation framework is also based on a few

approximations.

Based on the error distribution, we can derive a stochastic bound (confidence
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interval) of radiance estimation using the t-distribution:

P(−Ei < Li−L−Bi < Ei) = 1−β

Ei(x) = t
(

i,1− β

2

)√
Vi(x)

i
,

(6.10)

where t
(

i,1− β

2

)
is the 1− β

2 percentile of the t-distribution with degree i. The t-

distribution describes the distribution of the quantity Li−L−Bi√
iVi

. This gives the interval

[−Ei,Ei] that contains Li−L−Bi with probability 1−β . Note that this is a well-known

derivation and interested readers should refer to, for example, Geertsema [32]. It is also

important to note that the interval [−Ei,Ei] is not for “error”, but rather for “error - bias”

at this point.

Shifting both the value Li−L−Bi and the interval [−Ei,Ei] by adding Bi yeilds:

P(−Ei < Li−L−Bi < Ei)

= P(−Ei +Bi < Li−L < Ei +Bi) .
(6.11)

Note that the inequalities inside are equivalent. This operation is valid because bias Bi,

by definition, is a deterministic variable since bias is a difference between an expected

value and the correct value which are both deterministic. In other words, bias just affects

error as a uniform, constant shift of the error distribution.

The above signed confidence-interval can be used as-is, however, it is sometimes

desirable to obtain a single value as the stochastic bound of absolute error. Taking the

absolute value of the bias yields such an expression as

P(−Ei +Bi < Li−L < Ei +Bi)

≤ P(−Ei−|Bi|< Li−L < Ei + |Bi|)

= P(|Li−L|< Ei + |Bi|) ,

(6.12)

which provides Ei + |Bi| as a single-valued stochastic error bound of the absolute error.

This theoretically gives us a confidence interval with larger confidence than the user-

specified confidence 1−β . Note that the above equations do not use the bound of bias,

but bias itself.

Dependence of error on the absolute intensity of radiance is often not desirable

since the human visual system is more sensitive to contrast than absolute differences
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in intensity [34]. Dividing the interval by the estimated radiance obtains the relative

stochastic error bound:

P(|Li−L|< Ei + |Bi|) = P
(∣∣∣∣Li−L

Li

∣∣∣∣< Ei + |Bi|
Li

)
. (6.13)

The interval is
[
0, Ei+|Bi|

Li

]
with confidence larger than 1− β . Note that the above

Equation 6.8 to Equation 6.13 are theoretically valid only if we know the exact bias and

the exact sampled variance.

The challenge here is that both the exact bias Bi and the exact sample variance Vi

are unknown. We therefore need to rely on estimations of bias and variance. Estimation

of bias Bi has been investigated by previous work, but none of them can be extended

to progressive photon mapping. Moreover, we do not have an estimator of variance Vi

in progressive photon mapping. To be concrete, progressive density estimation has a

different formulation than standard density estimation and samples are correlated due to

radius reduction. We therefore have to consider the correlation between samples when

estimating variance. The following sections describe the key contributions of our work:

estimators of Bi and Vi. Note that, in practice, we cannot obtain the exact stochastic

bounds as defined above due to approximations in bias and variance estimators.

6.3.1 Bias Estimation

This section first shows that the bias in progressive density estimation is actually

the average of bias induced by the kernel radii at each iteration

Bi =
1
i

i

∑
j=1

Bp, j, (6.14)

where Bp, j is bias of the radiance estimate using only the photons from the jth pass. This

section then introduces a bias estimator used in standard density estimation, which is

applied for progressive photon mapping.

To obtain Equation 6.14, one can start by expanding the estimated radiance
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L j+1(x) at the j+1th iteration using the refinement procedure described in Section 6.2:

L j+1(x) =
τ j+1(x, ~ω)

πR j+1(x)2 =
R j+1(x)2

R j(x)2

τ ′j+1(x, ~ω)

πR j+1(x)2

=
jτ j(x, ~ω)+ τ̃ j+1(x, ~ω)

j+1
1

πR j(x)2

=
1

j+1

(
j
τ j(x, ~ω)

πR j(x)2 +
τ̃ j+1(x, ~ω)

πR j(x)2

)
=

1
j+1

(
jL j(x)+Lp, j(x)

)
,

(6.15)

where Lp, j(x) is radiance estimate using only the photons from the jth pass. Note

that τ̃ j+1(x,~ω)

πR j(x)2 = Lp, j(x) because τ̃ j+1(x, ~ω) includes the intercepted photons only at the

j+1th iteration before the radius reduction and the radius reduction happens after flux

accumulation (i.e., the radius used in the photon query is R j(x)).

The key observation is that Lp, j is equivalent to the radiance estimate using a

standard density estimation with radius R j because it uses photons only from the jth pass.

Therefore, we can write down E[Lp, j] = L(x)+Bp, j based on the definition of bias in

standard density estimation. Using Equation 6.15 recursively, the progressive density

estimate Li(x) is expressed as:

E [Li(x)] = E

[
1
i

i

∑
j=1

Lp, j(x)

]
= L(x)+Bi (6.16)

=
1
i

i

∑
j=1

(
L(x)+Bp, j

)
= L(x)+

1
i

i

∑
j=1

Bp, j.

Finally, subtracting L(x) from both sides gives us Equation 6.14.

Silverman [105] showed that for standard density estimation bias can be approx-

imated using the Laplacian of the density. We can apply this to each bias value Bp, j

as

Bp, j =
1
2

R j(x)2k2∇
2Lp, j(x)+O

(
∑
k

∂ kLp, j(xk)

∂xk
k

R j(x)4

)
≈ 1

2
R j(x)2k2∇

2Lp, j(x),

(6.17)

where k2 =
∫

t2K(t)~dt is a constant derived from the kernel K(t) (see Appendix 6.8.1

for details). The last step drops the residual term proportional to R j(x)4, thus the bias

estimator always estimates an approximation of the true bias.
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Unfortunately, we cannot directly use this approximation for progressive photon

mapping. This approximation needs to estimate ∇2Lp, j(x) at each iteration and combine

Equation 6.17 and Equation 6.14 to compute the Laplacian of the progressive estimate

∇2Li(x). However, estimating and storing ∇2Lp, j(x) at each iteration in progressive

density estimation is not tractable since this would require unbounded memory and

the method uses a relatively small number of photons per iteration. The following

approximation of the Laplacian of the progressive estimate ∇2Li(x) eliminates the need

to store the Laplacian of each iteration.

First, substituting Equation 6.17 into Equation 6.14, we obtain

Bi =
1
i

i

∑
j=1

Bp, j ≈
1
i

i

∑
j=1

1
2

R j(x)2k2∇
2Lp, j(x). (6.18)

Approximating the summation as (note that we use Ri(x) not R j(x)) yields

≈ 1
2

Ri(x)2k2

(
1
i

i

∑
j=1

∇
2Lp, j(x)

)
. (6.19)

Finally, as with radiance estimation in Equation 6.16, we can expand the Laplacian of

the progressive estimate as ∇2Li(x) = 1
i ∑

i
j=1 ∇2Lp, j(x) using the recursion relation in

Equation 6.15. This provides the following identity

=
1
2

Ri(x)2k2

(
1
i

i

∑
j=1

∇
2Lp, j(x)

)

=
1
2

Ri(x)2k2∇
2Li(x)

= B′i ≈ Bi,

(6.20)

where the approximation of bias is given as B′i. As a result, we can approximate the exact

bias Bi just by computing a progressive estimate of ∇2Li(x). Section 6.4 will describe

more details for how to estimate ∇2Li(x).

We tested our bias estimation for progressive photon mapping on a scene where

an analytic cubic smoothstep function mimics a soft shadow boundary. Figure 6.1(a)

shows a visualization of the resulting radiance function while Figure 6.1(b) compares

the actual bias to our estimated bias. In this scene, samples are generated using the

cubic smoothstep function with importance sampling. Although the estimated bias does
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not exactly predict the actual bias, it captures two peaks of bias around edges of the

smoothstep function as well as zero bias in the smooth region.
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Figure 6.1: The graph and image in (a) show the cubic ramp function (3t2−2t3 with
t = clamp(x−1

2 ) where y = clamp(x) clamps x into [0,1]). The graphs in (b) show
comparisons of the estimated bias and the actual bias in the cubic ramp scene. The
bias estimate uses radius 3.0 and 0.75. The RMS errors of the bias estimation are
3.751×10−3 and 4.746×10−4.

6.3.2 Variance Estimation

In standard kernel density estimation, variance is approximated as [105]:

Vi ≈
1

Ni
eR2

i
k3Li(x), (6.21)
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where k3 =
∫

K(t)2~dt. This approximation assumes that samples are independent and

identically distributed (i.i.d.). Since this is true in the case of traditional photon mapping,

this approximation can be used directly for photon mapping.

Unfortunately, this is not directly usable in progressive density estimation. Note

that the samples in progressive density estimation are each of the density estimations

using samples (i.e., photons in light transport simulation) from only the jth iteration,

Lp, j. Since the radius reduction however depends on all previous photons, Lp, j are not

statistically independent. Furthermore, each Lp, j gives us a biased estimation with a

different radius R j, thus Lp, j are not identically distributed.

The key point is that photon tracing itself is statistically independent between

each iteration in progressive photon mapping. The only dependence between samples

is caused by the radius reduction. Therefore, instead of using samples (Lp, j) directly,

our estimator uses bias-corrected samples Lp, j−Bp, j ≈ Lp, j−B′j. The bias-corrected

samples are expected to be closer to statistically independent since dependence on radius

is removed by Bp, j, and identically distributed because Lp, j−Bp, j is distributed according

to the true radiance L.

Using Lp, j−B j, one can use the following standard procedure to estimate sample

variance Vi at each iteration:

Vi ≈
∑

i
j=1 x j

2−
(

∑
i
j=1 x j

)2
/i

i−1
(6.22)

where x j = Lp, j−B′j is a sample.

Note that Lp, j−B′j is not strictly unbiased or independent because B′j is just an

approximation of true bias. However, numerical experiments indicates that the effect

of this approximation is not statistically significant in practice. Figure 6.2 shows that

the autocorrelation of bias-corrected samples is almost 0 compared to the uncorrected

samples. This indicates that the samples can be considered independent. Figure 6.2

furthermore shows that the bias correction makes the distribution of noise closer to the

Gaussian distribution with mean 0, which is the distribution of ideal i.i.d. samples.
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Figure 6.2: Autocorrelation with one previous sample and noise distribution in the cubic
ramp test scene. This test measured autocorrelation and noise distribution on the point
with largest bias. The graph on the left shows autocorrelation between one previous
sample and current sample. The graph on the right shows the histogram of noise with
500000 independent runs. The Gaussian fit is using the sample variance of computed
noise and mean 0.

6.4 Kernel-based Progressive Density Estimation

The previously described bias estimation method relies on the derivatives of

radiance, ∇2Li(x). To use this method, we must therefore estimate derivatives of radiance

as well as radiance itself during rendering. In traditional photon mapping, derivatives can

be easily estimated by just using derivatives of the kernel. However, estimation based on

this method does not converge into the correct derivatives of radiance without using an

infinite amount of memory (e.g. storing an infinite number of photons or using an infinite

mesh tessellation).

This section provides a new, generalized formulation of progressive density

estimation which allows for arbitrary smooth kernels. This generalized formulation

shows that we can relax the “locally uniform density” assumption used in the original

progressive photon mapping algorithm, and that the kernel should be radially symmetric

and Cn continuous at the boundary to be able to estimate nth order derivatives. This

generalization makes estimation of derivatives straightforward and convergent, which in

turn allows us to estimate bias more accurately.
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x

Scene Radiance 1st order Derivative 2nd order Derivative

Figure 6.3: Visualizations of radiance including 1st and 2nd order derivatives for a
simple scene containing a Lambertian plane and a point light source. The estimated
values using progressive photon mapping with 10K (orange) and 1M (green) stored
photons are compared to the analytic solutions (black). As more photons are used, the
results converge to the analytic solutions.

6.4.1 Kernel-based Flux Correction

Kernel-based density estimation is a standard extension to traditional density

estimation where the contribution of each sample in the density estimate is weighted by

a, typically smooth, kernel K around the query location. In contrast to standard density

estimation methods, simply replacing the constant kernel in the original progressive

density estimate may not work. Specifically, since the radius in progressive density

estimation changes, the accumulated flux needs to be corrected after radius reduction.

To adapt kernel density estimation to progressive photon mapping, we need to derive

an equation similar to Equation 6.7 (relating the accumulated flux before reducing the

radius, τ ′i+1, with the accumulated flux after reducing the radius, τi+1) but in the presence

of a weighting kernel K.

The accumulated flux before reducing the radius can be expressed in the continu-

ous setting as

τ
′
i+1 =

∫ 2π

0

∫ Ri

0
K
(

r
Ri
,θ

)
Lr(r,θ , ~ω)r dr dθ . (6.23)

The above equation parametrizes radiance over a circle using polar coordinates. Note

that τ ′i+1 is a function of (x, ~ω), and Ri is a function of x, but the notation drops this

dependence for simplicity.
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The accumulated flux with a reduced radius Ri+1 is:

τi+1 =
∫ 2π

0

∫ Ri+1

0
K
(

r
Ri+1

,θ

)
Lr(r,θ , ~ω)r dr dθ . (6.24)

These two equations leads to a different expression of τi+1 in terms of τ ′i+1 as:

τi+1 = τ
′
i+1

∫ 2π

0
∫ Ri+1

0 K
(

r
Ri+1

,θ
)

Lr(r,θ , ~ω)r dr dθ∫ 2π

0
∫ Ri

0 K
(

r
Ri
,θ
)

Lr(r,θ , ~ω)r dr dθ

. (6.25)

A change of variable with t = r
Ri

, dr = Ri dt, and analogously for Ri+1, can simplify this

expression:

τi+1 = τ
′
i+1

∫ 2π

0
∫ 1

0 K(t,θ)Lr(tRi+1,θ , ~ω) t Ri+1
2 dt dθ∫ 2π

0
∫ 1

0 K(t,θ)Lr(tRi,θ , ~ω) t Ri
2 dt dθ

,

= τ
′
i+1

Ri+1
2

Ri
2

∫ 2π

0
∫ 1

0 K(t,θ)Lr(tRi+1,θ , ~ω) t dt dθ∫ 2π

0
∫ 1

0 K(t,θ)Lr(tRi,θ , ~ω) t dt dθ
.

(6.26)

Assuming that a kernel is radially symmetric K(t,θ) = K(t), the above expression can

be further simplified by swapping the order of integration:

τi+1 = τ
′
i+1

Ri+1
2

Ri
2

∫ 1
0 K(t) t

∫ 2π

0 Lr(tRi+1,θ , ~ω) dθ dt∫ 1
0 K(t) t

∫ 2π

0 Lr(tRi,θ , ~ω) dθ dt
. (6.27)

Finally, the following assumption that the integrated radial distribution of radiance is

locally constant

C =
∫ 2π

0
Lr(tRi,θ , ~ω) dθ =

∫ 2π

0
Lr(tRi+1,θ , ~ω) dθ , (6.28)

for some constant C will further simplify Equation 6.27 to:

τi+1 = τ
′
i+1

Ri+1
2

Ri
2

�������∫ 1
0 K(t) t C dt

�������∫ 1
0 K(t) t C dt

= τ
′
i+1

Ri+1
2

Ri
2 . (6.29)

This ends up being the same flux correction as in regular progressive photon mapping

in Equation 6.7; however, it uses a weaker assumption and can be used with arbitrary

radially symmetric kernels. Fortunately, it also means that the only change in terms of

implementation is to weight each photon by a kernel function, thus it is straightforward

to implement.
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Note that this assumption is similar, but not as strict as the “locally uniform

density” assumption used in the original progressive photon mapping algorithm. Although

the end result looks similar to the original progressive photon mapping, this distinction is

crucial to use a smooth kernel function as well as its derivatives. The original assumption

implies zero derivatives, which makes it impossible to use for the derivative estimation in

this framework.

6.4.2 Progressive Density Derivative Estimation

The kernel-based estimation gives us an elegant way to estimate derivatives.

Computing the derivatives simply involves replacing the kernel with a corresponding

derivative kernel. The following derivation describes how to compute only the first-order

derivative for simplicity.

The first-order derivative of the radiance estimate can be computed directly as:

∇L(x, ~ω)≈ ∇

(
τi

k1R2
i

)
=

∇τi

k1R2
i
, (6.30)

where the derivative of the accumulated flux is:

∇τi =
1

Ne
i

∇

(
Ni

∑
p=1

K(t) fr(x, ~ω, ~ωp)Φp(xp, ~ωp)

)

=
1

Ne
i

Ni

∑
p=1

(∇K) fr Φp +K (∇ fr)Φp

=
1

Ne
i

Ni

∑
p=1

(∇K) fr Φp.

(6.31)

The gradient operator ∇ denotes a gradient with respect to the position parameter x. The

∇Φp term from the product rule is omitted above because ∇Φp = 0. The ∇ fr term is

also omitted since the BRDF within the radius is locally constant (i.e., BRDF is defined

by the measurement point) thus ∇ fr = 0.

Higher-order derivatives can be derived in exactly the same way by simply taking

higher-order derivatives of the kernel function. The bias estimator in Equation 6.17 uses

the second order derivatives ∇2Li(x). Appendix 6.8.2 describes the details.

In order to estimate derivatives in a progressive manner, we need to express the

accumulated flux derivatives after radius reduction, ∇τi+1, in terms of the accumulated
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value before radius reduction, ∇τ ′i+1. This relation can be established by differentiating

Equation 6.29:

∇τi+1 = ∇

(
τ
′
i+1

R2
i

R2
i+1

)
= (∇τ

′
i+1)

R2
i

R2
i+1

. (6.32)

Hence, any order flux derivative is accumulated using the ratio of the squared radii, just

like accumulated flux. Again, the only change in terms of implementation is replacing

the kernel with derivatives of the kernel.

One condition on the kernel is that derivatives have to be finite in order for this

computation to be meaningful. For example, if we use a Gaussian by cutting off the

kernel to a finite radius, this gives us infinite derivatives along the edge of the kernel,

which is not useful. The same thing happens with a Epanechnikov kernel, which is a

popular choice in standard density estimation. The kernel has to be Cn continuous with 0

at the boundary for computing nth order derivatives (i.e., the nth derivative of the kernel

must go to 0 at the edge). Appendix 6.8.1 provides an example of a kernel function that

satisfies this condition.

In order to investigate the accuracy of the progressive kernel density estimate and

the density derivative estimate, we used a simple scene with a point light source, where

all the values can be computed analytically in Figure 6.3. The estimated radiance values

match the analytical solution very closely with only 10K stored photons. Although the

radiance derivative estimates are noisy with 10K stored photons, they are converging to

the analytical solution with 1M stored photons.

6.5 Results

We implemented the error estimation on top of an implementation of the progres-

sive photon mapping algorithm. All results were computed on a 2.4 GHz Intel Core 2

Q6600 using one core. All the examples used the parameter α = 0.8 in the progressive

photon mapping algorithm.

Figure 6.4 is an analytic investigation of our error estimation. This test used the

cubic ramp scene described in Figure 6.1 with 640000 samples and an initial radius of 1.5.

The user-specified confidence is 1−β = 0.95. The left graph shows that the estimated
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Figure 6.4: Error estimation on the cubic ramp test. The graphs show estimated error
(95 %) and actual error, and estimated bias and estimated noise bound with 640000
samples.

error is in fact above the actual error in almost all locations as specified. The right graph

further demonstrates the influence of bias estimation and noise bound estimation by

plotting each of these components separately. Note that the proposed framework does

not estimate bounds of bias, but bias itself. This graph shows that the bias estimation

captures error due to bias around the slope of the function, whereas the noise bound

estimation captures error due to sampling noise around the flat region of the function.

We tested our framework on three example scenes. The reference renderings are

shown in Figure 6.7. Each iteration uses 15k emitted photons and the confidence was

specified at 90 %. The first scene is a Cornell box with a glass sphere and a metal sphere.

Here noise dominates the error because the scene is composed of mostly large flat regions

of fairly uniform illumination. The second scene consists of three flashlights models. We

modeled the filament, lens and reflector of the flashlight in order to simulate a realistic

lighting pattern. This scene is expected to have larger bias due to sharp caustics from the

flashlights. The third scene is a room with lighting fixtures. Each lighting fixture consists

of a filament, a glass casing, and reflectors which replicates light transport of real-world

lighting fixtures. This scene contains both sharp illumination features due to caustics as

well as flat and continuous illumination, which is a realistic mixture of bias and noise

in error. Note that both the flashlights scene and the room scene have light paths which

are difficult for unbiased rendering methods to handle (such as an SDS path from a very

small light source).
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Figure 6.7 shows behavior of the actual error and the estimated error for the test

scenes. We picked three points to investigate the actual error and the estimated error as

shown in the leftmost column of Figure 6.7. One might notice that our estimated error

does not bound actual error at some points, such as the point A in the room scene. This

is indeed the expected behavior because our error estimation is motivated by stochastic

error bounds. Stochastic error bounds, by definition, bound the actual error with some

probability, so even if our error estimate is perfect, some points where the actual error

is higher than the estimation are to be expected. In practice, since bias estimation is an

approximation, it may also cause extra overestimation or underestimation of the actual

error in addition to what is expected from exact stochastic error bounds.

What is important in practice is whether the estimated error respect the user-

specified confidence. Figure 6.6 shows the computed actual confidence on the test scenes.

The ideal behavior is that the actual confidence stays at the user-specified confidence

all the time. We calculate the actual confidence as the percentage of all error estimates

that are above the true errors obtained using the reference image. We tested 50 % and

90 % as the user-specified confidence. Although the calcuated confidence is not exactly

the same as the specified confidence, the deviation from the user-specified confidence is

within 5 % across many iterations for both 50 % and 90 % in difference scenes.

Figure 6.5 shows the ratio of estimated bias to estimated noise bound using 15M

photons. The estimated error captures noise in flat regions as well as bias due to sharp

features in practical scenes. The bias-to-noise ratio images demonstrate the importance

of each of these components to our overall error estimate. The resulting images show

bias estimation dominates the error estimation around sharp features (shown as red) and

the noise bound estimation dominates the error estimation within flat regions (shown as

green).

6.5.1 Rendering Termination

Predicting a sufficient total number of photons to obtain a desired quality for a

particular scene is difficult. Unfortunately, this is currently set by tedious trial-and-error

by the user. As an example application of our error estimation framework, this section

proposes an automatic way to stop the rendering process without specifying the total
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Table 6.2: The number of triangles in each scene and the number of iterations to reach
the specified error threshold. Note that processing time for each iteration is different for
each scene.

Scene Triangles E thr = 0.5 E thr = 0.25 E thr = 0.125 E thr = 0.0625
Cornell Box 9666 6 55 340 1969
Flashlights 38118 2 36 229 1410

Room 181168 13 93 570 3465

number of photons or the total render time. Instead, the rendering process stops when

the average estimated error over the image is below a user specified threshold. This will

provide a more meaningful termination criterion than the number of photons or the total

rendering time, since it allows the user to focus on the quality of the resulting image and

not abstract parameters involved in the rendering algorithm.

Each iteration simply computes the average estimated error over all the measure-

ment points:

Eave =
1

Nm

Nm

∑
j=1

Ei(x j)+ |B′i(x j)|
Li(x j)

, (6.33)

where Nm is the number of measurement points. The rendering process stops when

Eave ≤ E thr for a given error threshold E thr. Note that our error estimation can be applied

to individually terminate the computation of each measurement point since the error is

estimated per measurement point. Here, average error was used as a proof of concept

that shows our error estimation is indeed useful for a practical application. Since we are

interested in the average error, not per-pixel error, this application uses rather lower 50 %

confidence in order to get tighter error estimation.
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Figure 6.5: The ratio of the estimated bias and the estimated noise bound in error
estimation with 15M emitted photons. The red pixel indicates the bias is dominant and
the green pixel indicates the noise is dominant in the estimated error.

Figure 6.8(a) shows a sequence of color-coded images of actual error with differ-

ent user-specified thresholds. The graphs of actual average relative error and the average

of estimated error is in Figure 6.8(b). Although the actual rendering process terminated

based on 50 % confidence, both graphs show also the resulting estimated average error

using 90 % confidence for reference. The average of the error estimate using 50 %

confidence successfully predicts, without any user input other than the threshold, that

different scenes need a different number of iterations to obtain sufficient quality.

Table 6.2 shows the number of iterations used for achieving the specified threshold.

Note that, even though the flashlight scene has a more complex scene configuration than

the Cornell box scene, the number of iterations to achieve the same threshold is less than

that of the Cornell box. The actual average relative errors achieved with E thr = 0.0625

are 0.0465, 0.0448, 0.0437 for the Cornell box scene, the flashlight scene, and the room

scene respectively. The statement that different scenes need different number of samples

may sound trivial, however, note that we do not know how many samples are needed

unless we actually render an image. The common belief that complex scenes need more

computation is not necessarily true as Table 6.2 demonstrated.

Runtime overhead due to the error estimation is very small. In our implementation,

each pass including the error estimation took 681 ms, 1291 ms, and 720 ms on average

for the Cornell box scene, the flashlight scene, and the room scene respectively, and the

overhead due to the error estimation are 2.2 ms, 5.9 ms, and 3.3 ms which are all less

than 1 % of the rendering time without error estimation.
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actual error. The graph on the left uses 50 % and the graph on the right uses 90 % as the
user-specified confidence.
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shown in the reference images. The specified confidence is 90 %, and each iteration uses
15k photons.
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than the threshold which is shown below. The graphs on the right show actual average
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6.6 Discussion and Limitation

The proposed error estimation framework depends on the number of assumptions.

In general, our experience along with previous work concludes that making assumptions

or approximations is probably inevitable and providing theoretical guarantees that error

estimation works is challenging. This section briefly discusses some issues due to those

assumptions to help readers understand the limitations, rather than suggesting directions

to remove those assumptions.

First, the derivations in Equation 6.10 are exact only if we know the true bias and

variance. Since the framework approximates bias and variance in our error estimation with

a finite number of samples, the resulting error estimation can be arbitrary far away from

the exact error. This might seem to be a critical flaw as an error estimation framework,

however, the variance-based error estimation have also made the approximation of



89

assuming normal distribution of error which is not always valid.

Even with such an approximation, variance-based error estimation has been used

in many practical applications (Section 6.1). The fact that there are approximations

therefore do not render the proposed error estimation completely useless in practice.

However, one should be careful that the framework does not well in all possible scene

settings, and there should be cases where the estimated error is completely useless.

Theoretically characterizing when the proposed estimation fails or succeeds, however,

is not trivial. This could be a fundamental limitation of any error estimation framework

as one could only estimate error from a finite amount of information and if the full

information of error is available, one could just correct any intermediate solution to be

equal to the correct solution.

Second, related to the above issue, the proposed bias estimation is not a consistent

estimator of the true bias (i.e., does not give us the true bias in the limit). This in

turn affects variance estimation, which assumes i.i.d. samples after bias correction.

Equation 6.17 approximates bias using the Laplacian of radiance and one additional

approximation between Equations 6.18 and 6.19 is also needed in order to make bias

estimation practical. The approximation by Laplacian can cause significant error in bias

estimation as either underestimation or overestimation of the correct bias, if the radiance

distribution contains significant higher order derivatives (higher or equal to 4th order) and

the radius is relatively large. However, again, there seems to be little hope of obtaining

correct bias estimation for any biased estimator in general. It is however interesting to

investigate if alternative ways to estimate bias improves the accuracy of error estimation

in practice.

Finally, the application of error estimation for automatic rendering termination

may not be well-suited for some usage. For example, if we want to avoid generating

redundant samples by terminating the rendering process after the desired rendering error

is achieved, our application will result in oversampling due to slight overestimation of

the rendering error. In such cases, more accurate error estimation is needed to avoid

oversampling. Although our overestimation is generally around 1.4 times throughout

many iterations in our experiments as in Section 6.5.1, this could mean taking at least

1.42 = 1.96 times more samples than absolutely necessary, according to O(i−
1
2 ) error
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convergence rate of Monte Carlo integration. Not generating redundant samples would re-

quire the estimated error to be equal to the exact error, which is challenging to accomplish

in general.

6.7 Conclusion

This chapter introduced an error estimation framework for progressive density

estimation in the context of light transport simulation. Based on the derivations of

stochastic error bounds, we characterized error using estimated bias and an estimated

noise bound. The proposed framework estimates bias using derivatives of radiance, and

for this purpose we have extended the progressive density estimate to work with arbitrary

smooth kernels. This kernel-based approach allows us to compute the derivatives of

radiance by using the derivatives of the kernel. This bias estimate also constructs a

variance estimator for the progressive density estimate. The estimated error captures error

due to both bias and noise under complex illumination given user-defined confidence.

The results demonstrated that the proposed error estimate can be used to automatically

stop the rendering process.

6.8 Appendix

6.8.1 Kernels

In order to compute the first and second order derivatives, the kernel function

must be at least twice differentiable. We use a sixth-order smooth kernel [94] for the

progressive kernel density estimation. The kernel is defined as:

K(t) = 1−6t5 +15t4−10t3. (6.34)

Since K is a polynomial, its derivatives can easily be computed as:

K′(t) =−30t4 +60t3−30t2, K′′(t) =−120t3 +180t2−60t.

Note that this kernel and its derivatives become 0 at t = 1. This property is very important

in progressive density estimation as we reduce radius. If the kernel value does not become
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0 at t = 1, each radius reduction incorrectly cut down energy accumulated inside the

radius. The normalization constants are k1 =
2π

7 , and k2 =
10π

168 .

6.8.2 Derivatives of the Kernel

First-Order Derivatives: To compute the density derivatives, we need to evaluate the

spatial derivatives of the kernel ∇K(t) =
[

∂K(t)
∂x , ∂K(t)

∂y , ∂K(t)
∂ z

]
. The partial derivative with

respect to the x-component can be computed using the chain rule as follows:

∂K(t)
∂x

=
∂K(t)

∂ t
∂ t
∂x

= K′(t)
∂ t
∂x

. (6.35)

The first term is the derivative of the kernel itself. Appendix 6.8.1 discusses this point in

more detail.

To compute the second term, we substitute the definition t = ‖x−xp‖
R , which results

in:

∂ t
∂x

=
1
R

∂‖x− xp‖
∂x

=
1
R

x− xp

‖x− xp‖
. (6.36)

Note that in reality the radius R depends on the position x, but the above expression

assumes that it is constant for the sake of computing derivatives.

The partial derivatives with respect to the other axes are computed analogously,

resulting in the following compact vector-valued expression:

∇K(t) =
K′(t)

R
x− xp

‖x− xp‖
. (6.37)

Second-Order Derivatives: Estimation of the bias and error needs computation of the

Laplacian of the density, which involves deriving second-order derivatives of the kernel

function, ∇2K(t) = ∂ 2K(t)
∂x2 + ∂ 2K(t)

∂y2 + ∂ 2K(t)
∂ z2 . The bias estimation does not require cross

derivatives, but the same principal can be applied for estimating cross derivatives. To

compute the second-order derivatives, we start by differentiating the x-component of the

first order derivatives from Equation 6.37 and then applying the product and chain rules:

∂ 2K(t)
∂x2 =

∂

∂x

(
K′(t)

R
x− xp

‖x− xp‖

)
, (6.38)

=
1
R

(
K′′(t)(x− xp)

2

‖x− xp‖2R
+K′(t)

‖x− xp‖2− (x− xp)
2

‖x− xp‖3

)
.
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The second-order derivatives with respect to the y- and z-components are computed

analogously.

6.8.3 Alternative Approaches for Estimating Derivatives

Instead of using a smooth kernel, we can also apply the idea of finite differences

to density estimation with the superposition of multiple constant kernel functions to

estimate derivatives.

In finite differences, first order derivative and second order derivative of the

function L(x) are approximated as follows:

L′(x)≈ L(x+∆x)−L(x−∆x)
2∆x

, (6.39)

L′′(x)≈ L(x+∆x)+L(x−∆x)−2L(x)
∆x2 , (6.40)

where ∆x is a small value often called step size in finite differences. We use a 1D example

for simplicity, but the result would extend to higher dimensional estimates. The basic

idea is to estimate L(x+∆x) and L(x−∆x) using density estimation, such that ∆x goes

to 0 as we add more samples. To estimate L(x+∆x) and L(x−∆x), we use the following

kernels:

K+
1 (t) =

1 (h > t ≥ 0)

0 (t < 0),
(6.41)

K−1 (t) =

1 (h >−t ≥ 0)

0 (−t > 0),
(6.42)

We omitted the normalization constant for clarity. Based on these kernels, L(x+ h
2) is

estimated using K+
1 , and L(x− h

2) is estimated using K−1 . Note that the position that

estimate L(x) depends on h with this kernel. We can think of density estimation as

a method to compute the average density over the kernel support. The position that

we estimate the average value is the centroid of the constant kernel function. Given

estimations of L(x+ h
2) and L(x− h

2), L′(x) is computed just like using finite differences:

L′(x)≈
L(x+ h

2)−L(x− h
2)

h
. (6.43)
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We can apply the same idea to compute second order gradient. In addition to the kernel

to estimate L(x), we use the following kernel:

K2(t) =

1 (3h > |t| ≥ 0)

0 (3h≤ |t|).
(6.44)

We can consider that density estimation using this kernel gives us L(x+h)+L(x−h)+L(x)
3 .

Since we already have the estimate of L(x) using the standard progressive density estimate,

the second order derivative is computed as

L′′(x)≈3
L(x+h)+L(x−h)+L(x)

3 −L(x)
h2

=
L(x+h)+L(x−h)−2L(x)

h2 .

(6.45)

In order to get correct results, we also need to modify the flux correction. Flux

for L′(x) should be multiplied by
(√

N+αM
N+M

)3
, and flux for L′′(x) should be multiplied

by
(√

N+αM
N+M

)4
, because there is division by h3 for L′(x) and h4 for L′′(x).

To estimate density in 3D, we set the shape of K+
1 and K−1 to be a half circle and

the shape of K2 to be a rectangular aligned to the direction of derivative (i.e., elongated

along the direction of derivative). Note that we need to use the centroid of half circle

to estimate h for the first order derivative. We found this approach works as well as the

derivative kernels approach described in the previous sections, though we did not employ

this approach in any of the results demonstrated in this chapter.
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Chapter 7

Stochastic Progressive Density Estimation

This chapter extends progressive photon mapping for simulating global illumina-

tion with effects such as depth-of-field, motion blur, and glossy reflections. We introduce

a new formulation of progressive density estimation, stochastic progressive density esti-

mation, which makes it possible to compute the correct average density value for a region.

The key idea is to use shared statistics within the region rather than isolated statistics

at a point. The resulting light transport algorithm algorithm, stochastic progressive

photon mapping, is easy to implement and efficiently handles scenes with distributed ray

tracing effects with the robustness of progressive photon mapping for difficult lighting

configurations.

94
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7.1 Related Work

The problem we are dealing with in this chapter is the computation of the average

density/radiance value over an unknown region. The shape of the region is unknown

before computation, meaning there is not explicit representation of the shape. Such

a problem arises when distributed ray tracing [17] is used for adding depth-of-field,

motion blur, and glossy reflections/refractions. For example, with motion blur, each

pixel compute the average radiance that is coming toward this pixel over time. A set

of the points that contribute to this pixel forms the region for computing the average.

Unbiased Monte Carlo ray tracing methods can include these effects without changing

the algorithms; however, this class of methods is not robust to complex illumination

settings as Chapter 5 already demonstrated. This chapter extends progressive photon

mapping in order to develop a new rendering algorithm that is robust to the combination

of complex illumination settings and distributed ray tracing effects.

Computing the average density/radiance over an unknown region is not a typical

problem setting in density estimation methods outside graphics. We are not aware of

existing work in density estimation literatures that deals with this kind of problem settings

outside graphics (refer to [105, 128] for example). In computer graphics, there are few

related methods that extend the density estimation for computing average density values.

Time dependent photon mapping [12] computes the average density of photons over

time by extending the space of density estimation into 4D (3D position and time). The

beam radiance estimate [60] computes the integration of density values on a line of

sight, which is essentially a weighted average of the density values, in order to accelerate

rendering of participating media. Unfortunately, these methods still store photons in

a photon map similar to the standard photon mapping, thus suffering from unbounded

memory consumption for the correct solutions. On the other hand, the proposed method

in this chapter can compute the correct average density values with bounded memory

consumption.
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Distributed Ray Tracing PassEye Pass Photon Pass

PPM

SPPM

Figure 7.1: Difference between the algorithms of progressive photon mapping (PPM)
and stochastic progressive photon mapping (SPPM). In order to compute the average
radiance values, SPPM adds a new distributed ray tracing pass after each photon tracing
pass. The photon tracing algorithm itself stays the same, but PPM uses a fixed set of
hit points (shown as squares), whereas SPPM uses randomly generated hit points by the
distributed ray tracing pass.

7.2 Overview

The motivation is that we need to compute the average density of photons over

a region in order to simulate distributed ray tracing effects. For example, motion blur

requires computing the average radiance value over a visible part of a scene for a given

shutter time, and depth-of-field needs the average radiance value over a part of scene

that is visible through a lens. The original progressive density estimate is restricted to

computing the correct density of photons at a point~x. The next section describes why

this is inconvenient for computing the average density values.

The key idea is to use shared statistics over a region that we would like to compute

the average density value for. Using the shared statistics, the stochastic progressive density

estimate approximates the average density of photons (i.e., radiance) L(S, ~ω) over the

region S as:

L(S, ~ω)≈ τi(S, ~ω)

Ne(i)πRi(S)
2 , (7.1)

where i is the number of photon passes as before, τi(S,~w) is the shared accumulated flux

over the region S, and Ri(S) is the shared search radius. The updating procedure of the
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shared statistics is:

Ni+1(S) = Ni(S)+αMi(~xi) (7.2)

Ri+1(S) = Ri(S)

√
Ni(S)+αMi(~xi)

Ni(S)+Mi(~xi)
(7.3)

Φi(~xi, ~ω) =
Mi(~xi)

∑
p=1

fr(~xi, ~ω, ~ωp)Φp(~xp, ~ωp) (7.4)

τi+1(S, ~ω) = (τi(S, ~ω)+Φi(~xi, ~ω))
Ri+1(S)

2

Ri(S)
2 , (7.5)

where ~xi is a randomly generated position within S and Ni(S) is the shared local photon

count. Note that the updating procedure is the same as before, except that our formulation

uses a randomly generated position~xi in S. The next section describes why this change

allows to estimate the average radiance value over S. We call this extension as stochastic

progressive density estimation since the algorithm stochastically generates a random

position~xi in S.

The only algorithmic change from the original progressive photon mapping is

that each hit point is randomly generated within the region S by distributed ray tracing

after each photon pass. Figure 7.1 summarizes the difference between the algorithms of

progressive photon mapping and the extended algorithm. Even though the modification

is simple, the stochastic progressive density estimate converges to the correct average

density over S for i→ ∞ without the explicit knowledge of S in advance:

L(S, ~ω) = lim
i→∞

τi(S, ~ω)

Ne(i)πRi(S)
2 . (7.6)

Note that stochastic progressive density estimation turns into the original progressive

density estimation if S is a point.

7.3 Extended Formulation using Shared Statistics

In order to explain the new formulation, we first describe how to compute the

average radiance value using the original progressive density estimate. Suppose that we

have n sampled positions over the region S,~x1, . . . ,~xn. Using a Monte Carlo integration
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method, the original progressive density estimate can approximate the average density of

photons in the region S as:

L(S, ~ω) =
1
‖S‖

∫
S

L(~x, ~ω)d µ(S)

= lim
n→∞

1
n

n

∑
k=1

L(~xk, ~ω)≈ 1
n

n

∑
k=1

L(~xk, ~ω)

=
1
n

n

∑
k=1

lim
i→∞

τi(~xk, ~ω)

Ne(i)πRi(~xk)
2 .

(7.7)

We consider uniform sampling of~xk for brevity of the discussion. Using non-uniform

sampling follows the same discussion with premultiplied weight for L(~xk, ~ω).

This Monte Carlo integration approach is not scalable for a large n because the

progressive density estimate needs to keep track of statistics at each radiance sample (i.e.,

storing n sets of statistics in total). Moreover, the memory requirement for computing the

correct average radiance value again becomes unbounded because n needs to be infinite.

The goal of stochastic progressive density estimation is to compute the correct average

density value without storing infinite sets of photon statistics. The rest of this section

describes how our formulation achieves this goal.

The extended formulation assumes that the initial radius R0 is constant within S,

and the value of α is also constant within S. R0 and α can still vary between different S

(e.g., different R0 per pixel). In addition, the derivation in the following only consider

non-adaptive photon tracing. To be precise, we assumed that the photon tracing strategy

is not affected by the photon statistics. Note that it does not mean the photon tracing

cannot use anything other than uniform random sampling, since importance sampling is

still considered non-adaptive under this definition. Under these assumptions, we obtain

the following equation:

Ri+1(~x) = Ri(~x)

√
Ni(~x)+αMi(~x)
Ni(~x)+Mi(~x)

= Ri(~x)

√
CNL(~x)Ri(~x)

2 +αCML(~x)Ri(~x)
2

CNL(~x)Ri(~x)
2 +CML(~x)Ri(~x)

2

= Ri(~x)CP,

(7.8)

where CN , CM, and CP are constants independent of ~x. This equation states that the

rate of radius reduction is independent of the position ~x in S, thus Ri(~x) itself is also
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independent of~x if R0 is constant. We used the property that the number of new photons

and local photon count Ni(~x) are both proportional to the search area πRi(~x)
2 and its

true radiance L(~x) (or true photon density in general). In practice, this equation is only

approximately true because Ni(~x) and Mi(~x) are stochastic variables. However, we found

that it is reasonably true as we see that the reduction rate of the radius is almost constant

in the corresponding graph of radius in Chapter 5 (Figure 5.3). The following work by

Knaus and Zwicker [70] also theoretically confirmed that this is a valid assumption.

7.3.1 Shared Radius

Based on the above observation, we can use a single radius value Ri(~x0) instead

of Ri(~xk), in order to compute the average.

1
n

n

∑
k=1

lim
i→∞

τi(~xk, ~ω)

Ne(i)πRi(~xk)
2 =

1
n

n

∑
k=1

lim
i→∞

τi(~xk, ~ω)

Ne(i)πRi(~x0)
2 . (7.9)

This formulation removed the dependency of R(~x) on ~x. We now describe how the

dependency on an arbitrary location~x0 can be further removed by using the shared radius

Ri(S) from Equation 7.3. Using the shared radius, the average radiance value is computed

as:

L(S, ~ω) = lim
n→∞

1
n

n

∑
k=1

L(~xk, ~ω)

= lim
n→∞

1
n

n

∑
k=1

lim
i→∞

τR(S),i(~xk, ~ω)

Ne(i)πRi(S)
2 .

(7.10)

where τR(S),i(~xk, ~ω) is modified accumulated flux by changing the radius to Ri(S). We

show how this equation is derived in the following. Since accumulated flux is proportional

to the area of the search region πRi(~x0)
2, τR(S),i(~xk, ~ω) is defined as:

τR(S),i(xk, ~ω) =
Ri(S)

2

Ri(x0)
2 τi(~xk, ~ω). (7.11)
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Using this equation, we obtain:

lim
i→∞

τR(S),i(~xk, ~ω)

Ne(i)πRi(S)
2 = lim

i→∞

Ri(S)
2

Ri(~x0)
2

τi(~xk, ~ω)

Ne(i)πRi(S)
2

= lim
i→∞

Ri(S)
2

Ri(~x0)
2

Ri(~x0)
2

Ri(S)
2

τi(~xk, ~ω)

Ne(i)πRi(~x0)
2

=CR
1

CR
L(~xk, ~ω) = L(~xk, ~ω).

(7.12)

The last step is valid only if limi→∞ Ri(S)
2/Ri(~x0)

2 = CR with a non-zero constant CR.

In other words, Ri(S) should be reduced on the same order of Ri(~x0) in order this step

to be valid. We provide the derivations that show this is true in Appendix A. Note that

an arbitrary Ri(S) does not necessarily satisfy this condition, and our choice of Ri(S) is

crucial in this step. As a result of this derivation, we can replace each radius Ri(~xk) by a

single shared radius Ri(S), and its estimated radiance value still converges to the correct

radiance value at~xk. The shape of search region for range queries is still a sphere and its

radius is defined by the shared radius Ri(S).

7.3.2 Shared Accumulated Flux

Equation 7.10 still needs storing τi(~xk, ~ω) at each ~xk in order to compute the

correct average radiance value over S. This approach needs to keep track of an infinite

number of accumulated flux values and positions over S, which is infeasible. Approxima-

tion using a fixed number of τi(~xk, ~ω) is possible, but this approach is not consistent. The

shared accumulated flux value in Equation 7.5 solves this problem by storing a single

accumulated flux value with a random position ~xi at each photon pass. This section

describes how this can be achieved. Replacing τi(~xk, ~ω) by the shared accumulated flux

τi(S, ~ω), we obtain the following estimate:

L(S, ~ω)′ = lim
i→∞

τi(S, ~ω)

Ne(i)πRi(S)
2 . (7.13)
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Table 7.1: Rendering statistics of the experiments. We show a single rendering time for
each scene because both PPM and SPPM used the same rendering time. PPM passes
are the numbers of photon tracing passes, and SPPM passes are the numbers of photon
tracing passes as well as the numbers of distributed ray tracing passes. We used 500,000
emitted photons per pass in both methods.

Scene Triangles Time [min] PPM SPPM
Cornell Box 38 50 899 742

Cornell Box with Wall lights 7660 50 234 220
Furry Bunny 371247 132 1722 1197

Transparent Dices 370860 110 287 195
Alarm clocks 119856 480 1101 1202

Tools 56486 200 353 484

In order to show L(S, ~ω)′ = L(S, ~ω), we take the difference as:

L(S, ~ω)−L(S, ~ω)′

= lim
n→∞

1
n

n

∑
k=1

(
lim
i→∞

τR(S),i(~xk, ~ω)

Ne(i)πRi(S)
2

)
−

τR(S),i(S, ~ω)

Ne(i)πRi(S)
2

= lim
n→∞

1
n

n

∑
k=1

lim
i→∞

τR(S),i(~xk, ~ω)− τi(S, ~ω)

Ne(i)πRi(S)
2

= lim
n→∞

lim
i→∞

Ei

Ne(i)πRi(S)
2 ,

(7.14)

where we defined Ei = 1/n∑
n
k=1(τR(S),i(~xk, ~ω)− τi(S, ~ω)). This difference converges to

zero if the denominator Ne(i)πRi(S)
2 diverges with an infinite number of passes and |Ei|

is bounded. The former is true because limi→∞ Ne(i)πRi(~x0)
2 is divergent (one of the

conditions of consistency) and Ri(S)
2/Ri(~x0)

2 is a non-zero constant as in Section 4.1.,

which shows that limi→∞ Ne(i)πRi(S)
2 is also divergent. We provide the details how |Ei|

is bounded in Appendix B. Although the final result looks simple, our choice of τi(S, ~ω)

is again crucial to bound |Ei|. Finally, we can estimate the correct average radiance value

as:

L(S, ~ω) = L(S, ~ω)′ = lim
i→∞

τi(S, ~ω)

Ne(i)πRi(S)
2 . (7.15)
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Figure 7.2: Error plot of 1D integration tests. We performed numerical integration of
functions using our method. The functions are y0(x) = 0.75+0.25sgn(x−0.5) (step),
y1(x) = x2 (quadratic), y2(x) = 4

√
1− x2 (pi), and y3(x) = x (linear), where the range of

integration is x ∈ [0,1] for all functions. We compute the relative error as E(y) =
∣∣∣Y−y

Y

∣∣∣,
where Y is the analytical value of integration and y is a current estimate. The plot is using
the average over 10 different random number sequences. The errors converge to zero as
the number of photon passes increases.

7.4 Results

This section presents results based on our implementation of progressive photon

mapping (PPM) and our stochastic progressive photon mapping (SPPM). As we noted

initially, the implementation of SPPM is almost the same as PPM. One change is generat-

ing a set of new hit points by distributed ray tracing [17] after each photon pass. Another

change is to assign shared statistics to each pixel, not each hit point. This is because the

statistics are shared over the region S, and S is usually assigned to each pixel.

All of our test scenes have been rendered on a 2.4 GHz Intel Core 2 Q6600 using

one core. The resolution of the images is 640× 480, except for the bunny scene and

the Cornell box scenes which use 512×512. All rendering comparisons are equal time,

except for the progressive sequences in Figure 7.4. In all the scenes, each photon pass

traced 500,000 photons and α is set to 0.7. Table 7.1 summarizes the statistics of our

experiments.
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PPM SPPM

Figure 7.3: Cornell box with a glossy floor. The BRDF of the floor is the modified
Phong model with a glossiness value of 25. The results of PPM are noisy because glossy
reflections cause large variations of photon contributions to viewing directions. The
bottom row replaced the area light source in the original Cornell box with two wall lights.
Even though this change is simple from a user’s perspective, it makes unbiased methods
inefficient because of highly glossy reflections of caustics from the wall lights. SPPM
is still as robust as PPM for this illumination setting, while rendering glossy reflections
with less noise in the same rendering time.

Figure 7.2 shows a numerical validation of SPPM with a 1D function integration.

We used 1D functions where the results of integrations over [0,1] are known, and
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performed numerical integrations by estimating the average values over S = [0,1] with

SPPM. In each photon pass, photons (samples) are generated using rejection sampling so

that they are distributed according to the function. We used 50,000 photons per pass and

took the average error over 10 different runs in this experiment. As we can see, errors of

SPPM are converging to zero as the number of photon tracing passes increases.

In order to highlight the improvement over PPM, we rendered the Cornell box

with a glossy floor as in Figure 7.3. The floor uses the modified Phong mode [72] with

a glossiness value of 25. Note that the results with PPM have significant noise on the

floor. PPM is not efficient for glossy reflections because incoming directions of photons

that contribute to the viewer direction are narrow. SPPM efficiency handles glossy

reflections by tracing once bounce camera rays according to the BRDF and computing

the hemispherical integration, similar to the final gathering step in standard photon

mapping [62]. Note that a higher glossiness value makes PPM further inefficient because

a smaller range of incoming directions contributes to the viewer direction. On the other

hand, the performance of SPPM stays the same regardless of the glossiness value since

extra rays are sampled according to the BRDF.

We could perform the same procedure with the original PPM by tracing rays

and storing multiple hit points per pixel. However, this approach would require many

hit points to obtain visually pleasing results, and the results are not converging to the

correct solution with a fixed number of samples per pixel. SPPM does not require to

store extra hit points, and the results converge to the correct solution just by computing

more passes. Note that unbiased methods become inefficient to render this scene if the

area light source is replaced by a light bulb. Such an example is shown in the bottom

row of Figure 7.3, where the area light is replaced by two wall lights. This is because

light bulbs illuminate the scene with caustics, causing SDS paths of the highly glossy

reflections of caustics which are difficult to render with unbiased methods.

Figure 7.4 shows a progressive sequences of renderings for the Cornell box scene

and the RMS errors compared to a reference result. For the reference result, we used

the converged result generated using PPM with a large number of photon passes. We

show images from both PPM and SPPM using the same number of photon passes, not

equal time comparisons. Note that each pass of SPPM takes approximately 10 percent
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longer rendering time than PPM, because of additional distributed ray tracing per pass.

However, SPPM can render visually pleasing results with a smaller number of photon

passes in comparison to PPM, which makes SPPM worth the additional computational

cost per pass. In addition, the RMS errors of SPPM are consistently lower than PPM.

Figure 7.5 shows the applications to anti-aliasing and motion blur. PPM used 1

sample per pixel to have equal memory consumption with SPPM. In order to correctly

render motion blur with PPM, we sampled the time when hit points are generated (16

samples per pixel are used). The sampled time value is assigned to each hit point so that

each photon contributes to hit points in the same time sample. Using the same rendering

time, SPPM can include anti-aliasing and motion blur with a constant amount of memory

consumption independent of the number of samples per pixel. PPM needs an increasing

amount of memory in order to increase the number of samples per pixel.

Figure 7.6 shows a rendering with depth-of-field. PPM used 16 hit points (i.e.,

16 radiance samples) per pixel, which consumed approximately 1GB of memory in

our implementation. Note that the scene is dominated by SDS paths because all the

illumination is due to the desk lamp with a light bulb outside the view, and we observe the

scene through a lens to achieve depth-of-field. Although PPM can handle SDS paths, the

result is noisy because the number of radiance samples per pixel is insufficient to remove

noise due to depth-of-field. SPPM renders the same scene with less noise using 16 times

less memory consumption. We also provide the comparison with bidirectional path

tracing (BDPT) with multiple importance sampling [118] in this scene. The comparison

confirms that this scene cannot be rendered efficiently by BDPT due to SDS paths.

Finally, we show a rendering of a scene with depth-of-field and glossy reflections

in Figure 7.7. PPM used 16 hit points per pixel as before. We used the modified Phong

model with the glossiness value of 100. The entire scene is illuminated by the flashlight

in front, which causes highly glossy reflections of caustics on the metallic parts of plier

and bolts. The result with PPM suffers from both noise due to both glossy reflections

and depth-of-field. PPM consumed approximately 16 times more memory than SPPM

because PPM uses 16 samples per pixel. In the same rendering time with smaller memory

consumption, SPPM renders this scene with less noise.
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Figure 7.4: Progressive sequences of rendering of Cornell box and the RMS errors. The
number of photon passes of the images is 1, 8, 64, 512, and 4096 correspondingly. The
graph shows the RMS errors from the converged result with PPM. The result with SPPM
converges visually pleasing results with a smaller number of photon passes, and the RMS
errors are consistently lower than the result with PPM. The rendering time of SPPM is
approximately 10 percent longer than that of PPM for the same number of photon passes.

7.5 Conclusion

This chapter presented an extension of progressive density estimation, called

stochastic progressive density estimation, that makes it possible to compute the correct

average density value over a region. We modify progressive density estimation by adding

a stochastic process to each iteration that generates new locations of measurement points.
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Figure 7.5: Furry bunny illuminated by the skylight and moving transparent dices with
motion blur. The dices are illuminated by the sunlight, and blur of caustics and shadows
is due to motion blur of the dices. The close-ups compare the results with PPM and SPPM
(right columns), and we show the entire rendered images with SPPM. The comparisons
are equal time and equal memory consumption (i.e., PPM used 1 sample per pixel).

The key insight is to use shared statistics over the region for taking the average. Based on

this extension, we presented an improvement of progressive photon mapping as stochas-

tic progressive photon mapping. The results show that stochastic progressive photon

mapping is robust in scenes with complex illumination settings including distributed ray

tracing effects, such as depth-of-field, motion blur, and glossy reflections/refractions.
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7.6 Appendix

7.6.1 Convergence of Ratio of Radius

This section shows that the ratio limi→∞ Ri(S)2/Ri(~x0)
2 is convergent and non-

zero in the following. We first expand the ratio using its definition:

lim
i→∞

Ri(S)2

Ri(~x0)2 =
∞

∏
j=0

(N j(S)+αM j(~x j))(N j(~x0)+M j(~x0))

(N j(S)+M j(~x j))(N j(~x0)+αM j(~x0))
(7.16)

In the following derivations, we use the notations NS = N j(S), N0 = N j(~x0), M j = M j(~x j),

and M0 = M j(~x0) for readability. Using these notations, we further expand the equation

and obtain the upper bound as:

=
∞

∏
j=0

(NS +αM j)(N0 +M0)

(NS +M j)(N0 +αM0)

=
∞

∏
j=0

(
1+

(1−α)(NSM0−N0M j)

NSN0 +αNSM0 +M jN0 +αM jM0

)

=
∞

∏
j=0

(
1+

(1−α)N0M0(
NS
N0
−Pj)

NSN0 +αNSM0 +M jN0 +αM jM0

)

=
∞

∏
j=0

(
1+Q j

)
.

(7.17)

where Pj =
M j
M0

and we defined Q j as:

Q j =
(1−α)N0M0(

NS
N0
−Pj)

NSN0 +αNSM0 +M jN0 +αM jM0
. (7.18)

Taking the logarithm of both sides, this infinite product converges if and only if the

infinite sum

Q =
∞

∑
j=0

Q j (7.19)

converges as each term of the infinite product is always positive. Note that Q j is a random

variable. Assuming non-adaptive photon tracing, we can consider M0 = M j(~x0) = 1 for a

large enough j. We thus obtain

lim
j→∞

NS

N0
= lim

j→∞

α ∑ j M j

α ∑ j M0
= lim

j→∞

∑ j M0Pj

∑ j M0
= E[Pj], (7.20)
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so the numerator NS
N0
−Pj is symmetric around zero, therefore, E[Q j] = 0. Furthermore,

we obtain the following:

∞

∑
j=0

Var[Q2
j ] =

∞

∑
j=0

E[Q2
j ]<

∞

∑
j=0

C1

( j+1)2 < ∞, (7.21)

where C1 is a constant because the numerator of Q j is bounded. This derivation also uses

the fact that the lower bound of NS is α( j+1) (i.e., only one photon is captured), and

the upper bound of M0 is Ne(1) (i.e., all the emitted photons are captured).

Using E[Q j] = 0 and ∑
∞
j=0 Var[Q2

j ]< ∞ with Kolmogorov’s one series theorem,

the infinite sum Q almost surely converges. Therefore, the infinite product also almost

surely converges. We then show that the ratio is non-zero by showing the reciprocal of

the ratio is bounded. Namely, we show that limi→∞ Ri(~x0)
2/Ri(S)2 is convergent. Similar

to before, we expand the ratio as follows:

lim
i→∞

Ri(~x0)
2

Ri(S)2 =
∞

∏
j=0

(NS +M j)(N0 +αM0)

(NS +αM j)(N0 +M0)

=
∞

∏
j=0

(
1+

(1−α)(N0M j−NSM0)

NSN0 +NSM0 +αM jN0 +αM jM0

)
=

∞

∏
j=0

(
1+Q′j

)
.

(7.22)

The rest of the derivation is the same as before, but with the opposite sign of random

variables and use Q′j instead of Q j.

7.6.2 Bound of |Ei|

This section shows that |Ei| is bounded by a constant. In the following derivation,

we first consider n|Ei| for the purpose of discussion. We expand n|Ei| using the definition

of τi(S, ~ω) and τR(S),i(~xk, ~ω):

n|Ei|=

∣∣∣∣∣ n

∑
k=1

(
τR(S),i(~xk, ~ω)− τi(S, ~ω)

)∣∣∣∣∣
=

∣∣∣∣∣ n

∑
k=1

(
i

∑
j=0

Φ j(~xk)−
i

∑
j=0

Φ j(~x j)

)∣∣∣∣∣ .
(7.23)
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Note that we can use the same Φ j(~x) to expand both τR(S),i(~xk, ~ω) and τi(S, ~ω) because

both accumulated flux values use the same search radius R(S) as a result of Section 4.1.

Since photon flux Φ j(~x) is proportional to the radiance value L(~x) (i.e., Φ j(~x) divided

by the area is radiance) and radius is the same everywhere in S (Equation 7.8), we can

further expand the above equation into:

=
1

L(~x0)

∣∣∣∣∣ n

∑
k=1

(
i

∑
j=0

L(~xk)Φ j(x0)−
i

∑
j=0

L(~x j)Φ j(x0)

)∣∣∣∣∣
=

1
L(~x0)

∣∣∣∣∣ n

∑
k=1

i

∑
j=0

Φ j(~x0)(L(~xk)−L(~x j))

∣∣∣∣∣
=

1
L(~x0)

∣∣∣∣∣ i

∑
j=0

Φ j(~x0)
n

∑
k=1

(
L(~xk)−L(~x j)

)∣∣∣∣∣ .
(7.24)

Φ j(~xk) =
L(~xk)Φ j(x0)

L(~x0)
is only approximately true because Φ j(~xk) is estimated using a finite

number of photons per pass. However, this error does not diverge as j→ ∞ (i.e., we

at least have one photon per pass), so we can ignore this error in this derivation. Since

photon flux Φ j(~x) is monotonically decreasing as j→ ∞ and i = n in our formulation,

we obtain the upper bound as:

n|Ei| ≤
Φ0(~x0)

L(~x0)

i

∑
j=0

∣∣∣∣∣ n

∑
k=1

(
L(~xk)−L(~x j)

)∣∣∣∣∣
=

Φ0(~x0)

L(~x0)

n

∑
j=0

∣∣∣∣∣ n

∑
k=1

L(~xk)−nL(~x j)

∣∣∣∣∣
(7.25)

Assuming the variation of L(~x) is bounded (i.e., 0≤ L(~x)< ∞), the double summation

above can be written as C2n, where C2 is a constant. Dividing the both side by n, we

obtain:

|Ei| ≤
Φ0(~x0)

L(~x0)

1
n

C2n =
Φ0(~x0)

L(~x0)
C2, (7.26)

Therefore, |Ei| is bounded by a constant.
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Bidirectional Path Tracing Progressive Photon Mapping

Stochastic progressive photon mapping

Figure 7.6: Alarm clocks illuminated by a desk lamp. The desk lamp with a light bulb
is outside the view and illuminates the clocks. The scene is rendered using a thin lens
model for depth-of-field. The combination of the lens for depth-of-field and caustics
from the desk light makes the entire scene dominated by SDS paths, which is difficult
to render with unbiased methods such as BDPT. PPM can handle such an illumination
setting, but the close-ups show rendering of depth-of-field causes visually noticeable
noise due to the fixed number of samples per pixels. SPPM robustly handles illumination
by the desk lamp as well as depth-of-field in the same rendering time with less memory
consumption.
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Progressive photon mapping

Stochastic progressive photon mapping

Figure 7.7: Tools with a flashlight. The scene is illuminated by caustics from the
flashlight, which cause SDS paths on the flashlight and highly glossy reflections of
caustics on the bolts and plier. The flashlight and the plier are out of focus. Using
the same rendering time, our method (bottom) robustly renders the combination of the
complex illumination setting and the distributed ray tracing effects where progressive
photon mapping is inefficient (top).



Chapter 8

Adaptive Photon Tracing using Path Visibility

In order to simulate light transport using density estimation, we need to generate

samples according to the rendering equation. This process is typically called photon

tracing as we trace a path of photon that is scattering around a scene. This chapter

introduces an efficient and robust adaptive sampling algorithm for photon tracing. The

algorithm specifically targets difficult lighting conditions where only a fraction of the

generated photons contribute to the final image. The key contribution is the use of photon

path visibility as the importance function as well as two recent developments in Markov

chain Monte Carlo methods: adaptive Markov chain sampling and replica exchange.

The algorithm adaptively mutates samples by self-learning the importance function so

no parameter tuning is required. It also incorporates a uniform sampling approach that

prevents a Markov chain from getting stuck in local regions of the sampling space.

114
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8.1 Related Work

Photon tracing has been used for solving the light transport problem in various

algorithms. Backward ray tracing [8] is the first application of photon tracing, where

illumination is recorded on discretized grids on surfaces. Light tracing [23] accumulates

the power of each photon at directly visible diffuse surface intersection points onto

the image. Photon mapping [61] avoids discretization of illumination data by using

kNN density estimation. Bidirectional path tracing [71, 118] combines photon tracing

and eye ray tracing, which improves the robustness in the presence of light paths such

as caustics. Our method uses progressive photon mapping as its rendering algorithm

since it can robustly render scenes that are difficult to render with other methods (e.g.,

specular-diffuse-specular paths from a directional light source).

Photon tracing methods can become inefficient when only a small part of the

illuminated scene is visible. A related problem was addressed by Veach and Guibas [119],

who introduced Metropolis light transport as an application of Markov chain Monte Carlo

methods to rendering. The underlying assumption is that, given a sampled light path that

we already know contributes to the image, similar light paths will be likely to contribute

to the image as well. In order to exploit this observation, Metropolis light transport

generates a new path by slightly perturbing the previous path. This strategy has been

demonstrated to work well in difficult settings, such as illumination coming through a

small gap. Markov chain Monte Carlo methods have been successfully used in other

forms as well, such as Multiple try Markov chain Monte Carlo methods [103] and energy

redistribution path tracing [15].

Most related to our work is the method by Fan et al. [25], who applied Metropolis

light transport to photon tracing. In order to obtain the full information of a photon

path including whether it contributes to the image, they proposed to sample a complete

path from the path space that connects a light source and the eye. Common to existing

MCMC rendering methods and their work, however, is that they all use sampling on the

exact path space. This unfortunately becomes inefficient in the presence of some light

paths, such as specular-diffuse-specular paths from small light sources. This is because

these paths will have nearly zero volume (or zero in the case of point light sources

and directional light sources) in the path space, which cannot be efficiently sampled
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by random sampling or random mutations [117]. For example, specular reflections of

caustics from a point light source form delta functions in the path space, where any

random sampling method including Markov chain Monte Carlo methods with random

mutation have zero probability of sampling the path. Even paths from small light sources

can result in path sampling being arbitrarily inefficient depending on the relative size

of the light sources. These lighting scenarios are rather common in the real world (e.g.,

illumination coming from the filament in a light bulb). Our method avoids this issue

by sampling a blurred path space using progressive photon mapping, where blurring

vanishes as we add more samples.

Adaptive Markov chain Monte Carlo methods [40] are modified Markov chain

Monte Carlo methods that adaptively adjust mutations by self-learning the target distribu-

tion. It has been known that the mutation parameters, thereby mutation kernels affect the

performance of Markov chain Monte Carlo methods significantly. Searching for the best

set of parameters have typically been done by the user. However, this is a time consuming

task and not always straightforward. This is also true in applications of Markov chain

Monte Carlo methods in rendering, where users need to fine tune parameters of the given

mutation strategies to get the best image quality. Adaptive Markov chain Monte Carlo

methods automate this process by using information obtained from past samples. We

introduce adaptive Markov chain Monte Carlo methods to rendering, and as far as we

know, our method is the first application of adaptive Markov chain Monte Carlo methods

in graphics.

The replica exchange Monte Carlo method uses multiple target distributions or an

extended space of the target distribution with auxiliary parameters in order to introduce

inter-distribution mutations [111]. This alleviates the problem of a Markov chain being

trapped within a single mode in a multi-modal distribution by taking a “detour” of the

Markov chain through different distributions. Kitaoka et al. [69] applied this algorithm

to Metropolis light transport, and reported an improvement over existing Markov chain

Monte Carlo rendering methods. We provide a formulation of replica exchange Monte

Carlo method in the context of our visibility importance function. The key difference

is that our formulation results in a strikingly simple algorithm that is independent from

scene settings.
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8.2 Method

8.2.1 Overview

The idea is to define a visibility function of photon paths and to perform im-

portance sampling on this visibility function. We define the space of this function as a

hypercube similar to the one that was proposed by Kelemen et al [67]. Note that a point

in this space corresponds to a set of random numbers. We then employ local importance

sampling for choosing light sources and sampling BRDFs and Russian roulette, in order

to generate a photon path from given random numbers. In order to efficiently sample

this function, we propose a combination of adaptive Markov chain sampling and replica

exchange as we will describe in the next sections.

8.2.2 Sampling Space and Visibility Function

We first define our sampling space and the importance function. Given a photon

path, ~u, in the hypercube, we define a photon path visibility function, V (~u), where

V (~u) = 1 if any photon due to this photon path contributes to the image and V (~u) = 0

otherwise. The importance function is simply the normalized version of this visibility

function V (~u), which is F(~u) = V (~u)
Vc

where Vc =
∫

V (~u)d~u. Figure 8.1 illustrates the

definition of our sampling space and visibility function. The use of this function has the

additional advantage that there is no local peak in the function, which is prone to high

autocorrelation of samples in Markov chain Monte Carlo methods (e.g., a chain gets stuck

in a very bright path). We can also easily evaluate V (~u) by checking if a photon path

splats any photon into any of measurement points in the photon splatting implementation

of progressive photon mapping that we describe below.

8.2.3 Photon Splatting Implementation

Progressive photon mapping has three user-defined parameters, α , the number of

emitted photons at each iteration Ne, and the initial radius R0(x). A result computed using

progressive photon mapping always converges to the correct solution regardless of these

parameters. In particular, we found that the behavior of the algorithm is not sensitive to
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Light PathsV(u) in the hypercube

Figure 8.1: Sampling space of our method. We define a function V (x) in the hypercube
of random numbers. The function returns 1 if a corresponding photon path contributes to
the image (the green point in the shaded region) and 0 otherwise (the red point outside
the shaded region).

the number of photons per iteration. Even using Ne = 1 still results in almost identical

convergence behavior. This leads to an important variation of the implementations of

progressive photon mapping, which uses photon splatting.

In this variation of progressive photon mapping, we construct an acceleration

data structure of measurement points, not a photon map. In the succeeding photon passes,

instead of storing photons as a photon map, we perform a range query of measurement

points at each photon’s position. In other words, this algorithm is splatting photons

into the measurement points, instead of gathering photons at each measurement point.

We then apply the radius reduction and the flux correction normally to all of affected

measurement points. The radiance estimation at each measurement point can be done

as usual. Resampling of measurement points in stochastic progressive photon mapping

is done after tracing a user-specified number of photons, which controls the frequency

of eye ray tracing. We use this splatting implementation in order to immediately utilize

the visibility information of the current photon path to next photon tracing. Note that a

single photon path can potentially contribute to multiple measurement points.

8.2.4 Algorithm

The rendering algorithm we combine with our photon tracing method is the

splatting variation of stochastic progressive photon mapping that we described in the

previous section. The pseudocode for the algorithm is shown in Figure 8.2.
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MutationSize← 1,Accepted← 1,Mutated← 0,UniformCount← 1

repeat

CurrentPath← UNIFORM()

until ISVISIBLE(CurrentPath)

for i← 1 to NumTotalPhotons

do



UniformPath← UNIFORM()

if ISVISIBLE(UniformPath)

then

{
CurrentPath← UniformPath

UniformCount← UniformCount+1

else



CandidatePath←MUTATE(CurrentPath,MutationSize)

Mutated←Mutated+1

if ISVISIBLE(CandidatePath)

then

{
CurrentPath← CandidatePath

Accepted← Accepted+1

R← Accepted/Mutated

MutationSize←MutationSize+(R−0.234)/Mutated

SPLAT(CurrentPath)

DISPLAY(UniformCount/i)

procedure MUTATE(CurrentPath,MutationSize)

for k← 1 to DIMENSION

do


d← POW(RAND(),1/MutationSize+1)

t← CurrentPath.u[k]+ sgn(2∗ RAND()−1)∗d

CurrentPath.u[k]← t− FLOOR(t)

Figure 8.2: Our photon tracing algorithm. UNIFORM() samples a hypercube using
uniform random numbers, and MUTATE() returns a mutated path with a given mutation
strategy parameter (MutationSize). SPLAT() finds nearby measurement points of each
photon and accumulates photon statistics. ISVISIBLE() returns true if the given photon
path splats any photon into any of measurement points. DISPLAY() takes its argument as
a scaling factor, and computes pixel values using current photon statistics. sgn(x) returns
1 if x > 0 and−1 otherwise. DIMENSION is the number of dimensions of the hypercube.
CurrentPath.u[k] stores a k-th random number of the photon path. t− FLOOR(t) ensures
that the mutated value is always within (0,1).



120

8.3 Adaptive Markov chain Monte Carlo

8.3.1 Overview

One notable difficulty in Markov chain Monte Carlo methods is that the optimal

mutation strategy is problem dependent. For example, if we render an object on a plane

with a point light source, depending on the relative size of the plane and the object, the

range of photon paths that intersect with the object in the hypercube dramatically changes.

In general, no single preset of mutation strategies will work well in all scene settings. We

could have as many mutation strategies as possible to hope that at least one of them are

effective, but this approach wastes computation on other ineffective mutations. Adaptive

Markov chain Monte Carlo methods provide a way to automatically adjust mutation

strategies during the computation by learning the target distribution as we sample. Since

adaptive Markov chain Monte Carlo methods in general cover many different algorithms,

we only provide an overview of the method that we use, which is controlled Markov

chain Monte Carlo method [5]. For a more comprehensive overview of other methods,

please refer to a survey such as the one by Andrieu and Thoms [6].

The idea of a controlled Markov chain Monte Carlo method is to adjust the muta-

tion parameters based on the previous samples. Given a vector of the initial parameter

values, ~θ1, a controlled Markov chain Monte Carlo method updates the current parameters
~θi as:

~θi+1 = ~θi +H(i,~θi,~ui, . . . ,~u1), (8.1)

where~ui, . . . ,~u1 are all samples up to the ith iteration and H is a function that computes

the changes of the parameters according to the history of samples and the last parameters.

There are many possible choices of the function H, however, one important condition

that H needs to satisfy in order to maintain the stationary distribution which is known as

Diminishing adaptation principle [6];

lim
i→∞

H(i,~θi,~ui, . . . ,~u1) = 0. (8.2)

Although there are many ways to adapt the parameters, one approach that is used

in existing adaptive Markov chain Monte Carlo methods is changing the parameters

such that the acceptance ratio of the Markov chains reaches the optimal acceptance rate
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(“acceptance ratio” is the fraction of accepted mutations over all mutations). In fact,

for separable distributions, the optimal asymptotic acceptance ratio has been derived

A∗ = 23.4% [98]. Adapting toward the optimal acceptance ratio has another benefit that

computation being inexpensive. Equation 8.1 is thus simplified as:

~θi+1 = ~θi +H(i,A∗,Ai), (8.3)

where Ai is the current acceptance ratio of samples up to i.

While it is true that the target distribution will not be separable in many cases

for the light transport problem, previous work confirmed that using 23.4% works well

in practice with nonseparable distributions [99]. Furthermore, the general principle that

the acceptance ratio should not be too high or too low will apply in any case, so any

target acceptance ratio that is not too close to 0% or 100% will work. We therefore use

A∗ = 23.4% in all the examples, which is indeed optimal if the target distribution happens

to be separable. The key is that the same target acceptance ratio will work well for a wide

range of target distributions and the user does not need to tweak the target acceptance

ratio scene by scene as we will demonstrate.

8.3.2 Our Formulation

We use a simple form of a controlled Markov chain Monte Carlo method, which

adjusts a single mutation parameter in a power function. A mutation of each coordinate

of a given point is done by adding

∆u = sgn(2ξ0−1)ξ
1
θi
+1

1 (8.4)

to each coordinate while keeping it within (0,1). θi is the adaptive mutation size at

the ith Markov chain, sgn(x) is a function that returns the sign of x, and ξ0 and ξ1 are

uniform random numbers within (0,1). The mutation size is shared between all samples

regardless of the current state. Note, that θi =∞ corresponds to uniform random sampling

which generates as large mutation as possible, and θi = 0 corresponds to staying at the

same position all the time.

The acceptance probability of a mutated path is easily computed since the mu-

tation is symmetric and V (~u) = 1. Specifically, given a set of mutations as a vector
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∆~u = (∆u, . . . ,∆u) the acceptance probability is

a(~u+∆~u←~u) =
F(~u+∆~u)

F(~u)
=

V (~u+∆~u)
V (~u)

=V (~u+∆~u), (8.5)

which means a mutation is accepted if the mutated path is visible. In contrast to existing

Markov chain Monte Carlo rendering methods, there is no need for generating another

random number to decide whether we accept a mutation or not.

We compute the acceptance ratio, Ai, by counting the number of accepted muta-

tions. We then update θi as follows:

θi+1 = θi + γi(Ai−A∗). (8.6)

where γi = 1/i and θ1 = 1. The intuition behind this equation is that an acceptance

ratio that is too large (Ai−A∗ > 0) would indicate that the mutation size is too small

thus we increase the mutation size, and likewise if the acceptance ratio is too small

(Ai−A∗ < 0) it indicates that the mutation size is too large so we decrease the mutation

size. Note, that the difference Ai−A∗ can never converge to zero in some scenes – e.g. a

scene where all paths are visible (Ai = 100%). However, using γi = 1/i ensures that we

always satisfy Equation 8.2. Another condition for convergence, Bounded Convergence,

requires the product of the state space and the space of mutations to be finite, which

is satisfied in practice with our sampling space and bounding θi to a large finite range.

Since A∗ is “embedded” into the algorithm and users will not touch it, and the algorithm

is parameter-free.

8.4 Replica Exchange Monte Carlo

8.4.1 Overview

The replica exchange Monte Carlo method is an extended ensemble Monte Carlo

method where we sample Markov chains from multiple distributions simultaneously

(refer to Iba [56] for an overview of this class of algorithms). The basic idea is to facilitate

exploration of the sampling space by bridging multiple distant peaks using a smoother

distribution. For example, if we use a standard Markov chain Monte Carlo method to

sample from a distribution with two peaks separated by zeros, the Markov chain tends to
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get trapped within one peak for a long time. The replica exchange Monte Carlo method

can avoid this problem by using an extra Markov chain from a uniform distribution. Even

if a Markov chain gets stuck in one peak, it can be exchanged with another Markov

chain from the uniform distribution without breaking the resulting sample distribution.

Figure 8.3 illustrates this idea. We first describe a formal definition of replica exchange

Monte Carlo method in this section and explain our formulation in the next section.

Given a set of multiple target distributions, F1(~u), . . . ,FQ(~u), we define a set of

independently generated samples from each distribution as ~U = {~u1, . . . ,~uQ}. Under these

definitions, ~U can be considered a single sample from the following product distribution:

F̃(~U) =
Q

∏
k=1

Fk(~uk), (8.7)

where~uk is a sample (or a state of the Markov chain) in the target distribution Fk.

The key idea of the replica exchange Monte Carlo method is to perform an

inter-distribution exchange such that the above product distribution of samples remains

unchanged. This can be achieved by exchanging states of two chains,~ui and~u j, with the

probability

r
(
~ui,~u j

)
= min

(
1,

Fi(~u j)Fj(~ui)

Fi(~ui)Fj(~u j)

)
. (8.8)

As a result, each sequence of Markov chain ~uk still distributes according to Fk(~u),

but possibly with a better exploration of the sampling space due to inter-distribution

exchanges.

One application of the replica exchange Monte Carlo method to the light transport

problem has recently been done by Kitaoka et al. [69] in the context of improving

Metropolis light transport, where they defined target distributions of separated light

paths in the heuristic order of difficulty. Unfortunately, this separation is highly scene

dependent and its implementation becomes relatively complex compared to the regular

Metropolis light transport algorithm. Our algorithm is far simpler than their work in terms

of implementation and independent from scene configurations. Since our method is based

on progressive photon mapping, our method is robust in the presence of difficult light

paths (such as specular-diffuse-specular paths) without relying on a complex separation

of light paths.
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8.4.2 Our Formulation

Although the replica exchange Monte Carlo method can use multiple different

distributions, we only use two distributions: one is the target distribution F(~u) as defined

by the visibility function, and a uniform distribution I(~u) = 1. Note, that even though

F(~u) only returns either zero or 1/Vc without any local peak, samples in standard Markov

chain Monte Carlo methods can still be trapped within one region in the hypercube

for a large number of iterations (e.g., only sampling light from one window out of two

windows in a room).

We consider two Markov chains ~uF and ~uI from F(~u) and I(~u). Using Equa-

tion 8.8, we exchange those samples across the distributions with probability r (~uI,~uF);

r (~uI,~uF) =
F(~uI)I(~uF)

F(~uF)I(~uI)
. (8.9)

For a general target distribution, this equation requires computing importance functions

at arbitrary sample locations in different distributions as in Equation 8.8. However, we

can simplify the equation in our method since we know that the sample~uF always returns

F(~uF) =
1

Vc
by definition and it is always I(~u) = 1;

r (~uI,~uF) =
F(~uI)1

1
Vc

1
=V (~uI). (8.10)

The end result is straightforward. Since the sample~uI is from uniform sampling,

there is no need to keep track of a Markov chain of~uI; if uniform independent sampling

generates a useful path (when r (~uI,~uF) = V (~uI) = 1) we replace the current photon

path, otherwise, we keep the current photon path and mutate normally (when r (~uI,~uF) =

V (~uI) = 0). Note, that we only need to keep a single Markov chain,~uF , as a result.

8.4.3 Progressive Estimation of the Normalization Term

Using the uniform distribution in the replica exchange Monte Carlo method gives

us another benefit than just preventing samples from getting stuck in a local region. By

counting the samples from the uniform distribution, we can compute the normalization

term Vc in a progressive fashion. This term is usually computed in a separate pass
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Figure 8.3: Example of the replica exchange Monte Carlo method with two distributions.
The target distribution (left), F(x), can have multiple peaks that are difficult to sample
with standard Markov chain Monte Carlo methods. The replica exchange Monte Carlo
method can improve exploration of a Markov chain by combining a uniform distribution
with inter-distribution exchanges (right). A Markov chain in one peak can move to the
uniform distribution, and later return to the other peak.

in existing Markov chain Monte Carlo rendering methods. The normalization term is

estimated as:

Vc =
∫

V (~u)d~u≈
NI,V (~u)=1

NI,total
, (8.11)

where NI,V (~u)=1 is the number of visible paths from uniform distribution, and NI,total
is the total number of generated paths from a uniform distribution. Note, that NI,total is

in fact equal to the total number of generated photon paths from F(~u), Ne
i , because we

always generate a sample from the uniform distribution (Figure 8.2). Since this value

is already kept for the purpose of radiance computation, the above computation of Vc

requires keeping only one additional value, NI,V (~u)=1. The normalization constant, Vc,

uniformly scales the radiance estimate computed for each pixel.

8.4.4 Differences from Independent Mutations

If we consider a sample from a uniform distribution, ~uI , as a “mutation”, the

acceptance probability is computed as:

a(~uI ←~uF) =
F(~uI)

F(~uF)
=

1
Vc

V (~uI)
1

Vc

=V (~uI), (8.12)

which indeed results in the same probability as Equation 8.10. One might therefore

consider that our formulation of replica exchange Monte Carlo method as equivalent

to a standard Markov chain Monte Carlo with independent mutations, such as the large



126

step mutation [67]. This is not entirely true. There are two important differences in our

formulation of the replica exchange Monte Carlo compared to independent mutations.

First, the formulation using the replica exchange Monte Carlo method shows that

mutations and exchanges can be attempted at the same time. If we consider a sample

from uniform distribution as an independent mutation, we need to exclusively select

either an independent mutation or other mutations. This results in extraneous interference

among independent mutations and other mutations, since we never perform both at the

same time but select one of them with some user-specified probability. For example,

Kelemen et al. [67] has such probability as “large step probability” and reported that

the efficiency of the algorithm changes according to the value of this probability. Our

formulation of replica exchange Monte Carlo method shows that this exclusive selection

is not necessary. This in turn removes the extra user-specified parameter of the selection

probability of an independent mutation.

Second, the replica exchange Monte Carlo method gives us a cleaner theoreti-

cal reason for keeping track of samples from the uniform distribution to compute the

normalization term as we described. In the replica exchange Monte Carlo method, we

can theoretically separate samples in the uniform distribution and the target distribution

because they are simply from different distributions. In the formulation using independent

mutations, we need to consider independent mutations as special cases and keeping track

of all mutated samples. Note, that it usually does not make sense to keep track of mutated

samples from a particular mutation strategy. For example, keeping all mutated samples

from caustics perturbation [119] does not provide immediately meaningful information.

Although the implementation looks similar to independent mutations at a glance,

the replica exchange Monte Carlo method keeps our method parameter-free and auto-

matic, which is not the case with independent mutations. For example, if a scene only

has visible photon paths, our algorithm shown in Figure 8.2 will automatically perform

exactly the same as uniform sampling, which indeed is desirable. In other words, our

method adaptively combines uniform sampling and Markov chain Monte Carlo sampling

depending on how frequent uniform sampling generates a visible photon path. This

is not the case with independent mutations, where sporadic local mutations introduce

extra correlation among samples and the user needs to manually specify the selection
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Figure 8.4: Sequences of rendered images of a room illuminated by a directional light
source. The top row shows results with uniform sampling and the bottom row shows
results with our method using the same rendering time (1, 15, 30, and 60 min). Our
photon tracing method robustly and automatically handles scenes that are considered
difficult to render with a photon tracing approach. The illumination is coming through
the glass window and only photon tracing approaches can handle such paths without
ignoring specular reflections and refractions at the window.

probability of independent mutations depending on scene settings.

8.5 Results

We implemented the uniform random photon tracing algorithm and our algorithm

using the described splatting variation of stochastic progressive photon mapping. All

scenes have been rendered on a 2.67GHz Intel Core i7 920 using one core. The alpha

value is 0.7. We trace 200K photons per one eye ray tracing pass. The initial radius

are manually chosen for each scene as a constant to get approximately four pixel-wide

contribution on the image from each photon at the beginning. This manual tweaking of

the initial radius is orthogonal to our claim that the proposed photon tracing algorithm is

automatic and parameter-free. The resolution of the images is 5122. Table 8.1 summarizes

various statistics of our experiments. The calculated acceptance ratio is 23.4% for all

scenes except the ones where our method does not provide an improvement.
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Table 8.1: Statistics of our experiments. The table shows the number of triangles, ratio
of the number of visible photons in total between our method/uniform sampling (larger
value means more photons are visible in our method), rendering time in minutes, and
the adaptive mutation size at the end of the rendering process. Cognac0-4 correspond
to different zoom ratios (far to near), and Buddha (far/near) corresponds to the far/near
viewpoint.

Scene Triangles Visible Photons Ratio Time Mutation Size
Cognac0 16456 103.1 120 0.274
Cognac1 16456 363.8 120 0.176
Cognac2 16456 885.2 120 0.174
Cognac3 16456 910.4 120 0.168
Cognac4 16456 3284.2 120 0.056

Pocket Watch 152434 270.3 90 0.194
Room 160400 41.9 60 0.253

Cornell w/door 730 55.9 90 0.096
Cornell 36 2.0 90 9.852

Box 3462 3.9 90 3.877
Buddha (far) 378731 6.67 90 0.173

Buddha (near) 378731 54.4 90 0.106

Figure 8.5 compares rendering of a cognac glass illuminated by a directional

light source with different zoom ratios. The caustic below the glass is a specular-

diffuse-specular path due to a directional light source, and consequently eye ray tracing

approaches cannot render this scene since the probability that a path started from the eye

hits a directional light source is zero. Only progressive photon mapping can render this

scene robustly. To illustrate the effect of our sampling method, we zoom into the caustics

such that the illuminated region that is visible from the viewer becomes increasingly

small. This means that a large number of photons land outside the view with uniform

sampling. Our sampling method focuses photons in the visible region, and we can obtain

a significantly better images in the same rendering time regardless of the viewpoint. The

ratios of visible photons in Table 8.1 also show that our method focuses increasingly

more photons compared to uniform sampling.

Figure 8.4 shows a sequence of rendered images of a room illuminated through a

glass window by a directional light source. The images generated by our method quickly

converge to visually pleasing results compared to uniform sampling. Our method also
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Figure 8.5: Cognac glass illuminated by a directional light source. We compare rendered
images using progressive photon mapping with the same rendering time (120 min), but
with different photon tracing algorithms. The images on the top row are rendered using
random sampling of photons, which become increasingly noisy as we zoom in on the
caustic. Using our photon tracing method (bottom row), we can focus tracing photons
that contribute to the image without any portal and render the close-ups with less noise
in the same rendering time. Note that no other existing global illumination methods
can render illumination under the cognac glass accurately, since this illumination comes
from specular-diffuse-specular paths from a light source with zero solid angle. The
combination of progressive photon mapping and our photon tracing technique is the first
method that works effectively and robustly in this scene. The stripe patterns in the caustic
are not artifacts of our method - they are caused by the tessellation of the cognac glass.

has a lower numerical error in the same rendering time as shown in Figure 8.6. For

example, the average error achieved in 25 minutes using our method is as close as the

average error achieved in 300 minutes using uniform sampling.

Figure 8.7 highlights the effect of the adaptive mutation size. A mutation size

that is too large results in an image with as much noise as the image rendered using

uniform sampling, and mutation size that is too small is noisy as well compared to the

adaptive mutation size. Our photon tracing method based on adaptive Markov chain

Monte Carlo gives us the best results without any tuning of parameters. Note, that in a

standard Markov chain Monte Carlo method, we do not know which mutation size works

well unless we actually try a wide range of mutation size (0.01 to 4.0 in our example)

and compare rendered images.

Figure 8.11 shows examples where our method will not provide a benefit as most
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Figure 8.6: Color-coded error images of Figure 8.4 and the graph compares the average
errors of rendered images with uniform sampling and our method. Our method not only
generates visually smoother images, but also results more accurate solutions in the same
rendering time.

of paths are already visible. For such scenes, sample correlation introduced by a Markov

chain Monte Carlo sampler would just add extra noise. Although no improvement can

be seen with our method, the results show no visible negative effect when we compared

them to uniform random photon tracing method. This is because the exchange by uniform

random sampling happens often in such scenes, and our algorithm automatically uses

uniform random sampling for many photons (Figure 8.2). Even though some paths are
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not visible, the adaptive Markov chain Monte Carlo method automatically increases the

mutation size to minimize correlation of samples due to dependent sampling scheme of

Markov chain Monte Carlo method. The mutation sizes in Table 8.1 for Cornell and

Box therefore are noticeably larger than other scenes as we wanted. Note also that this

Box scene is exactly the same scene that has been demonstrated to be rendered poorly

with other rendering methods. Figure 8.13 shows that our method preserves robustness

of progressive photon mapping, thus being able to handle scenes that are difficult to

unbiased methods.

Table 8.1 provides some idea on when we will see benefits using our photon

tracing method. The column of “Visible Photon Ratio” shows how many times more

photons become visible using our method. For the scenes that show no benefit (Cornell

and Box), the ratio is less than 10. As we can see in Figure 8.4 and Figure 8.6, the Room

scene already shows some benefit with our method, and the ratio is 41.9, thus the ratio

may need to be more than a few tens to obtain improvement using our method.

We also demonstrate the effect replica exchange in Figure 8.10. We rendered the

same scene with and without the replica exchange procedure. In this example, we used the

same fixed mutation size to isolate the consequence of using replica exchange. Without

replica exchange, photon paths can be trapped within one of the windows for long time

due to isolated regions of V (~u) = 1. The replica exchange Monte Carlo method alleviates

this issue automatically, resulting in plausible images in the sane rendering time. Since

we use a hypercube of random numbers as the sampling space, our method can handle

difficult local lighting similar to Metropolis light transport without any modification as

shown in Figure 8.12.

We show effect of using different target acceptance ratio other than 23.4% in

Figure 8.8. We have rendered the same scene as in Figure 8.12 using different target

acceptance ratios. Note that difference in the two images with 23.4% and 40% as the

target ratios is rather small, which indicates our method is not very sensitive to the

target acceptance ratio. The images with extreme target acceptance ratios (close to 0%

or 100%) are slightly noisier than the image with the target acceptance ratio of 23.4%,

which supports that the adaptation based on the general principle is valid.
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Uniform Photon Tracing Small mutation size

Large mutation size Adaptive mutation size

Figure 8.7: Effect of adaptive mutation size. A pocket watch is illuminated by a
hemispherical light source and a directional light source and is rendered with depth-
of-field. The illumination on the dial plate is due to caustics from the glass cover and
the metal lid. The images shown are rendered by uniform random sampling and our
photon tracing method in the same rendering time. The top-right image uses a mutation
that is too small (di = 0.01) and the bottom-left image uses a mutation that is too large
(di = 4.0). The adaptive Markov chain Monte Carlo used in our method produces the
best result without any parameter tuning.
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A∗ = 5% A∗ = 90%

A∗ = 40% A∗ = 23.4%

Figure 8.8: Close-ups of rendered images using different target acceptance ratios. We
have rendered the same scene as in Figure 8.12 using different target acceptance ratios
using the same rendering time (90 min). Calculated acceptance ratios achieved are the
same as the target ratio. The target acceptance ratios closer to 0% or 100% result in
slightly noisier images, but using intermediate values would not affect the efficiency of
our algorithm.
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Uniform Photon Tracing Adaptive Photon Tracing

Figure 8.9: Example scene where the variation in BRDFs is the main source of rendering
error. The statue is rendered using modified-Phong with the exponent 100 under a
hemispherical light source and a directional light source. The rendering time is 90
min. Although our method shows improvement in the close-up rendering, both uniform
random sampling and our method perform about the same with the distant viewpoint
as our method does not resolve flux variations due to BRDFs. Note, that we did not
employ stochastic progressive photon mapping in this scene to highlight this limitation.
Stochastic progressive photon mapping and our new sampling method would render this
scene without problems.
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8.6 Discussion

8.6.1 Comparisons with Other Importance functions

In the standard implementation of Metropolis light transport, the importance

function is usually given as a brightness of each path [67, 119]. Using this importance

function, each path contributes the same brightness to the image. This importance

function achieves importance sampling according to outgoing radiance within each pixel.

This choice is probably motivated by that a probability density function proportional

to the integrand results zero error in importance sampling with a regular Monte Carlo

method.

However, the issue is that samples are distributed across an image in Metropolis

light transport, not just within a single pixel. This essentially means we solve multiple

integrations at the same time. As a result, bright pixels get more samples compared

to dark pixels as we mentioned in Section 8.2.2, which results in poor stratification of

samples over the image. Energy redistribution path tracing [15] improves stratification

of samples by starting multiple independent chains from stratified points on the image.

However, even if the initial points are well distributed, Markov chains can get stuck in

paths with very large brightness for a long time, which results in notorious “firefly” noise.

Cline et al. thus proposed post-process filtering, which unfortunately makes the algorithm

inconsistent (i.e., does not converge to the correct solution). Although our target function

does not provide stratification on the image, it does not have any local peak that is prone

to this issue. Isolated visible paths can still lead to firefly noise, however, the replica

exchange Monte Carlo method alleviate the problem in such cases since the exchange

results in a completely different path as soon as we find another visible path by uniform

sampling.

Another minor issue is that, with the conventional brightness function, we cannot

define contribution of each photon path as a single value because a single photon path

can contribute to multiple pixels. In order to apply Markov chain Monte Carlo methods,

we need to define a single importance value, which is not well defined with the brightness

function in combination with photon tracing. Our visibility function is well defined since

any visible photon path.
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An interesting observations on alternative target functions has recently been made

by Hoberock and Hart [55]. They proposed a multi-pass algorithm that adjusts the

importance function using information from previous passes, such as brightness and

variance of each pixel. Their work also supports that just using the brightness of each

path is not necessarily the optimal choice. They additionally pointed that a constant

importance function does not work because no importance sampling will be employed,

which may be confusingly similar to our importance function. The important distinction

is that our importance function returns 0 for a path that is not visible, and it is applied to

photon tracing. Since photons are naturally distributed according to incoming radiance

if proper local importance sampling and Russian Roulette is done (i.e., photon density

is equal to radiance), our method still can perform importance sampling of incoming

radiance, even with the very simple target function.

8.6.2 Limitations

One limitation of our method is that it ignores flux variation due to a BRDF lobe.

For example, if a scene has a highly glossy material, just using visibility information will

not resolve flux variation due to a BRDF lobe. Figure 8.9 demonstrates such an example

scene, where most of noise is due to a highly glossy BRDF. Although our method still

provides some improvement when we render the close-up, it does not resolve noise due

to the glossy BRDF. Note that this scene itself might be efficiently rendered with other

methods, such as path tracing with the next event estimation, but we chose this scene

to highlight the limitation of our method. One possible solution is to use stochastic

progressive photon mapping to perform importance sampling of a such BRDF from the

eye, which resolves the flux variation. However, if a scene consists of only highly glossy

materials, rendering will entirely be done by tracing rays from the eye, which could be

highly inefficient if a light source is small and cannot be sampled with shadow rays (e.g.,

a filament within a light bulb). It is interesting as future work to investigate how we can

take a glossy lobe into account in our method while maintaining its simplicity. Note that

this is not a trivial problem, since a highly glossy BRDF returns a large value, which

would unnecessarily attract more photons similar to bright pixels in Metropolis light

transport.
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Another limitation is that the adaptive procedure is done globally. Using locally

adaptive mutation parameters might improve convergence speed as was proposed in

computational statistics [6]. For example, we might be able to use an adaptive grid to

store mutation parameters locally, and use those parameters depending on the current

state (i.e., position in the hypercube). This however is challenging as our sampling space

is in high dimensional space, where the cost of storing any local estimation including

adaptive mutation parameters is often prohibitive and reliable estimation is difficult due

to the curse of dimensionality.

Our algorithm does share the limitation with the other Markov Monte Carlo chain

rendering algorithms that the samples are not stratified over an image. It is interesting

to investigate as future work whether the adaptive importance function proposed by

Hoberock and Hart [55] is applicable to our method in order to improve stratification.

8.6.3 Dynamic Target Distribution

One theoretical difficulty of applying any Markov chain Monte Carlo method

to progressive photon mapping is that the target distribution, thereby the importance

function, changes as the number of samples increases. This is because progressive photon

mapping updates the radii of the measurement points to ensure convergence to the correct

solution. In our approach, this results in changes of the region where V (~u) = 1. Although

we have not found any apparent failure cases, the theoretical behavior of Markov chain

Monte Carlo methods on the dynamic target distribution in progressive photon mapping

is not fully analyzed. Our combination with the adaptive Markov chain Monte Carlo

method further complicates this theoretical validation. Convergence of the normalization

term may also require careful theoretical analysis. In this paper, we thus do not claim

provable convergence to the correct solution using our photon tracing algorithm.

However, since we always use the current radii to distribute the photon power, the

contribution is at least computed based on the current distribution. It is only the stationary

sample distribution that is not analyzed. This separation might be helpful for further

theoretical analysis. We also believe that, even without a formal theoretical validation,

our method will be useful for many practical applications that do not require theoretical

guarantees of consistency. In the end, provable convergence is only a theoretically appeal-
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ing property as we cannot take infinite number of samples in practice. We see practical

benefits of using our method through numerical experiments as we have demonstrated.

Figure 8.10: Effect of replica exchange. We rendered Sibenik cathedral with a directional
light source as the only light source in 90 min with (left) and without (right) replica
exchange. Without replica exchange, samples can get stuck within a small region (i.e.,
single window) for long time, resulting in a solution with very high correlation of samples.

8.7 Conclusion

We have presented a new photon tracing algorithm based on a simple and effective

importance function using the visibility of photon paths. Our algorithm is based on recent

developments in Markov chain Monte Carlo methods. The resulting algorithm does

not have any parameters that require fine tuning by the user, and its implementation is

strikingly simple. We have demonstrated that our algorithm robustly handles scenes

that are difficult for existing photon tracing approaches and that it also works well in

simple scenes. The combination of our algorithm and progressive photon mapping is an

effective, unified, and robust solution to many light transport configurations. Although

we used progressive photon mapping, we expect that the same importance function can

be used for other light transport algorithms based on photon density estimation.
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Figure 8.11: Rendered images of scenes where our method does not provide benefits.
Our method (top) still performs as well as uniform random sampling (bottom) does in
the same rendering time (90min). Note that Box scene is the one that is demonstrated to
be rendered robustly only with progressive photon mapping.
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Figure 8.12: Cornell box with a small gap with a door. The images are rendered with
uniform sampling (left) and our method (right) in 90 min. Our method works under local
lighting without any modifications to the algorithm.

Figure 8.13: Equal-time comparisons with other rendering methods (four hours, except
for conventional photon mapping which is limited by memory consumption). The
images are rendered with, from left to right, top row: path tracing, bidirectional path
tracing, Metropolis light transport, and bottom row: original progressive photon mapping,
conventional photon mapping with 20M photons, and progressive photon mapping with
our photon tracing method. Our method does not impair the robustness of original
progressive photon mapping. The small differences in the result from our method are
due to the use of different implementations.



Chapter 9

Hybrid Progressive Density Estimation

Progressive photon mapping robustly handles many light paths that existing

unbiased Monte Carlo ray tracing cannot even capture. However, there are scene configu-

rations where unbiased Monte Carlo ray tracing is more efficient than progressive photon

mapping such as direct illumination from diffuse light sources, highly glossy reflections,

and diffuse indirect illumination. This chapter introduces a unified framework based

on multiple importance sampling [118] that adaptively combines progressive photon

mapping and unbiased Monte Carlo ray tracing. The contributions are two-fold: first,

we provide a unified view of local path sampling and photon density estimation, which

will provide more solid ground for robust light transport simulation algorithms; second,

we extend the theoretical analysis of optimal multiple importance sampling strategies

by considering the presence of biased methods. The resulting framework improves the

efficiency for rendering various scene settings such as light sources with sharp directional

distributions, glossy reflections, complex caustics, and diffuse interreflections.

142
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9.1 Background

Before going into the detail of the new framework, we summarize the original

multiple importance sampling framework [118]. Multiple importance sampling is a

powerful technique that allows the use of multiple sampling techniques with different

probability densities to solve a single integral.

Suppose that we need to compute an integral

I =
∫

Ω

f (x)dµ(x) (9.1)

over some domain Ω. Standard Monte Carlo integration generates samples in Ω according

to a probability density p to build an unbiased estimator of I:

I ≈ 1
N

N

∑
j=1

f (X j)

p(X j)
. (9.2)

With multiple importance sampling, we can use n different techniques to generate

samples in Ω, each with a different probability density pi approximating different parts

of the integrand f . We then weight the contribution of individual samples to build an

estimator for the given integral. If the i-th technique is used to generate Ni samples

{Xi, j : j = 1, ...,Ni}, the following formula gives an unbiased estimator of I:

I ≈
n

∑
i=1

1
Ni

Ni

∑
j=1

wi(Xi, j) f (Xi, j)

pi(Xi, j)
(9.3)

as long as
n

∑
i=1

wi(x) = 1 (9.4)

and wi(x) = 0 whenever pi(x) = 0.

Veach and Guibas [118] introduced a few weighting strategies which are provably

good, in the sense that the resulting error is within a constant from that of the best possible

weighting strategy. One such strategy is the balance heuristic defined as

wi(x) =
Ni pi(x)

∑
n
k=1 Nk pk(x)

. (9.5)

The derivation of this strategy assumes that all techniques are unbiased since the deriva-

tion assumes that error is solely characterized by variance.
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9.2 Overview

Multiple importance sampling is used in light transport simulation in the form of

bidirectional path tracing [118]. Bidirectional path tracing considers a family of complete

paths by connecting two sub-paths traced from the eye and a light source. By changing

the length of sub-paths, we can obtain multiple path sampling techniques with different

probability densities that can sample the exact same path. Veach and Guibas [118]

showed that we can apply multiple importance sampling to combine those multiple

techniques by considering probability densities of complete paths.

Bidirectional path tracing captures many different types of illumination. However,

fundamental limitations of unbiased sampling methods do not allow bidirectional path

tracing to capture some important light transport phenomena such as illumination due to

specular-diffuse-specular light paths [117]. As previous chapters demonstrated, capturing

such paths is only practical with progressive photon mapping at the moment.

At the same time, bidirectional path tracing can capture some illumination more

efficiently than progressive photon mapping. For example, in Figure 5.6, although the

result of bidirectional path tracing has significant amount of noise on the torus, the

ground plane exhibits less noise than the result of progressive photon mapping. It is thus

desirable to be able to adaptively use two different methods within the same scene.

The key idea of the new framework, multisampled progressive photon mapping, is

to have a generalized rendering algorithm that adaptively combines both (stochastic) pro-

gressive photon mapping and Monte Carlo ray tracing by means of multiple importance

sampling. Figure 9.1 illustrates this key idea.

Including progressive photon mapping in multiple importance sampling poses two

theoretical challenges. First, we need to characterize the effect of bias in provably good

strategies of multiple importance sampling. This is because progressive photon mapping

is a biased estimator, where error is affected by both variance and bias, whereas the

original derivation of such strategies [118] assumes that all the estimators are unbiased.

Second, as we briefly discussed in Chapter 5, progressive photon mapping has slower

asymptotic convergence rate than Monte Carlo ray tracing. We show that absorbing the

difference in convergence rate is necessary in order to retain the optimality of a provably

good combination in multiple importance sampling.
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The proposed framework can also be seen as a principled way to remove a

heuristic binary classification of materials for handling glossy reflections in stochastic

progressive photon mapping. Such classification is necessary in stochastic progressive

photon mapping since we trace additional bounce rays for materials classified as glossy.

The framework removes such a classification by adaptively combining the results obtained

by both choices of this classification under multiple importance sampling.

Bidirectional path tracing

PPM

SPPM

Multisampled Progressive Photon Mapping

Path tracing

Figure 9.1: Key idea of of multisampled progressive photon mapping. Multisampled
progressive photon mapping subsumes all the previous sampling techniques including
path tracing, bidirectional path tracing, progressive photon mapping (PPM), and stochas-
tic progressive photon mapping (SPPM), and also introduces a new technique to sample
the same path. The white circles indicate vertices sampled from the light source, and
the black circles indicate vertices sampled from the eye. The dotted lines/circles show
sub-path connections using shadow rays and photon density estimation, respectively.

9.3 Unified Framework of Generalized Path Sampling

Our framework introduces a new way to connect sub-paths from light sources

and the eye by means of photon density estimation. Figure 9.1 illustrates the difference

between the regular connection using a shadow ray in bidirectional path tracing and

the new connection using photon density estimation. By considering photon density

estimation as another technique to sample the full path, our framework provides a unified

view over Monte Carlo path tracing such as bidirectional path tracing and photon density

estimation methods such as progressive photon mapping.
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In order to fully incorporate photon density estimation into multiple importance

sampling, we need both the ability to evaluate the probability density function of photon

density estimation for any path, and the ability to evaluate the probability density of all

other techniques for a path that was generated by photon density estimation. In other

words, we need to answer this question: “Given a path sampled by technique A, what

would be the probability density of sampling the same path with technique B?”. For

example, technique A can be progressive photon mapping, and technique B can be any

of the bidirectional path tracing techniques.

Table 9.1: Descriptions of the notations.

Notation Description

ei ith vertex generated from the eye
li ith vertex generated from the light source
Ei ith segment of the eye sub-path (E = [ei,ei+1])
Li ith segment of the light sub-path (L = [li, li+1])

p(Si|Si−1) PDF of generating the segment Si given Si−1

9.3.1 Path Probability Density using Segments

To succinctly define the probability density of photon density estimation, we

introduce a notation of segments in our description. We define a segment of a path,

Si = [si,si+1], as a part of the path that consists of two vertices si,si+1. We also define

p(Si|Si−1) as the probability density of the segment Si given the segment Si−1. This

probability density is usually proportional to probability density of sampling the direction

along Si given the incoming direction along Si−1 measured with respect to area. For

example, this could be the probability density of a ray direction according to the BRDF

at si times the geometric term between si and si+1. Figure 9.2 illustrates this concept.

Using our notations, the probability density of a complete path,
⋃M

i=1 Si, of length

M = ML +ME using photon density estimation with a light sub-path of length ML and an

eye sub-path of length ME is

p

(
M⋃

i=1

Si

)
= p

(
ML⋃
i=1

Li

)
p

(
ME⋃
i=1

Ei

)
, (9.6)
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where

p

(
i+1⋃
j=1

E j

)
= p

(
i⋃

j=1

E j

)
p(Ei+1|Ei)

p(E1) = p(e1)p(E1| /0)

(9.7)

and

p

(
i+1⋃
j=1

L j

)
= p

(
i⋃

j=1

L j

)
p(Li+1|Li)

p(L1) = p(l1)p(L1| /0).

(9.8)

We defined p(E1) and p(L1) as special cases since these terms denote probability densities

of generating a first eye segment and a first light segment that do not have incoming

directions.

Connection with photon density estimation

Connection with a shadow ray

e1

e2

e3 l3

l2

l1

E1

E2 L2

L1

e1

e2

e3 = l3

l2

l1

E1

E2 L2

L1

Figure 9.2: Sub-paths connections with a shadow ray and photon density estimation.
Bidirectional path tracing connects a light sub-path and an eye sub-path by tracing a
shadow ray between the endpoints of the both sub-paths (top). We introduce another
approach to connect light sub-paths and eye sub-paths based on photon density estimation
(bottom). The figure also provides an example of the notation defined in Table 9.1.
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This segment-based formulation can cleanly express the fact that photon density

estimation is approximately connecting two sub-paths by simply considering the case

where eME+1 6= lML+1. This is an important difference from the original formulation by

Veach [117] that is based on path vertices.

When we evaluate the probability density of a path that was generated by another

technique for photon density estimation, we just set eME+1 = lML+1 and use the equation

above. Since segments are just labels of vertices, this formulation is compatible with

the vertex-based formulation by Veach and Guibas [118], when we need to compute

probability densities of paths for unbiased path sampling techniques. We refer to their

original paper for derivations of probability density functions for the unbiased sampling

techniques. Note that light tracing [8, 23] is a special case of photon density estimation

where forcing e2 = lML by explicitly connecting e1 with lML .

Some care however must be taken when we evaluate the probability density of a

path that was generated by photon density estimation for other techniques. Recall that, in

order to fully leverage multiple importance sampling, we need to answer this question:

“Given a path sampled by technique A, what would be the probability density of sampling

the same path with technique B?”. Since the two vertices at the connection using photon

density estimation can never be different under unbiased techniques (eME+1 6= lML+1),

we use the following heuristic to choose one of the vertices to compute the probability

density in this case.

• The technique would generate this vertex at the connection from the eye:

We use p(EME |[eME+1, lML ]) as p(EME |LML) for a technique that contains the seg-

ment LML in the eye sub-path (i.e., the probability density function at eME+1).

• The technique would generate this vertex at the connection from the light:

We use p([eME , lML+1]|LML) as p(EME |LML) for a technique that contains the seg-

ment LML in the light sub-path (i.e., the probability density function at lML+1).

Figure 9.3 illustrates this vertex selection heuristic.
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Figure 9.3: Selection of vertices under unbiased techniques for a path generated from
photon density estimation. Given the sampled path on top, two different unbiased
sampling techniques can sample the same path. The choice depends on how the vertex at
the connection would be generated using the considered unbiased technique.

Similar to light tracing, photon density estimation is an efficient sampling tech-

nique when a light source has a directional peak. Handling directional distributions

has significant practical importance since light sources in the real world, such as LEDs,

often have such directional emission profiles. Including photon density estimation can be

important even in a simple configuration like Figure 9.4.

9.4 Biased Multiple Importance Sampling

In order to fully utilize this new unified framework, we would like to have a prov-

ably optimal combination strategy such as the original balance heuristic in Equation 9.5.

The original derivation of provably optimal weighting strategies in multiple importance

sampling made two assumptions that are incompatible with the proposed framework.

First, the derivation considered all the techniques are unbiased. In other words,

the derivation characterized error of each technique solely by variance. This assumption

breaks in our method since progressive density estimation in progressive photon mapping

is a biased technique. As we discussed in Chapter 6, error in progressive density
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Full eye path sampling Shadow ray

Photon density estimation Hybrid

Figure 9.4: Efficiency of different techniques for direct illumination. This test scene
features the combinations of a highly glossy material with a large diffuse light source
(the left part within each image), a diffuse material with a small diffuse light source (the
middle part), and a diffuse material with spotlights (the right part). All the images are
rendered using four samples per pixel. Only our hybrid sampling works well across all the
combinations. Note that we isolated influence of each light source to its corresponding
surface in order to clarify the efficiency of each technique (e.g., green illumination does
not appear on the right part).

estimation should take into account both variance and bias. Since a provably optimal

combination should have error of the hybrid estimator within a constant from the truly

optimal combination, effect of bias on such as strategy should be analyzed.

Second, the derivation assumed that all the techniques have the same convergence

rate. This is a natural consequence based on the fact that unbiased Monte Carlo integration

methods have O(N−
1
2 ) convergence rate regardless of probability density functions used.

However, this assumption again breaks with progressive density estimation. Chapter 6 as
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well as the work by Knaus and Zwicker [70] show that progressive density estimation has

asymptotic convergence rate of O(N−
1
3 ) at most, which is slower than that of unbiased

Monte Carlo integration methods.

This section shows that bias indeed affects a provably optimal combination

of multiple importance sampling and convergence rates of all the techniques should

be balanced is necessary in order to retain the optimality of such a provably good

combination. As a practical consequence of this derivation, we show that the alpha

parameter of progressive photon mapping should be less than 2
3 and the number of

samples for unbiased techniques should be proportional to the number of accumulated

photon paths in progressive photon mapping.

9.4.1 Problem Settings

In order to take bias into account in multiple importance sampling, we consider

a biased method as an unbiased method for biased solutions. This makes it possible to

characterize bias as a result of modifications to an original integrand. We denote such

modifications by the ith sampling technique as bi(x). Following the same notation as

Veach’s [117], the jth sample from the ith technique has the following contribution:

Fi, j =
wi(Xi, j)( f (Xi, j)+bi(Xi, j))

pi(Xi, j)
, (9.9)

where wi(Xi, j) is the weight function, f (Xi, j) is the integrand, bi(Xi, j) is the modifications

to the original integrand that introduces bias, and pi(Xi, j) is the probability density

function. The expected (and potentially biased) value from the ith technique is then given

by

µi = E[Fi, j] =
∫

Ω

wi(x)( f (x)+bi(x))dµ(x). (9.10)

Note that bi(Xi, j) is not bias itself, but rather the contribution to the bias from the sample

Xi, j. We can describe bias from the ith technique as the difference between the biased

solution (i.e. µi) and the correct solution;

B[Fi, j] = E[Fi, j]−
∫

Ω

wi(x) f (x)dµ(x) =
∫

Ω

wi(x)bi(x)dµ(x). (9.11)

Both bias and expected values do not depend on the index of samples j.



152

Our goal is to find a weighting strategy which has expected error that is within a

constant factor from the truly optimal weighting strategy. This is also what the original

balance heuristic achieves. Our contribution is the derivation that shows necessary modi-

fications to the original balance heuristic in order to keep this optimality in combination

with a biased technique.

The goal of the derivation of the original balance heuristic is to minimize variance

of the solution. This is because the error of unbiased Monte Carlo techniques is solely

characterized by variance. However, in our setting, we also need to take bias into account

in order to minimize error of the solution. We therefore need to minimize the squared

error based on bias-variance decomposition:

E[(F− µ̂)2] =V [F ]+B[F ]2, (9.12)

where µ̂ is the correct solution, V [F ] is variance, and B[F ] is bias. Minimizing squared

error including bias in general, however, is a very challenging task. This is because bias

is a systematic error that happens because of various reasons, and it is often difficult

to define general characteristics of bias in order to perform any theoretical analysis on

quantities including bias. We therefore make a couple of assumptions that are often

reasonable in rendering.

Firstly, we only consider the case where we have one nth biased technique in

addition to other n−1 unbiased techniques. This can be true in our method if we restrict

ourself to consider only one photon density estimation technique. Secondly, we assume

that the contribution to bias from each sample is constant. This is also reasonable in a

photon density estimator as we only consider neighboring photons which tend to cause

similar error within each radiance estimate. We can thus set bi(x) = 0 for i 6= n and

bn(x) = bn for i = n. Notice that we are overloading the notation of bn for readability.
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We can then expand E[(F− µ̂)2] as follows:

E[(F− µ̂)2] =V

[
n

∑
i=1

1
ni

ni

∑
j=1

Fi, j

]
+B

[
n

∑
i=1

1
ni

ni

∑
j=1

Fi, j

]2

=
n

∑
i=1

1
n2

i

ni

∑
j=1

V [Fi, j]+

(
n

∑
i=1

1
ni

ni

∑
j=1

B[Fi, j]

)2

=
n

∑
i=1

1
n2

i

ni

∑
j=1

V [Fi, j]+

(
n

∑
i=1

B[Fi, j]

)2

=

(
n

∑
i=1

1
n2

i

ni

∑
j=1

E[F2
i, j]−

n

∑
i=1

1
n2

i

ni

∑
j=1

E[Fi, j]
2

)

+

(∫
Ω

(
n

∑
i=1

wi(x)bi(x)

)
dµ(x)

)2

=
∫

Ω

(
n−1

∑
i=1

w2
i (x) f 2(x)
ni pi(x)

+
w2

n(x)( f (x)+bn)
2

nn pn(x)

)
dµ(x)

+

(∫
Ω

wn(x)bndµ(x)
)2

−
n

∑
i=1

1
ni

µ
2
i ,

(9.13)

In the following derivations, we will show how to minimize the sum of the first two terms.

The last term ∑
n
i=1

1
ni

µ2
i has the same bound as the original derivation by Veach thus the

last term is independent from weighting functions.

9.4.2 Minimizing Squared Error

Even though we made some assumptions, Equation 9.13 is still difficult to mini-

mize with respect to wi, since bias introduced the integral term (
∫

Ω
wn(x)bndµ(x))2. In

order to yield the optimal wi including this term, it seems that we need to solve an integral

equation which is often intractable. However, we can show that minimizing a point-wise

expression,
n−1

∑
i=1

w2
i (x)

ni pi(x)
+

w2
n(x)(1+ rn(x))2

nn pn(x)
+Ar2

n(x)w
2
n(x) (9.14)

indeed suffices to minimize the full expression of D[F ] in Equation 9.13, where we

defined rn(x) = bn
f (x) and A =

∫
Ω

dµ(x) for readability.



154

We first start by trying to find an alternative expression for (
∫

Ω
wn(x)bndµ(x))2.

In order to obtain such an expression, we use the Cauchy-Schwarz inequality and consider

the bound of this term;(∫
Ω

wn(x)bndµ(x)
)2

≤ A
∫

Ω

w2
n(x)b

2
ndµ(x). (9.15)

Minimizing the bound in general does not minimize the original term since the bound

might not have the same extrema as the original function. In our case, however, the bound

and the function happen to have extrema at exactly the same points since

∂

∂wn

(∫
Ω

wn(x)bndµ(x)
)2

= A
∂

∂wn

∫
Ω

w2
n(x)b

2
ndµ(x). (9.16)

Note that this is possible because of our assumptions on bias. Since the latter is the upper

bound of the function, minimizing the bound also minimizes the function given the fact

that they have extrema at the same points.

Furthermore, since the sums of two functions f (x)+g(x) and f (x)+h(x) have

the same extrema if dg
dx = dh

dx , minimizing

∫
Ω

(
n−1

∑
i=1

w2
i (x) f 2(x)
ni pi(x)

+
w2

n(x)( f (x)+bn)
2

nn pn(x)
+Aw2

n(x)b
2
n

)
dµ(x) (17)

is equivalent to minimizing the corresponding sums in Equation 9.13. We can yield

Equation 9.14 by dividing the integrand of this equation by f 2(x).

9.4.3 Biased Balance Heuristic

Using the method of Lagrange multipliers, the minimum value of Equation 9.14

is attained when all n+1 partial derivatives (n derivatives for wi and one for λ ) of the

expression
n−1

∑
i=1

w2
i

ni pi
+

w2
n(1+ rn)

2

nn pn
+Ar2

nw2
n +λ

(
n

∑
i=1

wi−1

)
(9.18)

are zero. Note that we dropped the notation (x) similar to the Veach’s derivation since

this is a point-wise minimization of the function. The solution to this equation yields

ŵi(x) =
ni p′i(x)

∑
n
k=1 nk p′k(x)

, (9.19)



155

where

p′(x)i =

pi(x) (i 6= n)

pn(x) 1
(1+rn)2+nn pn(x)Ar2

n
(i = n),

(9.20)

A is a constant, and rn is the relative magnitude of the contribution of the bias to the

sampled value. Here the nth technique is biased. Note that if there is no bias rn = 0, we

obtain p′i = pi and Equation 9.19 turns into the original balance heuristic in Equation 9.5.

Note also that taking an infinite number of samples limnn→ ∞ turns the weight for a

biased method into zero, which makes the combined estimate converge to the correct

solution even if rn 6= 0.

9.4.4 Balancing Asymptotic Convergence Rates

When each technique has a different convergence rate, a solution with multiple

importance sampling will be asymptotically dominated by the technique with the slowest

convergence rate that might have the highest variance. For example, consider a part

of a scene where the estimator A has higher variance, but the other estimator B has

lower variance. Suppose also that the estimator B has slower convergence rate than the

estimator A. The balance heuristic would put higher weight for the estimator B since it

has lower variance. However, this combination asymptotically results in arbitrary larger

error than other combination due to slower convergence of the estimator B. For instance,

just using the estimator A can be arbitrary better even with finite time, which invalidates

the optimality.

Recall that the asymptotic convergence rate of the squared error in progressive

photon mapping is recently derived as [70];

O
(

1
Nα

)
+O

(
1

N2(1−α)

)
. (9.21)

In order to balance the convergence rate, we first introduce a function N′(k) that returns

the number of samples for an unbiased technique for given k samples for progressive

photon mapping. Since unbiased estimators have O
(

1
N′(N)

)
as convergence rate in this

case, the remaining task is to find a function N′(k) such that

O
(

1
Nα

)
+O

(
1

N2(1−α)

)
= O

(
1

N′(N)

)
(9.22)
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is satisfied. This equation has the following two solutions. For α < 2
3 ,

O
(

1
Nα

)
+O

(
1

N2(1−α)

)
= O

(
1

N′(N)

)
O
(

1
Nα

)
= O

(
1

N′(N)

)
N′(N) = Nα ,

(9.23)

and for α ≥ 2
3 ,

O
(

1
Nα

)
+O

(
1

N2(1−α)

)
= O

(
1

N′(N)

)
O
(

1
N2(1−α)

)
= O

(
1

N′(N)

)
N′(N) = N2(1−α).

(9.24)

9.4.5 Practical Consequences

Equation 9.19 reveals some critical issues. In order to use this provably good

weighting strategy of unbiased methods and a biased method, one would have to evaluate

the magnitude of bias relative to the sampled value, ri. Computing the exact ri is probably

not realistic in general, since if we knew the amount of bias, we could just subtract it out

to get an unbiased estimator and use the original balance heuristic. Moreover, even if we

had a method to estimate ri such as the one in Chapter 6, the provably good weighting

strategy would require the additional ability of estimating ri of samples which were not

even sampled by a biased technique in the first place.

We can however utilize the results of this derivation as a guidance to design a

practical solution. Note that Equation 9.19 shows that the only modification should be

made is the multiplication factor of the probability density of the biased technique pn.

This multiplication factor converges to one for α < 2
3 of progressive photon mapping

since

1
(1+ rn)2 +nn pnAr2

n
∈ 1

1+O(Nα−1)+O(N3α−2)
=

1
1+O(Nα−1)

(
for α <

2
3

)
.

(9.25)

Therefore, for α < 2
3 , the biased balance heuristic is asymptotically getting close to the

original balance heuristic as we take more samples. In other words, under this condition,
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the effect of bias in a provably optimal combination is getting smaller and smaller as we

take more samples.

Considering the fact using bias in the biased balance heuristic is difficult, we opt

to ignore bias in our practical implementation with the condition α < 2
3 . Note that while

ignoring bias is a practical choice that we made, the condition α < 2
3 is a theoretical

results derived by taking the effect of bias into account in a provably good combination.

Under the condition that α < 2
3 , Equation 9.23 revealed that we should use

N′(N) = Nα samples for unbiased techniques for given N samples in progressive photon

mapping. This is necessary to keep the combined estimator provably better than other

combinations.

Fortunately, we can achieve this condition easily by realizing that the local photon

count has O(Nα). We therefore just need to set the number of samples for unbiased Monte

Carlo methods proportional to the local photon count of progressive photon mapping.

The excepted squared error of the final combined estimator has the convergence rate of

O(1/Nα).

9.5 Implementation

Given probability densities of paths, an implementation of multisampled pro-

gressive photon mapping is relatively straightforward. Our implementation is based on

stochastic progressive photon mapping, where we store photon statistics for progressive

photon mapping per pixel. One difference is that each pixel stores multiple measure-

ment locations that we generate by tracing a whole eye sub-path. Note that we perform

photon density estimation at all the eye vertices, not only at the first eye vertex (which

corresponds to the original progressive photon mapping) or the second eye vertex as in

Figure 9.1. Each pixel thus stores information of an entire eye path, which is used for

scaling photon flux according to multiple importance sampling. The update procedure of

photon statistics stays the same otherwise. We summarize the steps of the algorithm as

follows:
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1. Generate a photon map with information of light paths.

Each photon stores a pointer to the photon at the previous bounce. For example, a

photon stored at the third bounce has a pointer to the photon at the second bounce

in the same path.

2. Generate measurement points at each pixel by tracing eye rays with informa-

tion of eye paths.

One difference from (S)PPM is that we trace eye rays until the path terminates

according to Russian Roulette. Another difference is that we generate a measure-

ment point at each intersection point, not just at the first/second point. We also

store pointers to measurement points at previous bounces similar to Step 1.

3. Gather neighboring photons using the radius associated to the pixel.

4. Weight contribution of each photon according to the balance heuristic and

update the photon statistics.

Using the path information from Step 1 and Step 2, we compute probability

densities of the whole path under all the techniques we consider (Section 3). These

probability densities are used to compute the weight according to Equation 8 by

ignoring bias (which is equal to Equation 7). The photon statistics are updated as

in SPPM.

5. Perform unbiased Monte Carlo ray tracing at the same pixel.

We perform path tracing at the same pixel we considered in Step 2-4, but weight its

contribution using the balance heuristic. Again, we need to compute the probability

densities of this path generated by path tracing under all the techniques including

(S)PPM. The number of samples we take is equal to the number of photons we

found in Step 3.

6. Repeat Step 2-5 for all the pixels.

7. Iterate the whole steps.
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Figure 9.5: Graph that shows RMS errors of different methods using the same rendering
time for the test scene in Figure 9.6. Our method not only gives us visually pleasing
images, but also provides more accurate solutions for the same rendering time.

In the implementation, we used a separate image buffer to accumulate the contri-

butions from the unbiased sampling techniques. For each new eye path in the eye pass

in stochastic progressive photon mapping, instead of just computing the measurement

location, we also add contribution from this eye path into the separate image buffer. Even

though our formulation can incorporate full bidirectional path tracing, we ignore shadow

ray connections with the light sub-path with more than one vertex in our implementation

since the number of visibility tests would be significantly large in our setting. This sepa-

rate image buffer therefore essentially contains a weighted solution of path tracing with

next event estimation. The final image is simply a sum of this buffer and the weighted

solution of stochastic progressive photon mapping.

Recall also that the previous section derived two conditions that should be met in

the combined estimator. First, progressive photon mapping should use α < 2
3 . Second,

unbiased techniques should use N′(N) = Nα for given N samples in progressive photon

mapping. The consequence to the final algorithm is very simple. We just use α = 0.6 < 2
3 ,

and we perform the eye pass when the counter of newly accumulated photon paths

becomes more than the number of pixels and reset the counter afterward.
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Table 9.2: Statistics of our experiments. The numbers in the column of each method
show the average numbers of samples per pixel and RMS errors (Path; path tracing, PPM:
progressive photon mapping, and MPPM: multisampled progressive photon mapping).
Note that the average number of samples for PPM and MPPM counts samples that did not
contribute to the final image (e.g., photon path that missed the scene from the beginning),
thus PPM could take more samples than path tracing for some scenes.

Scene Path PPM MPPM Time [min]
Buddha 365 (0.1900) 270 (0.1067) 151 (0.0399) 30

Conference 236 (0.0164) N/A 119 (0.0270) 60
Sibenik 333 (0.3233) N/A 133 (0.0549) 60
Torus N/A 242 (0.0365) 138 (0.0235) 15

Treasures 1069 (0.0432) 1222 (0.1217) 720 (0.0131) 120
Wheels 682 (0.0417) 690 (0.0512) 369 (0.0156) 120

9.6 Results

We have implemented path tracing with next event estimations [66], progressive

photon mapping, and our method using the same ray tracing core. Note that some of

our test scenes feature specular-diffuse-specular paths which can only be rendered by

progressive photon mapping at the moment. Note also that the goal is to develop a single

algorithm that handles all the practical scenes equally well. Existing unbiased methods

do not satisfy this goal to begin with as we already demonstrated in previous chapters. In

the results, we use comparisons with path tracing mainly for demonstrating the effect

that will be efficiently captured by an unbiased Monte Carlo ray tracing method.

We ran all the experiments on an Intel Core 2 Q6600 at 2.4GHz using a single

core and the resolution of the images are 512×512 and 640×480. Table 9.2 summarizes

various statistics of our experiments. We should note that optimizing absolute rendering

time is not our main purpose, and it is likely that a more careful implementation would

significantly reduce the overall rendering times. All the comparisons are equal-time.

Figure 9.6 highlights the advantage of our method. This scene contains diffuse

illumination, highly glossy reflections, caustics and their highly glossy reflections to the

viewer, and a light source with a sharp directional distribution. Path tracing is efficient for

computing some contributions from direct illumination and glossy reflections, yet caustics

cause noise. Progressive photon mapping handles caustics, reflections of caustics, and
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the highly directional light source robustly, but a sharp BRDF lobe of the highly glossy

material becomes a source of noise. Our method adaptively combines both methods

without any user intervention and produces a less noisy solution in the same rendering

time. The graph in Figure 9.5 shows the convergence of the RMS (Root Mean Square)

errors of the same scene with different methods. Figure 9.9 demonstrates the results of

our method for more complex scenes.

Stochastic progressive photon mapping already demonstrated efficient rendering

of glossy reflections by tracing one bounce rays from a visible point through each pixel.

The issue however is that whether we trace such rays or not is based on a heuristic classifi-

cation of diffuse/non-diffuse materials. Multisampled progressive photon mapping takes

a different approach by always tracing such rays and weighting the result according to

multiple importance sampling. This approach eliminates any such heuristic classification

of the input scene. Since our method subsumes stochastic progressive photon mapping

as shown in Figure 9.1, we can also consider our method as a generalization of stochastic

progressive photon mapping (Figure 9.10).

As we mentioned in Section 9.3, photon density estimation is an efficient method

for handling a light source with a sharp directional distribution. Figure 9.11 highlights

this property in a realistic scene setting. This test scene uses Lambertian surfaces with

light sources with a directional radiance distribution according to modified-Phong with

the exponent 1000 to simulate spotlights. Although the scene setup is seemingly simple,

path tracing becomes inefficient in this scene. This is because path tracing does not

consider the directional radiance distribution of the light sources. Our method adaptively

employs photon density estimation in such cases by putting greater weight to photon

density estimation using multiple importance sampling.

Path tracing however provides a benefit if a scene consists of diffuse materials and

non-directional light sources. Our method is indeed almost as efficient as path tracing for

a such scene as shown in Figure 9.7. This property is useful since (stochastic) progressive

photon mapping often produces much noisier results for diffuse illumination than path

tracing (Figure 9.4). When an input scene contains paths that are difficult to capture with

path tracing alone, our method again adaptively combines progressive photon mapping

to robustly handle such paths while keeping the benefit of path tracing (Figure 9.8).
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Path tracing Progressive Photon Mapping

Multisampled Progressive Photon Mapping

Figure 9.6: Buddha statue with highly glossy metal illuminated by a blue diffuse light
source and a yellow spotlight. Path tracing is efficient for computing direct illumination
from the diffuse light source and glossy reflections, while being inefficient for caustics
and indirect illumination from the spotlight. Progressive photon mapping robustly
handles such caustics and indirect illumination, however, glossy reflections can cause
noise. Multisampled progressive photon mapping automatically combines path tracing
and progressive photon mapping using multiple importance sampling and produces a
significantly less noisy solution in the same rendering time.
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Path tracing Our method

Figure 9.7: Conference room with diffuse surfaces and a large diffuse light sources.
For this type of scenes, our method performs almost as well as path tracing since the
computed component of path tracing automatically dominates the final image.

Progressive photon mapping Our method

Figure 9.8: Torus scene. Both methods successfully captured all light paths including
specular-diffuse-specular paths on the torus, however, the image with stochastic progres-
sive photon mapping contains undesirable noise in the directly illuminated region. Our
method significantly reduces noise in such region by adaptively combining the direct
illumination solution using shadow rays.
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Figure 9.9: Scenes features high geometric complexity and illumination complexity.
Treasures scene has glass plates and coins and a crown with glossy metal illuminated by a
small diffuse light source. Wheels scene has two wheels with glossy metal illuminated by
two spotlights. This figure shows the images rendered by path tracing with the next event
estimation (top), progressive photon mapping (middle), and multisampled progressive
photon mapping (bottom) using the same rendering time. Path tracing failed to capture
caustics while rendering accurate glossy reflections. Progressive photon mapping captures
caustics, but produces noisy results for glossy reflections. Multisampled progressive
photon mapping takes the best of both approaches and captures the all illumination
features efficiently.
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MPPM: Path tracing MPPM: Progressive Photon Mapping MPPM: Mixture

Figure 9.10: Weighted components of multisampled progressive photon mapping. The
images show computed illumination due to path tracing (left), progressive photon map-
ping (center), and the mixture of both methods (right) in the result of our method in
Figure 9.6. Each method covers a different component of illumination based on the prob-
ability density functions of light paths. Note that mixture sampling on the right combines
eye sub-paths with length equal to or longer than two and arbitrary light sub-paths. This
mixture sampling includes stochastic progressive photon mapping as a special case of
using eye sub-paths of length two.

Path tracing Our method

Figure 9.11: Sibenik cathedral with spotlights. The spotlights are the only light sources
in this scene. The sharp directional distribution of the spotlights makes rendering with
path tracing inefficient as the sampling method does not take this directional distribution
into account. Our method adaptively incorporates photon density estimation, which
performs importance sampling the directional profile of light sources, and produced a far
less noisy result in the same rendering time.
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9.7 Discussion

Even though multisampled progressive photon mapping works well across many

scene configurations, there are a couple of limitations in its current form. Firstly, while

we opted to ignore bias in our method, our derivation shows that bias surely affects

a provably good weighting strategy in multiple importance sampling. We found our

decision to be reasonable in practice as we have demonstrated, but further investigation

might lead to a better alternative.

Secondly, even though our derivation provides a first step in theoretical analysis

of the effect of bias in multiple importance sampling, our derivation also makes two

assumptions that might be too restrictive in some cases. The first assumption is that

we only have one biased Monte Carlo method in a combined solution, and the second

assumption is that the contribution to bias from each biased sample is constant. We made

these assumptions in order make theoretical analysis of the weighting function tractable,

but further research may be able to relax some parts of the assumptions by using our

work as a stepping-stone.

Lastly, in our implementation, we have not done full connections of all light

vertices and eye vertices using shadow rays as we described in Section 9.5. Such

connections could be beneficial for some scenes with strong diffuse indirect illumination.

The challenge however is that we need to consider an extremely large number of shadow

ray connections since we can potentially have many light paths and eye paths in stochastic

progressive photon mapping. Recent work on related problems such as multidimensional

lightcuts [122] might be applicable to reduce the necessary number of shadow ray tracings,

however, direct applications would not work since none of such existing methods is

consistent with a limited number of light paths and eye paths per iteration. Veach [117]

described an application of Russian Roulette to reduce the number of shadow rays, which

could be applied to our method as well.

A few studies explored applications of multiple importance sampling to regular

(not progressive) photon mapping [62]. Bakaert et al. proposed a combination of the

regular photon density estimation using multiple importance sampling in the context of

their modified photon density estimator [9]. They mentioned that their framework does

not handle caustics from specular materials which our method can efficiently handle.
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Vorba and Křivánek [120] described how multiple importance sampling can be used in

final gathering of regular photon mapping. Contrarily to their approach, our method does

not limit density estimation to final gathering paths. Moreover, none of those studies

analyzed the effect of bias in multiple importance sampling, which is one of our main

theoretical contributions. Our method is also the first to combine progressive photon

mapping using multiple importance sampling.

9.8 Conclusion

We presented a new light transport algorithm, multisampled progressive photon

mapping, that provides a unified view of progressive photon mapping and unbiased

Monte Carlo ray tracing methods based on multiple importance sampling. We provided

theoretical analysis on how bias from progressive photon mapping affects a provably

good combination of multiple sampling techniques. We described how to evaluate the

probability density function of paths in photon density estimation and also delivered

the necessary conditions for the practical algorithm based on the analysis. We have

demonstrated the improved robustness and efficiency of our method in comparison to the

original progressive photon mapping and path tracing. We believe that our framework

will find many practical applications for photorealistic image synthesis and also lead to

further development of robust light transport simulation methods which can efficiently

handle all kinds of illumination. As such, our contribution could be summarized as

providing a new basis for more robust future physically-based rendering methods.
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Chapter 10

Stochastic Spatial Hashing

One costly operation in the progressive photon mapping algorithm is a spatial

range query of neighboring photons. It is not only that the queries themselves are

costly, but also the construction of an acceleration data structure for queries adds non-

negligible overhead in progressive photon mapping as the algorithm repeatedly constructs

such an data structure many times. In this chapter, we introduce a new data-parallel

acceleration data structure for range queries, stochastic spatial hashing, which is suitable

for processing on a massively parallel processor like Graphics Processing Units (GPUs).

Stochastic spatial hashing stochastically selects a single element (photon or measurement

point) to be kept, instead of storing a list of elements at each hash entry as in regular

spatial hashing. This simple modification makes the construction process data-parallel,

and guarantees uniform work distribution of retrieval of photons regardless of the number

of collisions, which is preferable for massively parallel processing. The stochastic

selection adds no extra bias in results, thus maintains the correctness of progressive

photon mapping. Using this new hashing scheme, we demonstrate the implementation of

progressive photon mapping on GPUs.

168
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10.1 Related Work

Several previous work attempted to implement range queries on a GPU as a

parallel computation platform in the context of photon density estimation. The first

implementation was proposed by Purcell et al. [95]. They presented two algorithms that

construct a uniform grid data structure for photon maps: bitonic sort and stencil routing.

In terms of the algorithmic representation, our method is akin to the stencil routing with

a single photon per grid cell. However, stencil routing adds bias due to flux redistribution

when hash collision occurs. Our method in contrast adds no extra bias and the theory

behind our method is not based on flux redistribution. We also employ a spatial hashing

which reduces the number of unused grid cells that needs to be retained on graphics

hardware.

Another implementation on GPUs is done by Fabianowski et al [24], which uses

a linear BVH for a data structure of photon map [74]. A kd-tree has also been used for

a GPU photon mapping [125, 136]. Since those algorithms use tree data structures, the

retrieval requires O(logN) (for N photons) global data fetches and the work distribution

is typically nonuniform. In contrast, our algorithm guarantees a constant and uniform

number of global data fetches at the retrieval. Moreover, existing tree construction

algorithms have a complex mapping to parallel processing due to dependency between

parent nodes and child nodes. Our construction algorithm naturally maps to data-parallel

processing on GPUs than tree construction algorithms, and results in significantly faster

construction time than those previous work using a tree data structure.

Photon splatting [75, 84] is another algorithm that utilizes graphics hardware to

perform photon mapping. Instead of constructing a photon map and gather photons in a

separate pass, each photon is directly accumulated as a splat onto the image plane, which

can be done by rasterizing photons as a disc (or some proxy geometry [84]). Although

photon splatting completely eliminates the construction of a photon map, thus potentially

being more efficient, it cannot handle specular reflections or refractions of eye rays (e.g.,

LD+S+E) due to the limitation of perspective projection in splatting. Our algorithm

constructs a photon map and does not rely on perspective projection, thus the algorithm

works in general settings.

Ma and McCool [82] proposed a hash-based kNN query algorithm for a parallel
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platform. The idea is to use a space filling curve to organize a localized set of points such

that the neighboring indices of the hashed-index of a query point approximately point

to spatially neighboring sets of photons. The hash function approach we are taking in

this chapter is motivated by their work. The difference is that our algorithm does not

need to construct a list of points, which is an inefficient operation on a massively parallel

processor.

Alcantara et al. [4] presented a parallel hashing algorithm on GPUs. Their

algorithm first roughly distributes data into each thread using a simple hash function, and

performs Cuckoo hashing within each threads in parallel. Cuckoo hashing constructs a

perfect hash table which achieves O(1) retrieval. Due to the iterative nature of Cuckoo

hashing, the algorithm can fail to terminate, thus it repeats the construction until the

construction succeeds within a finite number of iterations. Although our algorithm does

not build a perfect hash table, it achieves O(1) retrieval time as well and does not need

multiple tries. Our algorithm also has finer granularity of parallelism compared to their

algorithm (single item vs 512 items per thread).

10.2 Method

Since progressive photon mapping constructs multiple photon maps to render a

single image, we need a fast algorithm to construct a photon map on GPUs in order to

implement it on GPUs. Since the original photon mapping uses a kD-tree, it is conceivable

to use previous work that build a kD-tree or BVH [136, 24] on GPUs. However, we claim

that a tree is not necessarily ideal data structure on GPUs.

First, construction of a tree is an inherently serial process due to dependencies

between parent nodes and child nodes. Since the structure of child nodes depends on the

structure of parent nodes, each level of the tree should be processed sequentially. Second,

range query using a tree structure involves O(logN) data fetches for N photons. Since

data fetches are relatively costly compared to mathematical operations on GPUs, we

would like to reduce the number of data fetches. Finally, the work distribution of tree

traversal is usually not uniform, which results in poor utilization of GPU units [3].

We instead use spatial hashing for data structure for range queries. Spatial hashing
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is a promising alternative since the construction has less data dependency and the number

of data fetches is O(1). At the same time, standard spatial hashing poses some issues

that are not desirable for GPUs. In a typical CPU implementation of spatial hashing,

each hash entry keeps a list of elements when collision happens. Constructing a list is

not particularly efficient on GPUs because chaining of elements is a dependent, serial

process. Furthermore, since the number of elements per hash entry typically varies, the

amount of work at retrieval is still not uniform (the same observations were made by

Alcantara et al [4]).

10.2.1 Stochastic Selection

Our simple solution to these issues is just keeping a single photon per hash entry

by selecting the photon in a stochastic way. To be concrete, given n photons that would be

mapped to the same hash entry, we pick one photon according to the uniform probability

p(x) = 1
n . In order to keep the results consistent, stored photon flux is now divided by

the probability p(x) = 1
n (i.e., flux is multiplied by n).

This modification adds no extra bias when we use the resulting hash table to

perform progressive radiance estimation. This can be trivially confirmed by that the

expected radiance after this modification stays the same. This is the key difference from

the redistribution of photon flux in the stencil routing [95], which adds extra bias. We do

not redistribute flux, but simply select one photon and scale it according to the selection

probability.

Since each hash entry now keeps only one photon, we no longer need to perform

chaining of photons to a list. It therefore allows a data-parallel construction of a hash

table. Moreover, the amount of work at retrieval is exactly one data fetch regardless of

the number of collisions, which results in completely uniform work distribution at data

retrieval.

10.2.2 Range Query

Since progressive radiance estimate needs to find photons within some distance to

each intersection point, just performing one data retrieval is not enough. In other words,
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we need to perform range query of photons. Our approach is to consider range query as a

sphere-points intersection, which has been well-explored in collision detection [114].

We use a sphere defined by each intersection point and points defined by photon

positions. We then simply take the grid cells that overlap with the sphere and look up

the hash table [114]. This operation is still done in O(1) in contrast to O(logN) of

previous work using a tree data structure [74, 136]. In order to accelerate range queries,

we determine the grid cell size to two times the maximum radius. Range query thus only

needs to look up neighboring cells. Since the radius reduction is monotonic (i.e., radius

never increases), the number of data fetches in rage query is always 8 regardless of the

number of passes. It is also independent from distribution of photons because of the

stochastic selection in Section 10.2.1, thus results in uniform work distribution as well.

10.2.3 Eye Ray and Photon Tracing

In addition to progressive radiance estimation, we implemented photon tracing

and eye ray tracing using a threaded BVH [115]. We used the combination of ML-

CGs [76] as a pseudo random number generator on GPUs. We trace eye rays using

distributed ray tracing as in stochastic progressive photon mapping, thus each pixel

maintains photon statistics.

A standard CPU implementation of photon tracing keeps a global list of photons

and sequentially adds a photon to the list. We can use a similar approach on GPUs

by keeping a list of photons per thread. However this approach needs inter-threads

commutation to combine lists in order to obtain a complete list of photons.

Our alternative approach traces a single bounce per pass thus stores a single

photon per thread. For example, the very first pass traces photons from light sources

toward the first intersections and stores the photons. Further bounces are traced in

succeeding passes. Each path thus outputs either zero or one photon per thread, not a list

of photons, thus simple masking at the hash construction is sufficient.

A new photon path is generated at next pass if the current photon path is killed

by Russian Roulette or misses a scene. This process is done independently between

threads, thus each thread potentially traces a photon ray at a different number of bounces.

This approach keeps all threads busy all the time regardless of path length. A similar
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implementation is recently used for path tracing [90] and they reported performance

improvement. However, our choice of implementation is mainly for simplicity, and

photon tracing is not our primary focus.

10.2.4 Implementation

We describe implementation details of our hashing scheme. We used GLSL and

OpenGL as the platform, but our algorithm can be implemented with other data-parallel

programming languages such as NVIDIA CUDA. The hash table construction consists

of the following three steps:

1. Compute hash values.

2. Scatter photons with the stochastic selection.

3. Multiply photon flux by the numbers of collisions.

The all steps are performed in parallel over the all photons. We describe details in the

following. Note that the range query is done as in Section 10.2.2, and the updating

procedure stays the same as the CPU version.

In order to compute hash values, we define uniform grid over a scene’s bounding

box and compute the hash value of each photon using the integer grid index [114]. The

hash function that we use is a pseudo random number generator [76], which is also used

for eye ray/photon tracing. The hash function takes the grid index as the random number

seed and outputs a third random number as the hashed index.

Scattered writes of photons into the hash table (i.e., scatter operation) are done

with a vertex buffer object in OpenGL that contains one vertex per photon. Each photon

is mapped into the hash entry by perturbing the vertex position using a vertex texture

fetch of the hash value.

The stochastic selection can be done by two different approaches. The first

approach is assigning a uniform random value as a each photon’s depth value, and

simply renders all the photons with depth buffer enabled. Since probability that one

of the photons in the same hash entry has the smallest depth value is constant, this
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Table 10.1: Performance of our ray tracing core for incoherent rays and end-to-end
performance of our GPU implementation of progressive photon mapping and path tracing.
Units are 220/sec. The numbers shown are the numbers of emitted photons for PPM and
the numbers of paths for PT.

Scene Triangles Intersection PPM PT
Box 4360 20.6 0.94 3.18

Cognac 16456 14.3 3.1 1.76
Pool 122900 17.5 3.2 1.05

Kitchen 44629 13.1 0.35 1.68

effectively implements the stochastic selection described in Section 10.2.1 without

making a complete list of photons.

The second approach is a simpler variation of the first approach, which uses the

pixel index as the each photon’s depth value. The rest of the process is the same as the

first approach. This assumes that each pixel generates statistically independent photons.

This is true if we use uniform sampling for photon tracing, and under this assumption,

the probability that one of the photons mapped to the same hash entry has the smallest

depth value is constant. We use this second approach since its implementation is simpler.

We count the number of collisions in each hash entry (i.e., the number of colli-

sions) by doing additive blending of 1.0 using the same vertex buffer. It performs atomic

add operations of 1s into hash entries. Since the maximum count needed is equal to

the maximum number of hash collisions, which is often very small, we can use an 8 bit

buffer to save bandwidth. We then multiply those numbers to stored photon flux, and

finish the hash table construction.

Figure 10.1 shows the pseudocode of the stochastic spatial hashing algorithm.

Note that the code is very short and simple.
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procedure CONSTRUCT(Photon)

HashIndex← HASH(Photon.Position)

Table[HashIndex]← Photon

ATOMICINC(Count[HashIndex])

procedure RETRIEVE(Query)

HashIndex← HASH(Query.Position)

Photon← Table[HashIndex]

if NEIGHBORING(Query.Position,Photon.Position,Query.Radius)

then

{
Photon.Flux← Photon.Flux∗Count[HashIndex]

return (Photon)

Figure 10.1: Stochastic spatial hashing algorithm. CONSTRUCT() adds a photon to the
data structure for spatial hashing. RETRIEVE() find a neighboring photon of the given
query position. HASH() computes the hash value from the given position. ATOMICINC()
increments the value with a guarantee of isolation from concurrent processes working on
the same value. NEIGHBORING() returns true if two positions are within the specified
distance. The codes run for all the photons/query positions in parallel.

10.3 Results and Discussion

We measured performance of our implementation on AMD Radeon HD 4850.

All images are rendered with resolution of 5122 using 5122 photons per pass up to 10

bounces. Eye rays are traced after every 10 photon passes. The source code of the

example implementation will be available on the author’s website.

Table 10.1 shows the performance of our implementation of incoherent ray-

triangle intersections, progressive photon mapping (PPM), and path tracing (PT). Incoher-

ent rays are generated by randomly picking two points on a scene’s bounding sphere and

connecting them. Although our code is not highly optimized, the GPU implementation

of PPM is 1-2 orders of magnitude faster than the CPU. Figure 10.2 confirms that PPM

is more efficient than path tracing for difficult light paths as it is claimed. Even though

the algorithm of PPM is more complex than PT, our implementation is not significantly

slower to the extent that it cancels out efficiency of PPM.
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We investigated how the stochastic selection in Section 10.2.1 affects image

quality in Figure 10.3. A smaller number of hash entires leads to more collisions, thus

it could cause much noise in rendered images. We have found that our algorithm is not

highly sensitive to the number of hash entries if the number of hash entires is at least

equal to the number of photons processed per pass. Even compared with having a full

list of photons, the stochastic selection does not add visually significant amount of noise.

Figure 10.4 compares the performance of our spatial hashing scheme with the

latest approach by Alcantara et al. on the randomized voxels test in their paper [4]. We

measured up to 3M elements because the number of photons per pass in PPM is usually

smaller. Our construction is slightly faster and the retrieval is on par with their method.

Using tree data structure is also a conceivable option, however, tree construction is slower

than hash table construction (9ms for 200K photons [136]). Using previous work on

GPU photon mapping to implement PPM will be just slower than our method mainly due

to the construction step.

Figure 10.5 shows the breakdown of rendering time. We measured time for the

hash table construction, range query with progressive radiance estimation, photon tracing,

and eye ray tracing. The photon tracing is the most costly part in our implementation,

whereas previous work using BVH photon map [24] reported that the range query with

radiance estimation is the most costly part. The difference is due to faster construction

and retrieval of our algorithm than BVH (about 150ms for construction/retrieval of 256K

photons [24] to 10ms with similar photon tracing performance).

One limitation of our hashing scheme is that usage of a uniform grid is not

scalable to a large scene. For example, if we render a city scene where we see both closer

buildings and farther buildings, the uniform grid covers a large extent and the resolution

of grid might be too coarse for the closer buildings. In fact, the photon tracing is not

scalable to such a large scene either, so using uniform grid is not solely responsible to

this issue. Another limitation is that our method cannot be used for applications that

needs a complete list of hashed elements, such as collision detection.

Concurrently to our work, Yang et al. [135] presented a linked-list construction

algorithm on GPUs which might be potentially useful for implementing standard spatial

hashing on GPUs. The performance presented in their work looks quite promising,
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however, standard spatial hashing does not resolve the issue of irregular work distribution

at the query time. At the same time, stochastic spatial hashing introduces additional

noise in the resulting images. It would be interesting to compare full implementations of

progressive photon mapping using our approach and their approach as future work.

10.4 Conclusion

We presented a data-parallel implementation of progressive photon mapping

on GPUs. The main contribution is the idea of stochastic selection, which keeps a

single photon in each hash entry with some probability, which we named as stochastic

spatial hashing. This simple idea results in a data-parallel construction of hash table

and uniform work distribution at data retrieval. We show the application to progressive

photon mapping, which enables robust and accurate global illumination rendering on

GPUs. The main benefit of our algorithm is a simple algorithm comes with sufficient

performance.
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Progressive Photon Mapping Path Tracing

Figure 10.2: Rendered images using our implementations of progressive photon mapping
and path tracing with shadow rays both on GPUs. Rendering time is 10 min in all scenes.
The kitchen scene is entirely illuminated by caustics from light bulbs, which is common
in the real world. A typical implementation of path tracing on GPUs cannot handle those
paths efficiently, whereas progressive photon mapping is robust under such common
illumination settings.
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Figure 10.3: Effect of the stochastic selection on rendered images with 100M emitted
photons using 5122 photons per pass. The number of hash entries are 642 (top) and 5122

(center). We also show images with a simulated full photon list (bottom). Fewer hash
entries results in noisier images, but having as many hash entries as photons sufficiently
suppresses extra noise due to the stochastic selection.
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Figure 10.5: Breakdown of average rendering time per pass for the hash table con-
struction (blue), range query with progressive radiance estimation (red), photon tracing
(yellow), and eye ray tracing (green). The photon tracing is the most costly part of our
implementation of progressive photon mapping.



Chapter 11

Conclusions

This dissertation introduced a new density estimation framework, progressive

density estimation, for simulating light transport. This new framework can iteratively

take more samples to get a density estimate that converges to the correct solution in

the limit. This is the key difference from existing density estimation framework which

needs to fix the number of samples in order to perform density estimation. Progressive

density estimation utilizes the conditions for convergence in density estimation to build

an iterative density estimator with provable convergence. We developed a new light

transport simulation algorithm, progressive photon mapping, based on progressive density

estimation. We demonstrated that progressive photon mapping is the first practical

algorithm that can simulate many important optical configurations such as simulation of

light fixtures from the filament level.

We also developed several extensions of this basic framework. Unbiased Monte

Carlo ray tracing has been commonly believed to be the only approach that we can

simulate light transport with a reasonable error estimator. In Chapter6, we provided

a practical error estimation method for progressive density estimation which can be

classified as biased Monte Carlo ray tracing. In Chapter 7, we introduced an extension
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of progressive density estimation, stochastic progressive density estimation, which is

a converging estimator of average density over unknown region. This type of problem

settings happens very often in computer graphics in the form of lens effects, and stochastic

progressive photon mapping is a simple and practical solution for such problems.

Chapter 8 introduced a new adaptive computation method for photon trajectory

simulation. The proposed method addresses inherent computational inefficiency of

photon trajectory simulation by adaptively focusing computation to the region of interest.

To the best of our knowledge, this is the first application of adaptive Markov chain

Monte Carlo methods in light transport simulation. In Chapter 9, we provided a unified

multiple importance sampling framework that combines progressive photon mapping

and unbiased Monte Carlo ray tracing methods. By adaptively combining multiple

algorithms, this framework improves the efficiency of the original progressive photon

mapping under many scene configurations. We provided theoretical analysis that reveals

the consequence of inclusion of progressive density estimation into the original multiple

importance sampling framework. In order to accelerate the performance of the proposed

framework on a parallel computation platform, we developed a new hashing algorithm in

Chapter 10. The key feature of the algorithm is that it is designed to work regardless of

the results of contention as opposed to algorithmically coping with contention of multiple

processors. We demonstrated that the resulting algorithm efficiently runs on a graphics

processing unit, which is a most commonly available parallel processing platform at the

moment.

11.1 Future Work

First, we believe that the progressive density estimation framework is widely

applicable to many problems that involve density estimation of a large number of samples.

Although we used this framework only for light transport simulation in this dissertation

work, there is no restricting assumptions made in progressive density estimation in the

applications to other problems. For example, suppose that we would like to gather some

statistics of transactions on an Internet search engine. Regular density estimation frame-

work requires us to store all the samples taken in order to ensure convergence. This may
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be impractical if the number of transactions is very large. Progressive density estimation

has a provable convergence without storing all the samples, which fundamentally avoid

the issue of this storage requirement for many samples of transactions.

Stochastic progressive density estimation will be similarly useful for many gen-

eral problems. In particular, it will be interesting to investigate whether the ability of

estimating correct average density over unknown region is important outside light trans-

port simulation. The error estimation framework should also be applicable to problems

other than light transport simulation when a reasonable error estimator is necessary for

density estimation. There are many avenues of research around progressive density

estimation framework both from theoretical sides and practical sides.

We should note that our adaptive photon simulation method is only using the very

basic form adaptive Markov chain Monte Carlo method. Further applications of adaptive

Markov chain Monte Carlo methods in computer graphics should be worthwhile. For

example, it would be interesting to look at if local adaptation of mutation strategies is

possible and efficient in practice for light transport simulation.

The main idea of combining biased estimators and unbiased estimators in the

modified multiple importance sampling has to be explored more. In general, we have

found that light transport simulation in computer graphics is one of the few areas where

biased estimators are investigated as well as unbiased estimators. Such biased estimators

may potentially be useful for problems in other areas and the idea of combining biased

and unbiased estimators will open up a large body of future work.

The general approach of designing a parallel algorithm that works regardless of

the results of contention could be an interesting direction to pursue. Avoiding contention

as efficiently as possible is often the main focus of many parallel processing algorithms.

However, such an algorithm is generally complex and the requirement to hardware often

comes with the algorithm. Our idea of utilizing statistical identity enabled a simple and

efficient parallel algorithm for spatial hashing. Investigating this class of algorithms,

which might be called as contention-insensitive parallel algorithms, would be interesting.

Finally, it should be noted that this dissertation is just another step toward the

ultimate goal of perfect light transport simulation of the real world. The author hopes that

this dissertation work serves as the basis for future light transport simulation algorithms.
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